難點解析四川省綿竹市中考數(shù)學(xué)真題分類(平行線的證明)匯編同步測評試題(含詳細(xì)解析)_第1頁
難點解析四川省綿竹市中考數(shù)學(xué)真題分類(平行線的證明)匯編同步測評試題(含詳細(xì)解析)_第2頁
難點解析四川省綿竹市中考數(shù)學(xué)真題分類(平行線的證明)匯編同步測評試題(含詳細(xì)解析)_第3頁
難點解析四川省綿竹市中考數(shù)學(xué)真題分類(平行線的證明)匯編同步測評試題(含詳細(xì)解析)_第4頁
難點解析四川省綿竹市中考數(shù)學(xué)真題分類(平行線的證明)匯編同步測評試題(含詳細(xì)解析)_第5頁
已閱讀5頁,還剩26頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

四川省綿竹市中考數(shù)學(xué)真題分類(平行線的證明)匯編同步測評考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計16分)1、用反證法證明命題“三角形中必有一個內(nèi)角小于或等于60°”時,首先應(yīng)該假設(shè)這個三角形中()A.有一個內(nèi)角小于60° B.每一個內(nèi)角都小于60°C.有一個內(nèi)角大于60° D.每一個內(nèi)角都大于60°2、中,它的三條角平分線的交點為O,若∠B=80°,則∠AOC的度數(shù)為()A.100° B.130° C.110° D.150°3、在中,若一個內(nèi)角等于另外兩個角的差,則(

)A.必有一個角等于 B.必有一個角等于C.必有一個角等于 D.必有一個角等于4、將一副三角板按如圖所示的方式放置,,,,且點在上,點在上,AC∥EF,則的度數(shù)為(

)A. B. C. D.5、如圖,∠C=88°=∠D,AD與BE相交于點E,若∠DBC=23°,則∠CAE的度數(shù)是()A.23° B.25° C.27° D.無法確定6、將一個直角三角板和一把直尺按如圖所示的方式擺放,若∠2=55°,則∠1的度數(shù)為(

)A.45° B.55° C.25° D.35°7、如圖,把沿線段折疊,使點落在點處;若,,,則的度數(shù)為(

)A. B. C. D.8、如圖,,的角平分線交于點,若,,則的度數(shù)(

)A. B. C. D.第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計14分)1、在△ABC中,將∠B、∠C按如圖方式折疊,點B、C均落于邊BC上一點G處,線段MN、EF為折痕.若∠A=80°,則∠MGE=_____°.2、如圖,在△ABC中,∠C=62°,△ABC兩個外角的角平分線相交于G,則∠G的度數(shù)為_____.3、如圖,將分別含有、角的一副三角板重疊,使直角頂點重合,若兩直角重疊形成的角為,則圖中角的度數(shù)為_______.4、如圖,DE⊥AB,∠A=25°,∠D=45°,則∠ACB的度數(shù)為_____5、如圖,下列條件:①∠1=∠3,②∠2+∠4=180°,③∠4=∠5,④∠2=∠3,⑤∠6=∠2+∠3中能判斷直線的有_________(只填序號).6、如圖,三角形ABC中,D是AB上一點,F(xiàn)是BC上一點,E,H是AC上的點,EF的延長線交AB的延長線于點G,連接DE,DH,DE∥BC.若∠CEF=∠CHD,∠EFC=∠ADH,∠CEF:∠EFC=5:2,∠C=47°,則∠ADE的度數(shù)為__.7、如圖,在△ABC中,AC=BC,∠ABC=54°,CE平分∠ACB,AD平分∠CAB,CE與AD交于點F,G為△ABC外一點,∠ACD=∠FCG,∠CBG=∠CAF,連接DG.下列結(jié)論:①△ACF≌△BCG;②∠BGC=117°;③S△ACE=S△CFD+S△BCG;④AD=DG+BG.其中結(jié)論正確的是_____________(只需要填寫序號).三、解答題(7小題,每小題10分,共計70分)1、如圖,已知AB∥CD,AD和BC交于點O,E為OC上一點,F(xiàn)為CD上一點,且∠CEF+∠BOD=180°.說明∠EFC=∠A的理由.2、問題情景:如圖1,在同一平面內(nèi),點和點分別位于一塊直角三角板的兩條直角邊,上,點與點在直線的同側(cè),若點在內(nèi)部,試問,與的大小是否滿足某種確定的數(shù)量關(guān)系?(1)特殊探究:若,則_________度,________度,_________度;(2)類比探索:請猜想與的關(guān)系,并說明理由;(3)類比延伸:改變點的位置,使點在外,其它條件都不變,判斷(2)中的結(jié)論是否仍然成立?若成立,請說明理由;若不成立,請直接寫出,與滿足的數(shù)量關(guān)系式.3、指出下列命題的題設(shè)和結(jié)論,并判斷它們是真命題還是假命題,如果是假命題,舉出一個反例.(1)兩個角的和等于平角時,這兩個角互為補角;(2)內(nèi)錯角相等;(3)兩條平行線被第三條直線所截,內(nèi)錯角相等.4、已知:如圖,點E在線段CD上,EA、EB分別平分∠DAB和∠ABC,∠AEB=90°,設(shè)AD=x,BC=y(tǒng),且(x﹣2)2+|y﹣5|=0.(1)求AD和BC的長.(2)試說線段AD與BC有怎樣的位置關(guān)系?并證明你的結(jié)論.(3)你能求出AB的長嗎?若能,請寫出推理過程,若不能,說明理由.5、如圖,在△ABC中,點D為∠ABC的平分線BD上一點,連接AD,過點D作EF∥BC交AB于點E,交AC于點F.(1)如圖1,若AD⊥BD于點D,∠BEF=120°,求∠BAD的度數(shù);(2)如圖2,若∠ABC=α,∠BDA=β,求∠FAD十∠C的度數(shù)(用含α和β的代數(shù)式表示).6、點E在射線DA上,點F、G為射線BC.上兩個動點,滿足∠DBF=∠DEF,∠BDG=∠BGD,DG平分∠BDE.(1)如圖,當(dāng)點G在F右側(cè)時,求證:;(2)如圖,當(dāng)點G在BF左側(cè)時,求證:;(3)如圖,在(2)的條件下,P為BD延長線上一點,DM平分∠BDG,交BC于點M,DN平分∠PDM,交EF于點N,連接NG,若DG⊥NG,,求∠B的度數(shù).7、如圖,點E,C在線段BF上,∠A=∠D,AB∥DE,BC=EF.求證:AC=DF.-參考答案-一、單選題1、D【解析】【分析】根據(jù)反證法的證明步驟解答即可.【詳解】解:用反證法證明“三角形中必有一個內(nèi)角小于或等于60°”時,應(yīng)先假設(shè)三角形中每一個內(nèi)角都不小于或等于60°,即每一個內(nèi)角都大于60°.故選:D.【考點】本題考查反證法,熟知反證法的證明步驟,正確得出原結(jié)論的反面是解答的關(guān)鍵.2、B【解析】【分析】先根據(jù)角平分線的定義可得,,再根據(jù)三角形的內(nèi)角和定理可得,然后根據(jù)三角形的內(nèi)角和定理可得,由此即可得出答案.【詳解】如圖,∵AO,CO分別是,的角平分線∴,∴又∵∴∴故選:B.【考點】本題考查了角平分線的定義、三角形的內(nèi)角和定理等知識點,掌握三角形的內(nèi)角和定理是解題關(guān)鍵.3、D【解析】【分析】先設(shè)三角形的兩個內(nèi)角分別為x,y,則可得第三個角(180°-x-y),再分三種情況討論,即可得到答案.【詳解】設(shè)三角形的一個內(nèi)角為x,另一個角為y,則第三個角為(180°-x-y),則有三種情況:①②③綜上所述,必有一個角等于90°故選D.【考點】本題考查三角形內(nèi)角和的性質(zhì),解題的關(guān)鍵是熟練掌握三角形內(nèi)角和的性質(zhì),分情況討論.4、C【解析】【分析】根據(jù)平行線的性質(zhì)和三角形的內(nèi)角和定理即可得到結(jié)論.【詳解】∵AC∥EF,∴∠DBE=∠C=45°,∴∠FBD=135°,∵∠E=60°,∠EDF=90°,∴∠F=30°,∴∠FDC=∠F+∠FBD=30°+135°=165°,故選:C.【考點】本題考查了三角形的內(nèi)角和定理,平行線的性質(zhì),正確的識別圖形是解題的關(guān)鍵.5、A【解析】【分析】利用三角形的內(nèi)角和180°和對頂角相等求解即可.【詳解】解:∵∠C+∠CEA+∠CAE=180°,∠D+∠DEB+∠DBC=180°,又∠C=∠D,∠CEA=∠DEB,∴∠CAE=∠DBE=23°.故選:A.【考點】本題考查三角形的內(nèi)角和定理、對頂角相等,熟練掌握三角形的內(nèi)角和是180°是解答的關(guān)鍵.6、D【解析】【分析】先對圖形標(biāo)注,再根據(jù)平行線的性質(zhì)得∠1=∠4,然后根據(jù)直角三角形兩個銳角互余及對頂角相等得出答案.【詳解】如圖,∵,∴∠1=∠4(兩直線平行,內(nèi)錯角相等).∵∠2=∠3(對頂角相等),∴∠1+∠2=∠3+∠4=90°,∴∠1=90°﹣∠2=35°.故選:D.【考點】本題考查平行線的性質(zhì)及三角形內(nèi)角和定理,靈活得選擇平行線的性質(zhì)是解題的關(guān)鍵.7、C【解析】【分析】由于折疊,可得三角形全等,運用三角形全等得出,利用平行線的性質(zhì)可得出則即可求.【詳解】解:∵沿線段折疊,使點落在點處,∴,∴,∵,,∴,∵,∴,∴,故選:C.【考點】本題考查了全等三角形的性質(zhì)及三角形內(nèi)角和定理、平行線的性質(zhì);解題的關(guān)鍵是,理解折疊就是得到全等的三角形,根據(jù)全等三角形的對應(yīng)角相等就可以解決.8、A【解析】【分析】法一:延長PC交BD于E,設(shè)AC、PB交于F,根據(jù)三角形的內(nèi)角和定理得到∠A+∠ABF+∠AFB=∠P+∠PCF+∠PFC=180°推出∠P+∠PCF=∠A+∠ABF,根據(jù)三角形的外角性質(zhì)得到∠P+∠PBE=∠PED,推出∠P+∠PBE=∠PCD?∠D,根據(jù)PB、PC是角平分線得到∠PCF=∠PCD,∠ABF=∠PBE,推出2∠P=∠A?∠D,代入即可求出∠P.法二:延長DC,與AB交于點E.設(shè)AC與BP相交于O,則∠AOB=∠POC,可得∠P+∠ACD=∠A+∠ABD,代入計算即可.【詳解】解:法一:延長PC交BD于E,設(shè)AC、PB交于F,∵∠A+∠ABF+∠AFB=∠P+∠PCF+∠PFC=180°,∵∠AFB=∠PFC,∴∠P+∠PCF=∠A+∠ABF,∵∠P+∠PBE=∠PED,∠PED=∠PCD?∠D,∴∠P+∠PBE=∠PCD?∠D,∴2∠P+∠PCF+∠PBE=∠A?∠D+∠ABF+∠PCD,∵PB、PC是角平分線∴∠PCF=∠PCD,∠ABF=∠PBE,∴2∠P=∠A?∠D∵∠A=48°,∠D=10°,∴∠P=19°.法二:延長DC,與AB交于點E.∵∠ACD是△ACE的外角,∠A=48°,∴∠ACD=∠A+∠AEC=48°+∠AEC.∵∠AEC是△BDE的外角,∴∠AEC=∠ABD+∠D=∠ABD+10°,∴∠ACD=48°+∠AEC=48°+∠ABD+10°,整理得∠ACD?∠ABD=58°.設(shè)AC與BP相交于O,則∠AOB=∠POC,∴∠P+∠ACD=∠A+∠ABD,即∠P=48°?(∠ACD?∠ABD)=19°.故選A.【考點】本題主要考查對三角形的內(nèi)角和定理,三角形的外角性質(zhì),對頂角的性質(zhì),角平分線的性質(zhì)等知識點的理解和掌握,能熟練地運用這些性質(zhì)進行計算是解此題的關(guān)鍵.二、填空題1、80【解析】【分析】由折疊的性質(zhì)可知:∠B=∠MGB,∠C=∠EGC,根據(jù)三角形的內(nèi)角和為180°,可求出∠B+∠C的度數(shù),進而得到∠MGB+∠EGC的度數(shù),問題得解.【詳解】解:∵線段MN、EF為折痕,∴∠B=∠MGB,∠C=∠EGC,∵∠A=80°,∴∠B+∠C=180°﹣80°=100°,∴∠MGB+∠EGC=∠B+∠C=100°,∴∠MGE=180°﹣100°=80°,故答案為:80.【考點】本題考查了折疊的性質(zhì):折疊是一種對稱變換,它屬于軸對稱,折疊前后圖形的形狀和大小不變,位置變化,對應(yīng)邊和對應(yīng)角相等,解題的關(guān)鍵是利用整體思想得到∠MGB+∠EGC的度數(shù).2、59°##59度【解析】【分析】先利用三角形內(nèi)角和定理求出∠CAB+∠CBA=180°-∠C=118°,從而利用三角形外角的性質(zhì)求出∠DAB+∠EBA=2∠C+∠CAB+∠CBA=242°,再由角平分線的定義求出,由此求解即可.【詳解】解:∵∠C=62°,∴∠CAB+∠CBA=180°-∠C=118°,∵∠DAB=∠C+∠CBA,∠EBA=∠C+∠CAB,∴∠DAB+∠EBA=2∠C+∠CAB+∠CBA=242°,∵△ABC兩個外角的角平分線相交于G,∴,,∴,∴∠G=180°-∠GAB-∠GBA=59°,故答案為:59°.【考點】本題主要考查了三角形內(nèi)角和定理,三角形外角的性質(zhì),角平分線的定義,熟知相關(guān)知識是解題的關(guān)鍵.3、##140度【解析】【分析】如圖,首先標(biāo)注字母,利用三角形的內(nèi)角和求解,再利用對頂角的相等,三角形的外角的性質(zhì)可得答案.【詳解】解:如圖,標(biāo)注字母,由題意得:故答案為:【考點】本題考查的是三角形的內(nèi)角和定理,三角形的外角的性質(zhì),掌握以上知識是解題的關(guān)鍵.4、110°【解析】【分析】由DE與AB垂直,利用垂直的定義得到∠BED為直角,進而確定出△BDE為直角三角形,利用直角三角形的兩銳角互余,求出∠B的度數(shù),在△ABC中,利用三角形的內(nèi)角和定理即可求出∠ACB的度數(shù).【詳解】解:∵DE⊥AB,∴∠BED=90°,∵∠D=45°,∴∠B=180°-∠BED-∠D=45°,又∵∠A=25°,∵∠ACB=180°-(∠A+∠B)=110°.故答案為110°【考點】此題考查了三角形的外角性質(zhì),直角三角形的性質(zhì),以及三角形的內(nèi)角和定理,熟練掌握性質(zhì)及定理是解本題的關(guān)鍵.5、①②③⑤【解析】【詳解】分析:根據(jù)平行線的判定定理對各小題進行逐一判斷即可.詳解:①∵∠1=∠3,∴l(xiāng)1∥l2,故本小題正確;②∵,∴l(xiāng)1∥l2,故本小題正確;③∵∠4=∠5,∴l(xiāng)1∥l2,故本小題正確;④∠2=∠3不能判定l1∥l2,故本小題錯誤;⑤∵∠6=∠2+∠3,∴l(xiāng)1∥l2,故本小題正確.故答案為①②③⑤點睛:考查平行線的判定,掌握判定方法是解題的關(guān)鍵.6、76°【解析】【分析】根據(jù)平行線的性質(zhì)和三角形的內(nèi)角和解答即可.【詳解】解:∵∠CEF=∠CHD,∴DH∥GE,∴∠ADH=∠G,∵∠EFC=∠ADH,∵∠BFG=∠EFC,∴∠G=∠BFG,∴∠ABC=∠G+∠BFG=2∠EFC,∵∠CEF:∠EFC=5:2,∠C=47°,∴∠EFC=38°,∴∠ABC=76°,∵DE∥BC,∴∠ADE=∠ABC=76°,故答案為:76°.【考點】本題主要考查了平行線的性質(zhì)和三角形內(nèi)角和定理,準(zhǔn)確計算是解題的關(guān)鍵.7、①②④【解析】【分析】根據(jù)條件求得∠BAC=∠ABC=54°,∠ACB=72°,∠ACE=∠BCE=36°,∠CAF=∠BAF=27°,利用ASA證明△ACF≌△BCG,再根據(jù)SAS證明△CDF≌△CDG,據(jù)此即可推斷各選項的正確性.【詳解】解:在△ABC中,AC=BC,∠ABC=54°,∴∠BAC=∠ABC=54°,∠ACB=180°-54°-54°=72°,∵AC=BC,CE平分∠ACB,AD平分∠CAB,∴∠ACE=∠BCE=∠ACB=36°,∠CAF=∠BAF=∠BAC=27°,∵∠ACD=∠FCG=72°,∴∠BCG=∠FCG-36°=36°,在△ACF和△BCG中,,∴△ACF≌△BCG(ASA);故①正確;∴∠BGC=∠AFC=180°-36°-27°=117°,故②正確;∴CF=CG,AF=BG,在△CDF和△CDG中,,∴△CDF≌△CDG(SAS),∴DF=DG,∴AD=DF+AF=DG+BG,故④正確;∵S△CFD+S△BCG=S△CFD+S△ACF=S△ACD,而S△ACE不等于S△ACD,故③不正確;綜上,正確的是①②④,故答案為:①②④.【考點】本題考查了全等三角形的判定和性質(zhì),三角形內(nèi)角和定理,角平分線的定義,解題的關(guān)鍵是靈活運用所學(xué)知識解決問題,三、解答題1、見解析【解析】【分析】由AB∥DC可得到∠A與∠D的關(guān)系,再由∠CEF+∠BOD=180°可得到∠CEF=∠COD,根據(jù)平行線的判定定理可得EF∥AD,可得∠D與∠EFC的關(guān)系,等量代換可得結(jié)論.【詳解】證明:∵AB∥CD,∴∠A=∠D,∵∠CEF+∠BOD=180°,∠BOD+∠DOC=180°,∴∠CEF=∠DOC.∴EF∥AD.∴∠EFC=∠D,∵∠A=∠D,∴∠EFC=∠A.【考點】本題考查了平行線的判定和性質(zhì),掌握平行線的性質(zhì)和判定方法是解決本題的關(guān)鍵.2、(1)125,90,35;(2)∠ABP+∠ACP=90°-∠A,證明見解析;(3)結(jié)論不成立.∠ABP-∠ACP=90°-∠A,∠ABP+∠ACP=∠A-90°或∠ACP-∠ABP=90°-∠A.【解析】【分析】(1)根據(jù)三角形內(nèi)角和即可得出∠ABC+∠ACB,∠PBC+∠PCB,然后即可得出∠ABP+∠ACP;(2)根據(jù)三角形內(nèi)角和定理進行等量轉(zhuǎn)換,即可得出∠ABP+∠ACP=90°-∠A;(3)按照(2)中同樣的方法進行等量轉(zhuǎn)換,求解即可判定.【詳解】(1)∠ABC+∠ACB=180°-∠A=180°-55°=125度,∠PBC+∠PCB=180°-∠P=180°-90°=90度,∠ABP+∠ACP=∠ABC+∠ACB-(∠PBC+∠PCB)=125°-90°=35度;

(2)猜想:∠ABP+∠ACP=90°-∠A;

證明:在△ABC中,∠ABC+∠ACB=180°-∠A,∵∠ABC=∠ABP+∠PBC,∠ACB=∠ACP+∠PCB,∴(∠ABP+∠PBC)+(∠ACP+∠PCB)=180°-∠A,∴(∠ABP+∠ACP)+(∠PBC+∠PCB)=180°-∠A,又∵在Rt△PBC中,∠P=90°,∴∠PBC+∠PCB=90°,∴(∠ABP+∠ACP)+90°=180°-∠A,∴∠ABP+∠ACP=90°-∠A.

(3)判斷:(2)中的結(jié)論不成立.

證明:在△ABC中,∠ABC+∠ACB=180°-∠A,∵∠ABC=∠PBC-∠ABP,∠ACB=∠PCB-∠ACP,∴(∠PBC+∠PCB)-(∠ABP+∠ACP)=180°-∠A,又∵在Rt△PBC中,∠P=90°,∴∠PBC+∠PCB=90°,∴∠ABP-∠ACP=90°-∠A,∠ABP+∠ACP=∠A-90°或∠ACP-∠ABP=90°-∠A.【考點】此題主要考查利用三角形內(nèi)角和定理進行等角轉(zhuǎn)換,熟練掌握,即可解題.3、(1)題設(shè):如果兩個角的和等于平角時,結(jié)論:那么這兩個角互為補角;是真命題;(2)題設(shè):如果兩個角是內(nèi)錯角,那么這兩個角相等;是假命題,反例見解析;(3)題設(shè):如果兩條平行線被第三條直線所截,結(jié)論:那么內(nèi)錯角相等.是真命題.【解析】【分析】(1)根據(jù)將命題寫成“如果…,那么…”的形式,“如果”后面寫題設(shè),“那么”后面寫結(jié)論可得題設(shè)和結(jié)論,根據(jù)平角的定義可得該命題是真命題;(2)根據(jù)將命題寫成“如果…,那么…”的形式,“如果”后面寫題設(shè),“那么”后面寫結(jié)論可得題設(shè)和結(jié)論,根據(jù)平行線的性質(zhì)可得該命題是假命題;利用相交直線被第三條直線所截,內(nèi)錯角不相等可舉反例;(3)根據(jù)將命題寫成“如果…,那么…”的形式,“如果”后面寫題設(shè),“那么”后面寫結(jié)論可得題設(shè)和結(jié)論,根據(jù)平行線的性質(zhì)可得該命題是真命題;.【詳解】(1)題設(shè):如果兩個角的和等于平角,結(jié)論:那么這兩個角互為補角;是真命題;(2)題設(shè):如果兩個角是內(nèi)錯角,那么這兩個角相等;是假命題,如圖∠1與∠2是內(nèi)錯角,∠2>∠1;(3)題設(shè):如果兩條平行線被第三條直線所截,結(jié)論:那么內(nèi)錯角相等.是真命題.【考點】本題考查了命題與定理的相關(guān)知識.將命題寫成“如果…,那么…”的形式,就是要明確命題的題設(shè)和結(jié)論,“如果”后面寫題設(shè),“那么”后面寫結(jié)論.關(guān)鍵是明確命題與定理的組成部分,會判斷命題的題設(shè)與結(jié)論.4、(1),;(2),見解析;(3)能,見解析【解析】【分析】(1)根據(jù)算術(shù)平方根和絕對值的非負(fù)性即可得出AD、BC的長度;(2)根據(jù)題意證明即可得出結(jié)果;(3)延長交直線于,先證明△AEB≌△FEB,然后證明,即可得出結(jié)果.【詳解】解:(1),,,解得,,即,;(2).理由如下:、分別平分和,,,,,,,;(3)能.理由如下:延長交直線于,如圖,,,而,,在△AEB和△FEB中,∴△AEB≌△FEB(AAS),AE=EF.在△ADE和△FCE中,,,.【考點】本題考查了算術(shù)平方根和絕對值的非負(fù)性,角平分線的定義,平行線的判定,全等三角形的判定與性質(zhì),熟知相關(guān)性質(zhì)定理是解本題的關(guān)鍵.5、(1)60°;(2)β-α.【解析】【分析】(1)根據(jù)平行線的性質(zhì)和平角的定義可得∠EBC=60°,∠AEF=60°,根據(jù)角平分線的性質(zhì)和平行線

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論