版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
師大版九年級(jí)數(shù)學(xué)章節(jié)知識(shí)點(diǎn)梳理上冊(cè)第一章特殊平行四邊形本章核心:通過(guò)平行四邊形的特殊化(鄰邊相等、角為直角),研究菱形、矩形、正方形的性質(zhì)與判定,建立特殊四邊形的邏輯體系。1.1菱形的性質(zhì)與判定(1)菱形的定義一組鄰邊相等的平行四邊形叫做菱形(菱形是特殊的平行四邊形)。(2)菱形的性質(zhì)邊:四條邊相等;對(duì)邊平行。角:對(duì)角相等;鄰角互補(bǔ)。對(duì)角線:互相垂直平分;每條對(duì)角線平分一組對(duì)角。對(duì)稱性:既是軸對(duì)稱圖形(兩條對(duì)角線所在直線為對(duì)稱軸),又是中心對(duì)稱圖形(對(duì)角線交點(diǎn)為對(duì)稱中心)。(3)菱形的判定定理定義法:一組鄰邊相等的平行四邊形是菱形。邊判定:四條邊相等的四邊形是菱形。對(duì)角線判定:對(duì)角線互相垂直平分的四邊形是菱形(或?qū)蔷€互相垂直的平行四邊形是菱形)。1.2矩形的性質(zhì)與判定(1)矩形的定義有一個(gè)角是直角的平行四邊形叫做矩形(矩形是特殊的平行四邊形)。(2)矩形的性質(zhì)邊:對(duì)邊平行且相等。角:四個(gè)角都是直角。對(duì)角線:相等且互相平分。對(duì)稱性:既是軸對(duì)稱圖形(對(duì)邊中點(diǎn)連線所在直線為對(duì)稱軸,共2條),又是中心對(duì)稱圖形(對(duì)角線交點(diǎn)為對(duì)稱中心)。(3)矩形的判定定理定義法:有一個(gè)角是直角的平行四邊形是矩形。角判定:三個(gè)角是直角的四邊形是矩形。對(duì)角線判定:對(duì)角線相等的平行四邊形是矩形(或?qū)蔷€相等且互相平分的四邊形是矩形)。1.3正方形的性質(zhì)與判定(1)正方形的定義有一組鄰邊相等且有一個(gè)角是直角的平行四邊形叫做正方形(正方形是特殊的矩形,也是特殊的菱形)。(2)正方形的性質(zhì)邊:四條邊相等;對(duì)邊平行。角:四個(gè)角都是直角。對(duì)角線:相等、互相垂直平分;每條對(duì)角線平分一組對(duì)角。對(duì)稱性:既是軸對(duì)稱圖形(四條對(duì)稱軸:兩條對(duì)角線、兩組對(duì)邊中點(diǎn)連線),又是中心對(duì)稱圖形(對(duì)角線交點(diǎn)為對(duì)稱中心)。(3)正方形的判定定理兩步法:先證矩形再證鄰邊相等,或先證菱形再證直角。直接法:四條邊相等且四個(gè)角都是直角的四邊形是正方形。(4)特殊平行四邊形的關(guān)系\[\text{平行四邊形}\begin{cases}\text{菱形}\rightarrow\text{正方形}\\\text{矩形}\rightarrow\text{正方形}\end{cases}\]第二章一元二次方程本章核心:掌握一元二次方程的解法,理解根的判別式與根的關(guān)系,運(yùn)用方程解決實(shí)際問(wèn)題。2.1一元二次方程的定義與解法(1)一元二次方程的定義只含有一個(gè)未知數(shù)、未知數(shù)的最高次數(shù)為2的整式方程,叫做一元二次方程。(2)一般形式\(ax^2+bx+c=0\)(\(a\neq0\),\(a\)、\(b\)、\(c\)為常數(shù))。(3)解法直接開(kāi)平方法:適用形如\(x^2=a\)或\((x+m)^2=n\)的方程。配方法:適用所有方程,步驟為移項(xiàng)、配方、開(kāi)平方、求解。公式法:通用解法,求根公式為\(x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}\)(需計(jì)算判別式\(\Delta=b^2-4ac\))。因式分解法:適用左邊能分解為兩個(gè)一次因式乘積的方程(如\((x-p)(x-q)=0\))。2.2根的判別式定義:\(\Delta=b^2-4ac\)(\(a\neq0\))。與根的關(guān)系:\(\Delta>0\)(兩不等實(shí)根)、\(\Delta=0\)(兩相等實(shí)根)、\(\Delta<0\)(無(wú)實(shí)根)。2.3根與系數(shù)的關(guān)系(韋達(dá)定理)內(nèi)容:若\(x_1\)、\(x_2\)是\(ax^2+bx+c=0\)的根,則\(x_1+x_2=-\frac{a}\),\(x_1x_2=\frac{c}{a}\)(需\(\Delta\geq0\))。應(yīng)用:已知一根求另一根、求根的對(duì)稱式(如\(x_1^2+x_2^2\))。2.4一元二次方程的應(yīng)用常見(jiàn)題型:增長(zhǎng)率問(wèn)題(\(a(1+r)^n\))、面積問(wèn)題(圖形拼接)、利潤(rùn)問(wèn)題(利潤(rùn)=(售價(jià)-成本)×銷(xiāo)量)。解題步驟:設(shè)未知數(shù)、列方程、解方程、檢驗(yàn)、寫(xiě)答案。第三章概率的進(jìn)一步認(rèn)識(shí)本章核心:通過(guò)試驗(yàn)頻率估計(jì)概率,用樹(shù)狀圖與列表法計(jì)算復(fù)雜事件的概率。3.1用頻率估計(jì)概率頻率與概率的關(guān)系:試驗(yàn)次數(shù)足夠多時(shí),頻率穩(wěn)定在概率附近(大數(shù)定律)。估計(jì)方法:多次重復(fù)試驗(yàn),計(jì)算事件發(fā)生的頻率。3.2樹(shù)狀圖與列表法樹(shù)狀圖:適用于兩步及以上試驗(yàn)(如摸球兩次),展示所有可能結(jié)果。列表法:適用于兩步試驗(yàn)(如擲兩枚骰子),用表格列出所有結(jié)果。概率計(jì)算:\(P(A)=\frac{\text{事件}A\text{包含的結(jié)果數(shù)}}{\text{所有可能的結(jié)果數(shù)}}\)。3.3概率的應(yīng)用游戲公平性:雙方獲勝概率相等則公平(如擲骰子,奇數(shù)甲贏、偶數(shù)乙贏)。決策問(wèn)題:選擇概率高的方案(如抽獎(jiǎng)活動(dòng)選中獎(jiǎng)概率高的獎(jiǎng)項(xiàng))。第四章圖形的相似本章核心:理解相似圖形的性質(zhì),掌握相似三角形的判定與性質(zhì),應(yīng)用相似解決測(cè)量問(wèn)題。4.1相似圖形的定義與性質(zhì)相似圖形:形狀相同、大小不一定相同的圖形(如照片縮放)。相似多邊形的性質(zhì):對(duì)應(yīng)角相等、對(duì)應(yīng)邊成比例(相似比\(k\));周長(zhǎng)比等于\(k\),面積比等于\(k^2\)。4.2相似三角形的判定AA相似:兩組角對(duì)應(yīng)相等的三角形相似(最常用)。SAS相似:兩組邊對(duì)應(yīng)成比例且?jiàn)A角相等的三角形相似。SSS相似:三組邊對(duì)應(yīng)成比例的三角形相似。4.3相似三角形的性質(zhì)對(duì)應(yīng)線段的比:對(duì)應(yīng)高、中線、角平分線的比等于\(k\)。周長(zhǎng)比:等于\(k\)。面積比:等于\(k^2\)。4.4位似變換位似圖形:相似且對(duì)應(yīng)點(diǎn)連線交于位似中心、對(duì)應(yīng)邊平行的圖形。坐標(biāo)表示:位似中心為原點(diǎn)時(shí),點(diǎn)\((x,y)\)的對(duì)應(yīng)點(diǎn)為\((kx,ky)\)(同向)或\((-kx,-ky)\)(反向)。第五章投影與視圖本章核心:理解投影類型(平行投影、中心投影),掌握三視圖的畫(huà)法與還原。5.1投影平行投影:平行光線(如太陽(yáng)光)形成的投影,同一時(shí)刻物體高度與影長(zhǎng)成正比(\(\frac{h_1}{h_2}=\frac{l_1}{l_2}\))。中心投影:點(diǎn)光源(如燈光)形成的投影,物體高度與影長(zhǎng)不成正比(對(duì)應(yīng)點(diǎn)連線交于光源)。5.2三視圖定義:主視圖(正面看,反映長(zhǎng)和高)、俯視圖(上面看,反映長(zhǎng)和寬)、左視圖(左面看,反映寬和高)。畫(huà)法規(guī)則:長(zhǎng)對(duì)正、高平齊、寬相等。還原幾何體:結(jié)合三視圖的形狀與尺寸,推斷幾何體的形狀(如主視圖為矩形、俯視圖為圓,則為圓柱)。下冊(cè)第一章直角三角形的邊角關(guān)系本章核心:定義銳角三角函數(shù),掌握特殊角的三角函數(shù)值,應(yīng)用三角函數(shù)解直角三角形。1.1銳角三角函數(shù)的定義在\(Rt\triangleABC\)中,\(\angleC=90^\circ\):正弦:\(\sinA=\frac{\angleA\text{的對(duì)邊}}{\text{斜邊}}\);余弦:\(\cosA=\frac{\angleA\text{的鄰邊}}{\text{斜邊}}\);正切:\(\tanA=\frac{\angleA\text{的對(duì)邊}}{\angleA\text{的鄰邊}}\)。1.2特殊角的三角函數(shù)值角度(°)\(\sin\alpha\)\(\cos\alpha\)\(\tan\alpha\)30\(\frac{1}{2}\)\(\frac{\sqrt{3}}{2}\)\(\frac{\sqrt{3}}{3}\)45\(\frac{\sqrt{2}}{2}\)\(\frac{\sqrt{2}}{2}\)160\(\frac{\sqrt{3}}{2}\)\(\frac{1}{2}\)\(\sqrt{3}\)1.3解直角三角形依據(jù):勾股定理(\(a^2+b^2=c^2\))、三角函數(shù)關(guān)系、兩銳角互余(\(\angleA+\angleB=90^\circ\))。類型:已知兩邊(兩直角邊、直角邊與斜邊)、已知一邊一角(直角邊與銳角、斜邊與銳角)。1.4三角函數(shù)的應(yīng)用仰角與俯角:視線與水平線的夾角(仰角向上,俯角向下)。坡度與坡角:坡度\(i=\frac{\text{垂直高度}}{\text{水平寬度}}=\tan\alpha\)(\(\alpha\)為坡角)。方向角:以正北/正南為基準(zhǔn)(如北偏東30°)。解題步驟:構(gòu)造直角三角形、標(biāo)注已知量、選擇三角函數(shù)求解。第二章二次函數(shù)本章核心:理解二次函數(shù)的圖像與性質(zhì),掌握二次函數(shù)的平移、與一元二次方程的關(guān)系,應(yīng)用二次函數(shù)求最值。2.1二次函數(shù)的定義與表達(dá)式定義:形如\(y=ax^2+bx+c\)(\(a\neq0\))的函數(shù)。表達(dá)式:一般式:\(y=ax^2+bx+c\)(求系數(shù)、與坐標(biāo)軸交點(diǎn));頂點(diǎn)式:\(y=a(x-h)^2+k\)(求頂點(diǎn)、對(duì)稱軸、最值);交點(diǎn)式:\(y=a(x-x_1)(x-x_2)\)(求與\(x\)軸交點(diǎn))。2.2二次函數(shù)的圖像與性質(zhì)圖像:拋物線(軸對(duì)稱圖形)。開(kāi)口方向:\(a>0\)開(kāi)口向上(有最小值),\(a<0\)開(kāi)口向下(有最大值)。頂點(diǎn)坐標(biāo):一般式為\(\left(-\frac{2a},\frac{4ac-b^2}{4a}\right)\),頂點(diǎn)式為\((h,k)\)。對(duì)稱軸:直線\(x=-\frac{2a}\)(一般式)或\(x=h\)(頂點(diǎn)式)。增減性:開(kāi)口向上時(shí),對(duì)稱軸左側(cè)\(y\)隨\(x\)增大而減小,右側(cè)增大;開(kāi)口向下時(shí)相反。2.3二次函數(shù)的平移規(guī)律:左加右減(\(x\)的變化)、上加下減(\(y\)的變化)(如\(y=ax^2\)向左平移2個(gè)單位得\(y=a(x+2)^2\))。2.4二次函數(shù)與一元二次方程的關(guān)系拋物線與\(x\)軸的交點(diǎn):令\(y=0\),得\(ax^2+bx+c=0\),交點(diǎn)橫坐標(biāo)為方程的根。交點(diǎn)個(gè)數(shù):\(\Delta>0\)(兩交點(diǎn))、\(\Delta=0\)(一交點(diǎn))、\(\Delta<0\)(無(wú)交點(diǎn))。2.5二次函數(shù)的應(yīng)用最值問(wèn)題:利潤(rùn)問(wèn)題(利潤(rùn)=(售價(jià)-成本)×銷(xiāo)量)、面積問(wèn)題(矩形面積)。拋物線運(yùn)動(dòng):物體平拋/斜拋的軌跡(如\(h=-gt^2+v_0t+h_0\))。第三章圓本章核心:理解圓的基本概念與對(duì)稱性,掌握垂徑定理、圓周角定理、切線的性質(zhì)與判定,應(yīng)用弧長(zhǎng)與扇形面積公式。3.1圓的基本概念圓:到定點(diǎn)(圓心)的距離等于定長(zhǎng)(半徑)的點(diǎn)的集合?;驹兀喊霃剑╘(r\))、直徑(\(2r\))、?。▋?yōu)弧、劣?。?、弦(直徑是最長(zhǎng)弦)、圓心角(頂點(diǎn)在圓心)、圓周角(頂點(diǎn)在圓上)。3.2圓的對(duì)稱性軸對(duì)稱性(垂徑定理):垂直于弦的直徑平分弦及弦所對(duì)的弧(推論:平分弦的直徑垂直于弦)。中心對(duì)稱性:圓是中心對(duì)稱圖形(圓心為對(duì)稱中心)。3.3圓周角定理定理:一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半(\(\angleACB=\frac{1}{2}\angleAOB\))。推論:同弧所對(duì)的圓周角相等;半圓所對(duì)的圓周角是直角(\(90^\circ\));90°的圓周角所對(duì)的弦是直徑。3.4切線的性質(zhì)與判定性質(zhì):切線垂直于過(guò)切點(diǎn)的半徑(\(OA\perpl\));圓心到切線的距離等于半徑(\(d=r\))。判定:經(jīng)過(guò)半徑外端且垂直于半徑的直線是切線(需滿足兩個(gè)條件)。切線長(zhǎng)定理:從圓外一點(diǎn)引圓的兩條切線,切線長(zhǎng)相等(\(PA=PB\))。3.5弧長(zhǎng)與扇形面積弧長(zhǎng)公式:\(l=\frac{n\pir}{180}\)(\(n\)為圓心角度數(shù))。扇形面積公式:\(S=\frac{n\pir^2}{360}\)或\(S=\frac{1}{2}lr\)(\(l\)為弧長(zhǎng))。3.6圓錐的側(cè)面積與全面積母線長(zhǎng):圓錐頂點(diǎn)到底面圓周的距離(\(l\))。側(cè)面積:\(S_{\text{側(cè)}}=\pirl\)(展開(kāi)后為扇形)。全面積:\(S_{\text{全}}=\pirl+\pir^2\)(側(cè)面積加底面積)。第四章統(tǒng)計(jì)與概率(統(tǒng)計(jì)部分)本章核心:理解數(shù)據(jù)的離散程度(方差、標(biāo)準(zhǔn)差),選擇合適的統(tǒng)計(jì)圖表,用樣本估計(jì)總體。4.1數(shù)據(jù)的離散程度方差:\(s^2=\frac{1}{n}[(x_1-\mu)^2+\cdots+(x_n-\mu)^2]\)(衡量數(shù)據(jù)波動(dòng)大小,方差越大波動(dòng)越大)。標(biāo)準(zhǔn)差:\(s=\sqrt{s^2}\)(單位與原數(shù)據(jù)一致)。4.2統(tǒng)計(jì)圖表的選擇與應(yīng)用條形圖:顯示各組數(shù)據(jù)的數(shù)量多少(比較不同類別)。折線圖:顯示數(shù)據(jù)的變化趨勢(shì)(分析增減變化)。扇形圖:顯示各組數(shù)據(jù)占總體的百分比(展示部分與總體的關(guān)系)。直方圖:顯示數(shù)據(jù)的分布情況(分析集中趨勢(shì))。4.3用樣本估計(jì)總體
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 河北吳橋雜技藝術(shù)學(xué)校2026年度高層次人才選聘的備考題庫(kù)及答案詳解一套
- 3D打印導(dǎo)板在神經(jīng)外科手術(shù)中的精準(zhǔn)設(shè)計(jì)與精準(zhǔn)微創(chuàng)
- 簡(jiǎn)約高級(jí)漸變企業(yè)員工文化培訓(xùn)模板
- 2025無(wú)錫市梁溪科技城發(fā)展集團(tuán)有限公司公開(kāi)招聘?jìng)淇碱}庫(kù)及參考答案詳解一套
- 2025年六盤(pán)水水礦醫(yī)院招聘工作人員95人備考題庫(kù)及1套參考答案詳解
- 2025年廣州星海音樂(lè)學(xué)院公開(kāi)招聘工作人員15人備考題庫(kù)含答案詳解
- 《基于綠色建筑理念的校園建筑室內(nèi)空氣質(zhì)量研究》教學(xué)研究課題報(bào)告
- 2025年重慶醫(yī)科大學(xué)附屬北碚醫(yī)院重慶市第九人民醫(yī)院招聘非在編護(hù)理員備考題庫(kù)有答案詳解
- 2025年零售電商五年競(jìng)爭(zhēng):全渠道營(yíng)銷(xiāo)與供應(yīng)鏈優(yōu)化行業(yè)報(bào)告
- 2025年安徽理工大學(xué)科技園技術(shù)經(jīng)理人招募備考題庫(kù)及參考答案詳解1套
- 2025中原農(nóng)業(yè)保險(xiǎn)股份有限公司招聘67人筆試備考重點(diǎn)試題及答案解析
- 2025中原農(nóng)業(yè)保險(xiǎn)股份有限公司招聘67人備考考試試題及答案解析
- 2025年違紀(jì)違法典型案例個(gè)人學(xué)習(xí)心得體會(huì)
- 2025年度河北省機(jī)關(guān)事業(yè)單位技術(shù)工人晉升高級(jí)工考試練習(xí)題附正確答案
- 配電室高低壓設(shè)備操作規(guī)程
- GB/T 17981-2025空氣調(diào)節(jié)系統(tǒng)經(jīng)濟(jì)運(yùn)行
- 2025 年高職酒店管理與數(shù)字化運(yùn)營(yíng)(智能服務(wù))試題及答案
- 《公司治理》期末考試復(fù)習(xí)題庫(kù)(含答案)
- 藥物臨床試驗(yàn)質(zhì)量管理規(guī)范(GCP)培訓(xùn)班考核試卷及答案
- 快遞行業(yè)末端配送流程分析
- 四川專升本《軍事理論》核心知識(shí)點(diǎn)考試復(fù)習(xí)題庫(kù)(附答案)
評(píng)論
0/150
提交評(píng)論