版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
滬科版9年級下冊期末測試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計16分)1、如圖,AB為的直徑,,,劣弧BC的長是劣弧BD長的2倍,則AC的長為()A. B. C.3 D.2、圖2是由圖1經過某一種圖形的運動得到的,這種圖形的運動是()A.平移 B.翻折 C.旋轉 D.以上三種都不對3、“2022年春節(jié)期間,中山市會下雨”這一事件為()A.必然事件 B.不可能事件 C.確定事件 D.隨機事件4、如圖,中,,O是AB邊上一點,與AC、BC都相切,若,,則的半徑為()A.1 B.2 C. D.5、如圖,與相切于點,連接交于點,點為優(yōu)弧上一點,連接,,若,的半徑,則的長為()A.4 B. C. D.16、一個不透明的盒子里裝有a個除顏色外完全相同的球,其中有6個白球,每次將球充分攪勻后,任意摸出1個球記下顏色然后再放回盒子里,通過如此大量重復試驗,發(fā)現(xiàn)摸到白球的頻率穩(wěn)定在0.4左右,則a的值約為()A.10 B.12 C.15 D.187、已知⊙O的半徑為4,,則點A在()A.⊙O內 B.⊙O上 C.⊙O外 D.無法確定8、若a是從“、0、1、2”這四個數(shù)中任取的一個數(shù),則關于x的方程為一元二次方程的概率是()A.1 B. C. D.第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計14分)1、點P為邊長為2的正方形ABCD內一點,是等邊三角形,點M為BC中點,N是線段BP上一動點,將線段MN繞點M順時針旋轉60°得到線段MQ,連接AQ、PQ,則的最小值為______.2、如果一個扇形的弧長等于它所在圓的半徑,那么此扇形叫做“完美扇形”.已知某個“完美扇形”的周長等于6,那么這個扇形的面積等于_____.3、不透明的袋子里裝有一個黑球,兩個紅球,這些球除顏色外無其它差別,從袋子中取出一個球,不放回,再取出一個球,記下顏色,兩次摸出的球是一紅—黑的概率是________.4、如圖,一次函數(shù)的圖象與x軸交于點A,與y軸交于點B,作的外接圓,則圖中陰影部分的面積為______.(結果保留π)5、第24屆世界冬季奧林匹克運動會,于2022年2月4日在中國北京市和河北省張家口市聯(lián)合舉行,其會徽為“冬夢”,這是中國歷史上首次舉辦冬季奧運會.如圖,是一幅印有北京冬奧會會徽且長為3m,寬為2m的長方形宣傳畫,為測量宣傳畫上會徽圖案的面積,現(xiàn)將宣傳畫平鋪,向長方形宣傳畫內隨機投擲骰子(假設骰子落在長方形內的每一點都是等可能的),經過大量重復投擲試驗,發(fā)現(xiàn)骰子落在會徽圖案上的頻率穩(wěn)定在0.15左右,由此可估計宣傳畫上北京冬奧會會徽圖案的面積約為______.6、如圖,在平面直角坐標系xOy中,P為x軸正半軸上一點.已知點,,為的外接圓.(1)點M的縱坐標為______;(2)當最大時,點P的坐標為______.7、如圖,中,,,,將繞原點O順時針旋轉90°,則旋轉后點A的對應點的坐標是____________.三、解答題(7小題,每小題0分,共計0分)1、在中,,,點E在射線CB上運動.連接AE,將線段AE繞點E順時針旋轉90°得到EF,連接CF.(1)如圖1,點E在點B的左側運動.①當,時,則___________°;②猜想線段CA,CF與CE之間的數(shù)量關系為____________.(2)如圖2,點E在線段CB上運動時,第(1)問中線段CA,CF與CE之間的數(shù)量關系是否仍然成立?如果成立,請說明理由;如果不成立,請求出它們之間新的數(shù)量關系.2、如圖,已知在中,,D、E是BC邊上的點,將繞點A旋轉,得到,連接.(1)當時,時,求證:;(2)當時,與有怎樣的數(shù)量關系?請寫出,并說明理由.(3)在(2)的結論下,當,BD與DE滿足怎樣的數(shù)量關系時,是等腰直角三角形?(直接寫出結論,不必證明)3、如圖,在△ABC是⊙O的內接三角形,∠B=45°,連接OC,過點A作AD∥OC,交BC的延長線于D.(1)求證:AD是⊙O的切線;(2)若⊙O的半徑為2,∠OCB=75°,求△ABC邊AB的長.4、在平面內,給定不在同一直線上的點A,B,C,如圖所示.點O到點A,B,C的距離均等于r(r為常數(shù)),到點O的距離等于r的所有點組成圖形G,ABC的平分線交圖形G于點D,連接AD,CD.求證:AD=CD.5、如圖1,在平面直角坐標系中,二次函數(shù)的圖象經過點,過點A作軸,做直線AC平行x軸,點D是二次函數(shù)的圖象與x軸的一個公共點(點D與點O不重合).(1)求點D的橫坐標(用含b的代數(shù)式表示)(2)求的最大值及取得最大值時的二次函數(shù)表達式.(3)在(2)的條件下,如圖2,P為OC的中點,在直線AC上取一點M,連接PM,做點C關于PM的對稱點N,①連接AN,求AN的最小值.②當點N落在拋物線的對稱軸上,求直線MN的函數(shù)表達式.6、在太原市創(chuàng)建國家文明城市的過程中,東東和南南積極參加志愿者活動,有下列三個志愿者工作崗位供他們選擇:(每個工作崗位僅能讓一個人工作)①2個清理類崗位:清理花壇衛(wèi)生死角;清理樓道雜物(分別用,表示);②1個宣傳類崗位:垃圾分類知識宣傳(用表示).(1)東東從三個崗位中隨機選取一個報名,恰好選擇清理類崗位的概率為________.(2)若東東和南南各隨機從三個崗位中選取一個報名,請你利用畫樹狀圖法或列表法求出他們恰好都選擇同一類崗位的概率.7、如圖,內接于,BC是的直徑,D是AC延長線上一點.(1)請用尺規(guī)完成基本作圖:作出的角平分線交于點P.(保留作圖痕跡,不寫作法)(2)在(1)所作的圖形中,過點P作,垂足為E.則PE與有怎樣的位置關系?請說明理由.-參考答案-一、單選題1、D【分析】連接,根據求得半徑,進而根據的長,勾股定理的逆定理證明,根據弧長關系可得,即可證明是等邊三角形,求得,進而由勾股定理即可求得【詳解】如圖,連接,,是直角三角形,且是等邊三角形是直徑,故選D【點睛】本題考查了弧與圓心角的關系,直徑所對的圓周角是90度,勾股定理,等邊三角形的判定,求得的長是解題的關鍵.2、C【詳解】解:根據圖形可知,這種圖形的運動是旋轉而得到的,故選:C.【點睛】本題考查了圖形的旋轉,熟記圖形的旋轉的定義(把一個平面圖形繞平面內某一點轉動一個角度,叫做圖形的旋轉)是解題關鍵.3、D【分析】根據事件發(fā)生的可能性大小判斷相應事件的類型即可.【詳解】解:“2022年年春節(jié)期間,中山市會下雨”這一事件為隨機事件,故選:D.【點睛】本題考查的是必然事件、不可能事件、隨機事件的概念,必然事件指在一定條件下,一定發(fā)生的事件.不可能事件是指在一定條件下,一定不發(fā)生的事件,不確定事件即隨機事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件.4、D【分析】作OD⊥AC于D,OE⊥BC于E,如圖,設⊙O的半徑為r,根據切線的性質得OD=OE=r,易得四邊形ODCE為正方形,則CD=OD=r,再證明△ADO∽△ACB,然后利用相似比得到,再根據比例的性質求出r即可.【詳解】解:作OD⊥AC于D,OE⊥BC于E,如圖,設⊙O的半徑為r,∵⊙O與AC、BC都相切,∴OD=OE=r,而∠C=90°,∴四邊形ODCE為正方形,∴CD=OD=r,∵OD∥BC,∴△ADO∽△ACB,∴∵AF=AC-r,BC=3,AC=4,代入可得,∴r=.故選:D.【點睛】本題考查了切線的性質:圓的切線垂直于經過切點的半徑.運用切線的性質來進行計算或論證,常通過作輔助線連接圓心和切點,利用垂直構造直角三角形解決有關問題.也考查了相似三角形的判定與性質.5、B【分析】連接OB,根據切線性質得∠ABO=90°,再根據圓周角定理求得∠AOB=60°,進而求得∠A=30°,然后根據含30°角的直角三角形的性質解答即可.【詳解】解:連接OB,∵AB與相切于點B,∴∠ABO=90°,∵∠BDC=30°,∴∠AOB=2∠BDC=60°,在Rt△ABO中,∠A=90°-60°=30°,OB=OC=2,∴OA=2OB=4,∴,故選:B.【點睛】本題考查切線的性質、圓周角定理、直角三角形的銳角互余、含30°角的直角三角形性質、勾股定理,熟練掌握相關知識的聯(lián)系與運用是解答的關鍵.6、C【分析】在同樣條件下,大量反復試驗時,隨機事件發(fā)生的頻率逐漸穩(wěn)定在概率附近,可以從摸到白球的頻率穩(wěn)定在0.4左右得到比例關系,列出方程求解即可.【詳解】解:由題意可得,,解得,a=15.經檢驗,a=15是原方程的解故選:C.【點睛】本題利用了用大量試驗得到的頻率可以估計事件的概率.關鍵是根據白球的頻率得到相應的等量關系.7、C【分析】根據⊙O的半徑r=4,且點A到圓心O的距離d=5知d>r,據此可得答案.【詳解】解:∵⊙O的半徑r=4,且點A到圓心O的距離d=5,∴d>r,∴點A在⊙O外,故選:C.【點睛】本題主要考查點與圓的位置關系,點與圓的位置關系有3種.設⊙O的半徑為r,點P到圓心的距離OP=d,則有:①點P在圓外?d>r;②點P在圓上?d=r;③點P在圓內?d<r.8、B【分析】根據一元二次方程的定義,二次項系數(shù)不為0,四個數(shù)中有一個1不能取,a是從“、0、1、2”這四個數(shù)中任取的一個數(shù),有四種等可能的結果,其中滿足條件的情況有3種,然后利用概率公式計算即可.【詳解】解:當a=1時于x的方程不是一元二次方程,其它三個數(shù)都是一元二次方程,a是從“、0、1、2”這四個數(shù)中任取的一個數(shù),有四種等可能的結果,其中滿足條件的情況有3種,關于x的方程為一元二次方程的概率是,故選擇B.【點睛】本題考查一元二次方程的定義,列舉法求概率,掌握一元二次方程的定義,列舉法求概率方法是解題關鍵.二、填空題1、【分析】如圖,取的中點,連接,,,證明,進而證明在上運動,且垂直平分,根據,求得最值,根據正方形的性質和勾股定理求得的長即可求得的最小值.【詳解】解:如圖,取的中點,連接,,,將線段MN繞點M順時針旋轉60°得到線段MQ,,是等邊三角形,,是的中點,是的中點是等邊三角形,即在和中,又是的中點點在上是的中點,是等邊三角,又垂直平分即的最小值為四邊形是正方形,且的最小值為故答案為:【點睛】本題考查了正方形的性質等邊三角形的性質,旋轉的性質,全等三角形的性質與判定,勾股定理,垂直平分線的性質與判定,根據以上知識轉化線段是解題的關鍵.2、2【分析】根據扇形的面積公式S=,代入計算即可.【詳解】解:∵“完美扇形”的周長等于6,∴半徑r為=2,弧長l為2,這個扇形的面積為:==2.答案為:2.【點睛】本題考查了扇形的面積公式,扇形面積公式與三角形面積公式十分類似,為了便于記憶,只要把扇形看成一個曲邊三角形,把弧長l看成底,R看成底邊上的高即可.3、【分析】根據題意列出表格,可得6種等可能結果,其中一紅—黑的有4種,再利用概率公式,即可求解.【詳解】解:根據題意列出表格如下:黑球紅球1紅球2黑球紅球1、黑球紅球2、黑球紅球1黑球、紅球1紅球2、紅球1紅球2黑球、紅球2紅球1、紅球2得到6種等可能結果,其中一紅—黑的有4種,所以兩次摸出的球是一紅—黑的概率是.故答案為:【點睛】本題主要考查了求概率,能夠利用畫樹狀圖或列表格的方法解答是解題的關鍵.4、【分析】先求出A、B、C坐標,再證明三角形BOC是等邊三角形,最后根據扇形面積公式計算即可.【詳解】過C作CD⊥OA于D∵一次函數(shù)的圖象與x軸交于點A,與y軸交于點B,∴當時,,B點坐標為(0,1)當時,,A點坐標為∴∵作的外接圓,∴線段AB中點C的坐標為,∴三角形BOC是等邊三角形∴∵C的坐標為∴∴故答案為:【點睛】本題主要考查了一次函數(shù)的綜合運用,求扇形面積.用已知點的坐標表示相應的線段是解題的關鍵.5、0.9【分析】根據題意可得長方形的面積,然后依據骰子落在會徽圖案上的頻率穩(wěn)定在0.15左右,總面積乘以頻率即為會徽圖案的面積.【詳解】解:由題意可得:長方形的面積為,∵骰子落在會徽圖案上的頻率穩(wěn)定在0.15左右,∴會徽圖案的面積為:,故答案為:.【點睛】題目主要考查根據頻率計算滿足條件的情況,理解題意,熟練掌握頻率的計算方法是解題關鍵.6、5(4,0)【分析】(1)根據點M在線段AB的垂直平分線上求解即可;(2)點P在⊙M切點處時,最大,而四邊形OPMD是矩形,由勾股定理求解即可.【詳解】解:(1)∵⊙M為△ABP的外接圓,∴點M在線段AB的垂直平分線上,∵A(0,2),B(0,8),∴點M的縱坐標為:,故答案為:5;(2)過點,,作⊙M與x軸相切,則點M在切點處時,最大,理由:若點是x軸正半軸上異于切點P的任意一點,設交⊙M于點E,連接AE,則∠AEB=∠APB,∵∠AEB是ΔAE的外角,∴∠AEB>∠AB,∵∠APB>∠AB,即點P在切點處時,∠APB最大,∵⊙M經過點A(0,2)、B(0,8),∴點M在線段AB的垂直平分線上,即點M在直線y=5上,∵⊙M與x軸相切于點P,MP⊥x軸,從而MP=5,即⊙M的半徑為5,設AB的中點為D,連接MD、AM,如上圖,則MD⊥AB,AD=BD=AB=3,BM=MP=5,而∠POD=90°,∴四邊形OPMD是矩形,從而OP=MD,由勾股定理,得MD=,∴OP=MD=4,∴點P的坐標為(4,0),故答案為:(4,0).【點睛】本題考查了切線的性質,線段垂直平分線的性質,矩形的判定及勾股定理,正確作出圖形是解題的關鍵.7、【分析】如圖(見解析),過點作軸于點,點作軸于點,設,從而可得,先利用勾股定理可得,從而可得,再根據旋轉的性質可得,然后根據三角形全等的判定定理證出,最后根據全等三角形的性質可得,由此即可得出答案.【詳解】解:如圖,過點作軸于點,點作軸于點,設,則,在中,,在中,,,解得,,由旋轉的性質得:,,,,在和中,,,,,故答案為:.【點睛】本題考查了勾股定理、旋轉、點坐標等知識點,畫出圖形,通過作輔助線,正確找出兩個全等三角形是解題關鍵.三、解答題1、(1)①;②(2)不成立,【分析】(1)①由直角三角形的性質可得出答案;②過點E作ME⊥EC交CA的延長線于M,由旋轉的性質得出AE=EF,∠AEF=90°,得出∠AEM=∠CEF,證明△FEC≌△AEM(SAS),由全等三角形的性質得出CF=AM,由等腰直角三角形的性質可得出結論;(2)過點F作FH⊥BC交BC的延長線于點H.證明△ABE≌△EHF(AAS),由全等三角形的性質得出FH=BE,EH=AB=BC,由等腰直角三角形的性質可得出結論;(1)①∵,,,∴,∵sin∠EAB=∴,故答案為:30°;②.如圖1,過點E作交CA的延長線于M,∵,,∴,∴,∴,∴,∵將線段AE繞點E順時針旋轉90°得到EF,∴,,∴,在△FEC和△AEM中,∴,∴,∴,∵為等腰直角三角形,∴,∴;故答案為:;(2)不成立.如圖2,過點F作交BC的延長線于點H.∴,,∵,∴,在△FEC和△AEM中,∴,∴,,∴,∴為等腰直角三角形,∴.又∵,即.【點睛】本題考查了旋轉的性質,解直角三角形,等腰直角三角形的判定與性質,全等三角形的判定與性質,三角形的面積,熟練掌握旋轉的性質是解題的關鍵.2、(1)見解析;(2)∠DAE=∠BAC,見解析;(3)DE=BD,見解析【分析】(1)根據旋轉的性質可得AD=AD′,∠CAD′=∠BAD,然后求出∠D′AE=60°,從而得到∠DAE=∠D′AE,再利用“邊角邊”證明△ADE和△AD′E全等,根據全等三角形對應邊相等證明即可;(2)根據旋轉的性質可得AD=AD′,再利用“邊邊邊”證明△ADE和△AD′E全等,然后根據全等三角形對應角相等求出∠DAE=∠D′AE,然后求出∠BAD+∠CAE=∠DAE,從而得解;(3)求出∠D′CE=90°,然后根據等腰直角三角形斜邊等于直角邊的倍可得D′E=CD′,再根據旋轉的性質解答即可.【詳解】(1)證明:∵△ABD繞點A旋轉得到△ACD′,∴AD=AD′,∠CAD′=∠BAD,∵∠BAC=120°,∠DAE=60°,∴∠D′AE=∠CAD′+∠CAE=∠BAD+∠CAE=∠BAC?∠DAE=120°?60°=60°,∴∠DAE=∠D′AE,在△ADE和△AD′E中,,∴△ADE≌△AD′E(SAS),∴DE=D′E;(2)解:∠DAE=∠BAC.理由如下:在△ADE和△AD′E中,,∴△ADE≌△AD′E(SSS),∴∠DAE=∠D′AE,∴∠BAD+∠CAE=∠CAD′+∠CAE=∠D′AE=∠DAE,∴∠DAE=∠BAC;(3)解:∵∠BAC=90°,AB=AC,∴∠B=∠ACB=∠ACD′=45°,∴∠D′CE=45°+45°=90°,∵△D′EC是等腰直角三角形,∴D′E=CD′,由(2)DE=D′E,∵△ABD繞點A旋轉得到△ACD′,∴BD=C′D,∴DE=BD.【點睛】本題考查了幾何變換的綜合題,旋轉的性質,全等三角形的判定與性質,等腰直角三角形的性質,熟記旋轉變換只改變圖形的位置不改變圖形的形狀與大小找出三角形全等的條件是解題的關鍵.3、(1)見解析;(2)【分析】(1)如圖所示,連接OA,由圓周角定理可得∠COA=90°,再由平行線的性質得到∠OAD+∠COA=180°,則∠OAD=90°,由此即可證明;(2)連接OB,過點O作OE⊥AB,垂足為E,先由等腰三角形的性質與三角形內角和定理求出∠COB=30°,則∠AOB=120°,可以得到∠OAB=∠OBA=30°,由勾股定理可得,求出,則AB=.【詳解】解:(1)如圖所示,連接OA,∵∠CBA=45°,∴∠COA=90°,∵AD∥OC,∴∠OAD+∠COA=180°,∴∠OAD=90°,又∵點A在圓O上,∴AD是⊙O的切線;(2)連接OB,過點O作OE⊥AB,垂足為E,∵∠OCB=75°,OB=OC,∴∠OCB=∠OBC=75°,∴∠COB=180°-∠OCB-∠OBC=30°,由(1)證可得∠AOC=90°,∴∠AOB=120°,∵OA=OB,∴∠OAB=∠OBA=30°,又∵OE⊥AB,∴AE=BE,在Rt△AOE中,AO=2,∠OAE=30°,∴OE=AO=1,由勾股定理可得,,∴AB=.【點睛】本題主要考查了圓周角定理,切線的判定,等腰三角形的性質與判定,含30度角的直角三角形的性質,三角形內角和定理,勾股定理,熟知相關知識是解題的關鍵.4、見解析【分析】由題意畫圖,再根據圓周角定理的推論即可得證結論.【詳解】證明:根據題意作圖如下:∵BD是圓周角ABC的角平分線,∴∠ABD=∠CBD,∴,∴AD=CD.【點睛】本題考查了角,弧,弦之間的關系,熟練掌握三者的關系定理是解題的關鍵.5、(1)2b;(2)4;;(3)①.②y=x+或.【分析】(1)令y=0,解方程即可;(2)設w=,根據OD=2b,BD=4-2b,構造二次函數(shù)求解即可;(3)①點N在以P為圓心,以2為半徑的圓上運動,當P、N、A同側且共線時,AN最小,用勾股定理計算即可.②分點M在對稱軸的左側和右側,兩種情形求解.(1)令y=0,得,解得x=0或x=2b,∵b>0,∴x=0舍去,∴點D的橫坐標為2b.(2)設w=,∵點D的橫坐標為2b,A(4,m),∴OD=2b,BD=4-2b,∴w==2b(4-2b)=,∵-4<0,∴當b=1時,w有最大值,最大值為4,此時拋物線的解析式為.(3)①∵點A(4,m)在拋物線上,∴m==4,∴OC=4,∵P為OC的中點,∴OP=PC=2,∵點C關于PM的對稱點N,∴OP=PC=PN=2,∴點N在以P為圓心,以2為半徑的圓上運動,如圖所示,當P、N、A同側且共線時,AN最小,∵AC=4,PC=2,∴PA=,∴AN的最小值為PA-PN=.②當點N落在拋物線的對稱軸上,且M在對稱軸的左側,如圖所示,設對稱軸與AC交于點H,交x軸于點Q,過點P作PG⊥HN,垂足為G,則QG=2,∵PC=PN=2,P
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年廊坊衛(wèi)生職業(yè)學院單招綜合素質筆試備考題庫含詳細答案解析
- 2026年江蘇農林職業(yè)技術學院單招綜合素質考試備考題庫含詳細答案解析
- 2026年昆明市盤龍區(qū)面向全國引進中學教育管理人才備考考試題庫及答案解析
- 2026年鐘山職業(yè)技術學院單招綜合素質考試模擬試題含詳細答案解析
- 2026年南昌交通學院單招綜合素質筆試模擬試題含詳細答案解析
- 2026年云南錫業(yè)職業(yè)技術學院高職單招職業(yè)適應性測試備考題庫及答案詳細解析
- 2026年太原幼兒師范高等專科學校單招綜合素質筆試參考題庫含詳細答案解析
- 2026年武漢警官職業(yè)學院單招職業(yè)技能考試備考題庫含詳細答案解析
- 2026年無錫職業(yè)技術學院單招綜合素質筆試備考題庫含詳細答案解析
- 2026年1月武夷山職業(yè)學院人才增補招聘二考試參考試題及答案解析
- 私人供水協(xié)議書
- 2026年及未來5年市場數(shù)據中國水合肼行業(yè)市場深度分析及投資戰(zhàn)略數(shù)據分析研究報告
- 探空氣球課件
- 雨課堂學堂在線學堂云人類行為與社會環(huán)境內蒙古大學單元測試考核答案
- 消防志愿隊培訓
- 2025年軍事知識點及題庫答案
- 小麥栽培課件
- 左額顳枕頂急性硬膜下血腫
- 國企財務管理制度細則及執(zhí)行標準
- 2025全國注冊監(jiān)理工程師繼續(xù)教育考試題庫及參考答案
- “無廢醫(yī)院”建設指引
評論
0/150
提交評論