難點(diǎn)解析-京改版數(shù)學(xué)9年級(jí)上冊(cè)期末測(cè)試卷【研優(yōu)卷】附答案詳解_第1頁(yè)
難點(diǎn)解析-京改版數(shù)學(xué)9年級(jí)上冊(cè)期末測(cè)試卷【研優(yōu)卷】附答案詳解_第2頁(yè)
難點(diǎn)解析-京改版數(shù)學(xué)9年級(jí)上冊(cè)期末測(cè)試卷【研優(yōu)卷】附答案詳解_第3頁(yè)
難點(diǎn)解析-京改版數(shù)學(xué)9年級(jí)上冊(cè)期末測(cè)試卷【研優(yōu)卷】附答案詳解_第4頁(yè)
難點(diǎn)解析-京改版數(shù)學(xué)9年級(jí)上冊(cè)期末測(cè)試卷【研優(yōu)卷】附答案詳解_第5頁(yè)
已閱讀5頁(yè),還剩32頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

京改版數(shù)學(xué)9年級(jí)上冊(cè)期末測(cè)試卷考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來(lái)的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無(wú)效。第I卷(選擇題26分)一、單選題(6小題,每小題2分,共計(jì)12分)1、如圖A、B、C在⊙O上,連接OA、OB、OC,若∠BOC=3∠AOB,劣弧AC的度數(shù)是120o,OC=.則圖中陰影部分的面積是(

)A. B. C. D.2、如圖,點(diǎn)A、B、C在⊙O上,且∠ACB=100o,則∠α度數(shù)為(

)A.160o B.120o C.100o D.80o3、如圖,小明在一條東西走向公路的O處,測(cè)得圖書館A在他的北偏東方向,且與他相距,則圖書館A到公路的距離為(

)A. B. C. D.4、對(duì)于反比例函數(shù)y=﹣,下列說(shuō)法錯(cuò)誤的是()A.圖象經(jīng)過(guò)點(diǎn)(1,﹣5)B.圖象位于第二、第四象限C.當(dāng)x<0時(shí),y隨x的增大而減小D.當(dāng)x>0時(shí),y隨x的增大而增大5、關(guān)于二次函數(shù)的最大值或最小值,下列說(shuō)法正確的是()A.有最大值4 B.有最小值4 C.有最大值6 D.有最小值66、關(guān)于的方程有兩個(gè)不相等的實(shí)根、,若,則的最大值是(

)A.1 B. C. D.2二、多選題(7小題,每小題2分,共計(jì)14分)1、如圖,在△ABC中,點(diǎn)P為AB上一點(diǎn),給出下列四個(gè)條件中能滿足△APC和△ACB相似的條件是(

)A.∠ACP=∠B B.∠APC=∠ACB C.AC2=AP·AB D.AB·CP=AP·CB2、下列四個(gè)命題中正確的是(

)A.與圓有公共點(diǎn)的直線是該圓的切線B.垂直于圓的半徑的直線是該圓的切線C.到圓心的距離等于半徑的直線是該圓的切線D.過(guò)圓直徑的端點(diǎn),垂直于此直徑的直線是該圓的切線3、如圖,AB為半圓O的直徑,AD、BC分別切⊙O于A、B兩點(diǎn),CD切⊙O于點(diǎn)E,AD與CD相交于D,BC與CD相交于C,連接OD、OC,下列結(jié)論正確的是(

)A.AD+BC=CD B.∠DOC=90°C.S梯形ABCD=CD?OA D.OD2=DE?CD4、如圖,△ABC中,D在AB上,E在AC上,下列條件中,不能判定DE∥BC的是(

).A. B.C. D.5、如圖,的頂點(diǎn)位于正方形網(wǎng)格的格點(diǎn)上,若,則滿足條件的是(

)A. B.C. D.6、如圖,在矩形ABCD中,對(duì)角線AC、BD相交于G,E為AD的中點(diǎn),連接BE交AC于F,連接FD,若∠BFA=90°,則下列四對(duì)三角形中相似的為()A.△BEA與△ACD B.△FED與△DEB C.△CFD與△ABG D.△ADF與△EFD7、如圖,在△ABC中,D,E分別是邊AB,AC上的點(diǎn),DE∥BC,AD:DB=2:1,下列結(jié)論中正確的是()A. B.C. D.AD?AB=AE?AC第Ⅱ卷(非選擇題74分)三、填空題(7小題,每小題2分,共計(jì)14分)1、若一元二次方程(b,c為常數(shù))的兩根滿足,則符合條件的一個(gè)方程為_(kāi)____.2、如圖,拋物線y=﹣x2+x+2與x軸相交于A、B兩點(diǎn),與y軸相交于點(diǎn)C,點(diǎn)D在拋物線上,且CD∥AB.AD與y軸相交于點(diǎn)E,過(guò)點(diǎn)E的直線PQ平行于x軸,與拋物線相交于P,Q兩點(diǎn),則線段PQ的長(zhǎng)為_(kāi)____.3、如圖,是⊙O的內(nèi)接正三角形,點(diǎn)是圓心,點(diǎn),分別在邊,上,若,則的度數(shù)是____度.4、如圖,在RT△ABC中,,,點(diǎn)在上,且,點(diǎn)是線段上一個(gè)動(dòng)點(diǎn),以為直徑作⊙,點(diǎn)為直徑上方半圓的中點(diǎn),連接,則的最小值為_(kāi)__.5、將二次函數(shù)化成一般形式,其中二次項(xiàng)系數(shù)為_(kāi)_______,一次項(xiàng)系數(shù)為_(kāi)_______,常數(shù)項(xiàng)為_(kāi)_______.6、如圖,二次函數(shù)y=ax2+bx+c的部分圖象與y軸的交點(diǎn)為(0,3),它的對(duì)稱軸為直線x=1,則下列結(jié)論中:①c=3;②2a+b=0;③8a-b+c>0;④方程ax2+bx+c=0的其中一個(gè)根在2,3之間,正確的有_______(填序號(hào)).7、如圖,在平面直角坐標(biāo)系中,點(diǎn)A在拋物線y=x2﹣2x+2上運(yùn)動(dòng).過(guò)點(diǎn)A作AC⊥x軸于點(diǎn)C,以AC為對(duì)角線作矩形ABCD,連接BD,則對(duì)角線BD的最小值為_(kāi)____.四、解答題(6小題,每小題10分,共計(jì)60分)1、如圖所示,在銳角中,,,所對(duì)的邊分別是a,b,c,求證:.2、如圖,已知拋物線的頂點(diǎn)坐標(biāo)為M,與x軸相交于A,B兩點(diǎn)(點(diǎn)B在點(diǎn)A的右側(cè)),與y軸相交于點(diǎn)C.(1)用配方法將拋物線的解析式化為頂點(diǎn)式:(),并指出頂點(diǎn)M的坐標(biāo);(2)在拋物線的對(duì)稱軸上找點(diǎn)R,使得CR+AR的值最小,并求出其最小值和點(diǎn)R的坐標(biāo);(3)以AB為直徑作⊙N交拋物線于點(diǎn)P(點(diǎn)P在對(duì)稱軸的左側(cè)),求證:直線MP是⊙N的切線.3、如圖,在平面直角坐標(biāo)系中,點(diǎn)為坐標(biāo)原點(diǎn).拋物線交軸于、兩點(diǎn),交軸于點(diǎn),直線經(jīng)過(guò)、兩點(diǎn).(1)求拋物線的解析式;(2)過(guò)點(diǎn)作直線軸交拋物線于另一點(diǎn),過(guò)點(diǎn)作軸于點(diǎn),連接,求的值.4、若二次函數(shù)圖像經(jīng)過(guò),兩點(diǎn),求、的值.5、已知:如圖,△ABC中,AB=AC,AB>BC.求作:線段BD,使得點(diǎn)D在線段AC上,且∠CBD=∠BAC.作法:①以點(diǎn)A為圓心,AB長(zhǎng)為半徑畫圓;②以點(diǎn)C為圓心,BC長(zhǎng)為半徑畫弧,交⊙A于點(diǎn)P(不與點(diǎn)B重合);③連接BP交AC于點(diǎn)D.線段BD就是所求作的線段.(1)使用直尺和圓規(guī),依作法補(bǔ)全圖形(保留作圖痕跡);(2)完成下面的證明.證明:連接PC.∵AB=AC,∴點(diǎn)C在⊙A上.∵點(diǎn)P在⊙A上,∴∠CPB=∠BAC.()(填推理的依據(jù))∵BC=PC,∴∠CBD=.()(填推理的依據(jù))∴∠CBD=∠BAC.6、如圖,∠1=∠2=∠3,試找出圖中兩對(duì)相似三角形,并說(shuō)明為什么?-參考答案-一、單選題1、C【解析】【分析】首先根據(jù)∠BOC=3∠AOB,劣弧AC的度數(shù)是120o得到∠AOB=30°,從而得到∠COB為直角,然后利用S陰影=S扇形OBC-S△OEC求解即可.【詳解】解:設(shè)OB與AC相交于點(diǎn)E,如圖∵劣弧AC的度數(shù)是120o∴∠AOC=120°∵OA=OC∴∠OCA=∠OAC=30°∵∠BOC=3∠AOB又∵∠AOC=∠AOB+∠BOC∴∠AOC=∠AOB+3∠AOB=120°∴∠AOB=30°∴∠BOC=3∠AOB=90°在Rt△OCE中,OC=2∴OE=OCtan∠OCE=2tan30°=2×=2∴S△OEC=×2×2=2S扇形OBC=∴用S陰影=S扇形OBC-S△OEC=-2故選C.【考點(diǎn)】本題考查了扇形面積的計(jì)算,解直角三角形等知識(shí).在求不規(guī)則的陰影部分的面積時(shí)常常轉(zhuǎn)化為幾個(gè)規(guī)則幾何圖形的面積的和或差.2、A【解析】【分析】在⊙O取點(diǎn),連接利用圓的內(nèi)接四邊形的性質(zhì)與一條弧所對(duì)的圓心角是它所對(duì)的圓周角的2倍,可得答案.【詳解】解:如圖,在⊙O取點(diǎn),連接四邊形為⊙O的內(nèi)接四邊形,.故選A【考點(diǎn)】本題考查的是圓的內(nèi)接四邊形的性質(zhì),同弧所對(duì)的圓心角是它所對(duì)的圓周角的2倍,掌握相關(guān)知識(shí)點(diǎn)是解題的關(guān)鍵.3、A【解析】【分析】根據(jù)題意可得△OAB為直角三角形,∠AOB=30°,OA=200m,根據(jù)三角函數(shù)定義即可求得AB的長(zhǎng).【詳解】解:由已知得,∠AOB=90°60°=30°,OA=200m.則AB=OA=100m.故選:A.【考點(diǎn)】本題主要考查了解直角三角形的應(yīng)用——方向角問(wèn)題,正確記憶三角函數(shù)的定義是解決本題的關(guān)鍵.4、C【解析】【分析】根據(jù)題目中的函數(shù)解析式和反比例函數(shù)的性質(zhì),可以判斷各個(gè)選項(xiàng)中的說(shuō)法是否正確,從而可以解答本題.【詳解】解:反比例函數(shù)y=﹣,A、當(dāng)x=1時(shí),y=﹣=﹣5,圖像經(jīng)過(guò)點(diǎn)(1,-5),故選項(xiàng)A不符合題意;B、∵k=﹣5<0,故該函數(shù)圖象位于第二、四象限,故選項(xiàng)B不符合題意;C、當(dāng)x<0時(shí),y隨x的增大而增大,故選項(xiàng)C符合題意;D、當(dāng)x>0時(shí),y隨x的增大而增大,故選項(xiàng)D不符合題意;故選C.【考點(diǎn)】本題考查的是反比例函數(shù)的性質(zhì),熟練掌握反比例函數(shù)的性質(zhì)是解題的關(guān)鍵.5、D【解析】【分析】根據(jù)二次函數(shù)的解析式,得到a的值為2,圖象開(kāi)口向上,函數(shù)有最小值,根據(jù)定點(diǎn)坐標(biāo)(4,6),即可得出函數(shù)的最小值.【詳解】解:∵在二次函數(shù)中,a=2>0,頂點(diǎn)坐標(biāo)為(4,6),∴函數(shù)有最小值為6.故選:D.【考點(diǎn)】本題主要考查了二次函數(shù)的最值問(wèn)題,關(guān)鍵是根據(jù)二次函數(shù)的解析式確定a的符號(hào)和根據(jù)頂點(diǎn)坐標(biāo)求出最值.6、D【解析】【分析】根據(jù)一元二次方程根與系數(shù)的關(guān)系,求得兩根之和和兩根之積,再根據(jù)兩根關(guān)系,求得系數(shù)的關(guān)系,代入代數(shù)式,配方法化簡(jiǎn)求值即可.【詳解】解:由方程有兩個(gè)不相等的實(shí)根、可得,,,∵,可得,,即化簡(jiǎn)得則故最大值為故選D【考點(diǎn)】此題考查了一元二次方程根與系數(shù)的關(guān)系,涉及了配方法求解代數(shù)式的最大值,根據(jù)一元二次方程根與系數(shù)的關(guān)系得到系數(shù)的關(guān)系是解題的關(guān)鍵.二、多選題1、ABC【解析】【分析】根據(jù)相似三角形的判定定理逐項(xiàng)判斷即可.【詳解】解:A、∵∠ACP=∠B,∠A=∠A,∴△APC∽△ACB,故選項(xiàng)A符合題意;B、∵∠APC=∠ACB,∠A=∠A,∴△APC∽△ACB,故選項(xiàng)B符合題意;C、∵AC2=AP·AB,∠A=∠A,∴△APC∽△ACB,故選項(xiàng)C符合題意;D、AB·CP=AP·CB不是兩個(gè)對(duì)應(yīng)邊成比例,不能證明△APC和△ACB相似,故選項(xiàng)D不符合條件,故選:ABC.【考點(diǎn)】本題考查相似三角形的判定,熟練掌握相似三角形的判定方法是解答的關(guān)鍵.2、CD【解析】【分析】要正確理解切線的定義:和圓有唯一公共點(diǎn)的直線是圓的切線.掌握切線的判定:①經(jīng)過(guò)半徑的外端,且垂直于這條半徑的直線,是圓的切線;②到圓心的距離等于半徑的直線是該圓的切線.【詳解】解:A中,與圓有兩個(gè)公共點(diǎn)的直線,是圓的割線,故該選項(xiàng)不符合題意;B中,應(yīng)經(jīng)過(guò)此半徑的外端,故該選項(xiàng)不符合題意;C中,根據(jù)切線的判定方法,故該選項(xiàng)符合題意;D中,根據(jù)切線的判定方法,故該選項(xiàng)符合題意.故選:CD.【考點(diǎn)】本題考查了切線的判定.注意掌握切線的判定定理與切線的定義是解此題的關(guān)鍵.3、ABCD【解析】【分析】選項(xiàng)A:連接OE,利用切線長(zhǎng)定理得到AD=ED,CE=CB,可得AD+BC=CD.選項(xiàng)B:OD、OC分別為角平分線,利用平角的定義及等式性質(zhì)得到∠COD為直角,選項(xiàng)C:由梯形的面積公式可知S梯形ABCD=(AD+BC)AB,再根據(jù)等量代換即可得出C選項(xiàng)正確.選項(xiàng)D:由上述分析可確定出三角形ODE與三角形COD相似,由相似得比例列出關(guān)系式,根據(jù)CD=DE+EC,等量代換得到AD+BC=CD,即可得到D正確.【詳解】解:連接OE,∵DA、DE為圓O的切線,∴AD=ED,∠AOD=∠EOD,∵CE、CB為圓O的切線,∴CE=CB,∠EOC=∠BOC,∴CD=DE+EC=AD+BC,∴選項(xiàng)A正確;∵∠AOD+∠DOE+∠EOC+∠BOC=180°,∴∠DOE+∠EOC=90°,即∠DOC=90°,∴選項(xiàng)B正確;∵S梯形ABCD=(AD+BC)AB,由上述解析可知CD=AD+BC,OA=AB,等量代換可得,S梯形ABCD=CD?OA∴選項(xiàng)C正確;∵OE⊥CD,∴∠OED=∠COD=90°,∵∠EDO=∠ODC,∴△DOE∽△DCO,∴,∴OD2=DE?CD,選項(xiàng)D正確;故答案為:ABCD.【考點(diǎn)】牢記切線的性質(zhì),相似三角形的判定與性質(zhì),熟練掌握切線的性質(zhì)是解本題的關(guān)鍵.4、BCD【解析】【分析】利用各選項(xiàng)給定的條件,結(jié)合再證明,可得,逐一分析各選項(xiàng),從而可得答案.【詳解】解:A、而則故A不符合題意;B、與不一定相似,則與不一定相等,不一定平行,故B符合題意;C、,而而不一定相等,故不一定平行,故C符合題意;D、與不一定相似,則與不一定相等,不一定平行,故D符合題意;故選:BCD.【考點(diǎn)】本題考查的是相似三角形的判定與性質(zhì),平行線的判定,掌握兩邊對(duì)應(yīng)成比例且?jiàn)A角相等的兩個(gè)三角形相似是解題的關(guān)鍵.5、AD【解析】【分析】根據(jù)在直角三角形中一個(gè)角的正切值等于其所對(duì)的邊與斜邊的比值進(jìn)行構(gòu)造直角三角形求解判斷即可.【詳解】解:A、如圖所示,,∴,故此選項(xiàng)符合題意;B、如圖所示,,∴,故此選項(xiàng)不符合題意;C、如圖所示,,∴,故此選項(xiàng)不符合題意;D、如圖所示,,,BD⊥AC,∴,∴,∴∴,故此選項(xiàng)符合題意;故選AD.【考點(diǎn)】本題主要考查了求正切值和勾股定理,解題的關(guān)鍵在于能夠構(gòu)造直角三角形進(jìn)行求解.6、ABCD【解析】【分析】根據(jù)判定三角形相似的條件對(duì)選項(xiàng)逐一進(jìn)行判斷.【詳解】解:根據(jù)題意得:∠BAE=∠ADC=∠AFE=90°∴∠AEF+∠EAF=90°,∠DAC+∠ACD=90°∴∠AEF=∠ACD∴△BEA∽△ACD;∵∠AEB=∠FEA,∠AFE=∠EAB=90°,∴△AFE∽△BAE,∴,又∵AE=ED,∴而∠BED=∠BED,∴△FED∽△DEB;∵ABCD,∴∠BAC=∠GCD,∵∠ABE=∠DAF,∠EBD=∠EDF,且∠ABG=∠ABE+∠EBD,∴∠ABG=∠DAF+∠EDF=∠DFC;∵∠ABG=∠DFC,∠BAG=∠DCF,∴△CFD∽△ABG;∵△FED∽△DEB,∴∠EFD=∠EDB,∵AG=DG,∴∠DAF=∠ADG,∴∠DAF=∠EFD,∴△ADF∽△EFD.故選:ABCD.【考點(diǎn)】此題考查了相似三角形的判定:①有兩個(gè)對(duì)應(yīng)角相等的三角形相似;②有兩個(gè)對(duì)應(yīng)邊的比相等,且其夾角相等,則兩個(gè)三角形相似;③三組對(duì)應(yīng)邊的比相等,則兩個(gè)三角形相似.7、ABC【解析】【分析】由DE∥BC,AD:DB=2:1,可得△ADE∽△ABC,推出,,推出,由此即可判斷;【詳解】解:∵DE∥BC,AD:DB=2:1,∴△ADE∽△ABC,∴,,∴,∴選項(xiàng)A、B、C正確,∵DE∥BC,∴,選項(xiàng)D錯(cuò)誤,故選:ABC.【考點(diǎn)】本題考查了平行線分線段成比例定理,相似三角形的判定和性質(zhì)等知識(shí),解題的關(guān)鍵是熟練掌握基本知識(shí).三、填空題1、(答案不唯一)【解析】【分析】設(shè)與交點(diǎn)為,根據(jù)題意關(guān)于y軸對(duì)稱和二次函數(shù)的對(duì)稱性,可找到的值(只需滿足互為相反數(shù)且滿足即可)即可寫出一個(gè)符合條件的方程【詳解】設(shè)與交點(diǎn)為,根據(jù)題意則的對(duì)稱軸為故設(shè)則方程為:故答案為:【考點(diǎn)】本題考查了二次函數(shù)的對(duì)稱性,二次函數(shù)與一元二次方程的關(guān)系,熟悉二次函數(shù)的性質(zhì)和找到兩根的對(duì)稱性類比二次函數(shù)的對(duì)稱性是解題的關(guān)鍵2、2【解析】【分析】利用二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征可求出點(diǎn)A,B,C,D的坐標(biāo),由點(diǎn)A,D的坐標(biāo),利用待定系數(shù)法可求出直線AD的解析式,利用一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征可求出點(diǎn)E的坐標(biāo),再利用二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征可得出點(diǎn)P,Q的坐標(biāo),進(jìn)而可求出線段PQ的長(zhǎng).【詳解】解:當(dāng)y=0時(shí),﹣x2+x+2=0,解得:x1=﹣2,x2=4,∴點(diǎn)A的坐標(biāo)為(﹣2,0);當(dāng)x=0時(shí),y=﹣x2+x+2=2,∴點(diǎn)C的坐標(biāo)為(0,2);當(dāng)y=2時(shí),﹣x2+x+2=2,解得:x1=0,x2=2,∴點(diǎn)D的坐標(biāo)為(2,2).設(shè)直線AD的解析式為y=kx+b(k≠0),將A(﹣2,0),D(2,2)代入y=kx+b,得:解得:∴直線AD的解析式為y=x+1.當(dāng)x=0時(shí),y=x+1=1,∴點(diǎn)E的坐標(biāo)為(0,1).當(dāng)y=1時(shí),﹣x2+x+2=1,解得:x1=1﹣,x2=1+,∴點(diǎn)P的坐標(biāo)為(1﹣,1),點(diǎn)Q的坐標(biāo)為(1+,1),∴PQ=1+﹣(1﹣)=2.故答案為:2.【考點(diǎn)】本題考查了拋物線與x軸的交點(diǎn)、二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征、待定系數(shù)法求一次函數(shù)解析式以及一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征,利用二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征求出點(diǎn)P,Q的坐標(biāo)是解題的關(guān)鍵.3、120【解析】【分析】本題可通過(guò)構(gòu)造輔助線,利用垂徑定理證明角等,繼而利用SAS定理證明三角形全等,最后根據(jù)角的互換結(jié)合同弧所對(duì)的圓周角等于圓心角的一半求解本題.【詳解】連接OA,OB,作OH⊥AC,OM⊥AB,如下圖所示:因?yàn)榈冗吶切蜛BC,OH⊥AC,OM⊥AB,由垂徑定理得:AH=AM,又因?yàn)镺A=OA,故△OAH△OAM(HL).∴∠OAH=∠OAM.又∵OA=OB,AD=EB,∴∠OAB=∠OBA=∠OAD,∴△ODA△OEB(SAS),∴∠DOA=∠EOB,∴∠DOE=∠DOA+∠AOE=∠AOE+∠EOB=∠AOB.又∵∠C=60°以及同弧,∴∠AOB=∠DOE=120°.故本題答案為:120.【考點(diǎn)】本題考查圓與等邊三角形的綜合,本題目需要根據(jù)等角的互換將所求問(wèn)題進(jìn)行轉(zhuǎn)化,構(gòu)造輔助線是本題難點(diǎn),全等以及垂徑定理的應(yīng)用在圓綜合題目極為常見(jiàn),圓心角、弧、圓周角的關(guān)系需熟練掌握.4、【解析】【分析】如圖,連接OQ,CQ,過(guò)點(diǎn)A作AT⊥CQ交CQ的延長(zhǎng)線于T.證明∠ACT=45°,求出AT即可解決問(wèn)題.【詳解】解:如圖,連接OQ,CQ,過(guò)點(diǎn)A作AT⊥CQ交CQ的延長(zhǎng)線于T.∵,∴OQ⊥PD,∴∠QOD=90°,∴∠QCD=∠QOD=45°,∵∠ACB=90°,∴∠ACT=45°,∵AT⊥CT,∴∠ATC=90°,∵AC=8,∴AT=AC?sin45°=4,∵AQ≥AT,∴AQ≥4,∴AQ的最小值為4,故答案為:4.【考點(diǎn)】本題考查圓周角定理,垂線段最短,解直角三角形等知識(shí),解題的關(guān)鍵是靈活運(yùn)用所學(xué)知識(shí)解決問(wèn)題,屬于中考??碱}型.5、

【解析】【分析】通過(guò)去括號(hào),移項(xiàng),可以把方程化成二次函數(shù)的一般形式,然后確定二次項(xiàng)系數(shù),一次項(xiàng)系數(shù),常數(shù)項(xiàng).【詳解】y=﹣2(x﹣2)2變形為:y=﹣2x2+8x﹣8,所以二次項(xiàng)系數(shù)為﹣2;一次項(xiàng)系數(shù)為8;常數(shù)項(xiàng)為﹣8.故答案為﹣2,8,﹣8.【考點(diǎn)】本題考查的是二次函數(shù)的一般形式,通過(guò)去括號(hào),移項(xiàng),合并同類項(xiàng),得到二次函數(shù)的一般形式,確定二次項(xiàng)系數(shù),一次項(xiàng)系數(shù),常數(shù)項(xiàng)的值.6、①②④【解析】【分析】由二次函數(shù)y=ax2+bx+c的部分圖象與y軸的交點(diǎn)為(0,3),即可判斷①;由拋物線的對(duì)稱軸為直線x=1,即可判斷②;拋物線與x軸的一個(gè)交點(diǎn)在-1到0之間,拋物線對(duì)稱軸為直線x=1,即可判斷④,由拋物線開(kāi)口向下,得到a<0,再由當(dāng)x=-1時(shí),,即可判斷③.【詳解】解:∵二次函數(shù)y=ax2+bx+c的部分圖象與y軸的交點(diǎn)為(0,3),∴c=3,故①正確;∵拋物線的對(duì)稱軸為直線x=1,∴,即,故②正確;∵拋物線與x軸的一個(gè)交點(diǎn)在-1到0之間,拋物線對(duì)稱軸為直線x=1,∴拋物線與x軸的另一個(gè)交點(diǎn)在2到3之間,故④正確;∵拋物線開(kāi)口向下,∴a<0,∵當(dāng)x=-1時(shí),,∴即,故③錯(cuò)誤,故答案為:①②④.【考點(diǎn)】本題主要考查了二次函數(shù)圖像的性質(zhì),解題的關(guān)鍵在于能夠熟練掌握二次函數(shù)圖像的性質(zhì).7、1【解析】【分析】由矩形的性質(zhì)可知BD=AC,再結(jié)合頂點(diǎn)到x軸的距離最近可知當(dāng)點(diǎn)A在頂點(diǎn)處時(shí)滿足條件,求得拋物線的頂點(diǎn)坐標(biāo)即可求得答案.【詳解】解:∵AC⊥x軸,∴當(dāng)點(diǎn)A為拋物線頂點(diǎn)時(shí),AC有最小值,∵拋物線y=x2﹣2x+2=(x?1)2+1,∴頂點(diǎn)坐標(biāo)為(1,1),∴AC的最小值為1,∵四邊形ABCD為矩形,∴BD=AC,∴BD的最小值為1,故答案為:1.【考點(diǎn)】本題主要考查了二次函數(shù)的性質(zhì)及矩形的性質(zhì),確定出AC最小時(shí)的位置是解題的關(guān)鍵.四、解答題1、見(jiàn)解析【解析】【分析】方法1:過(guò)點(diǎn)A作于點(diǎn)D,根據(jù),可得,由此可得,由此可得結(jié)論;方法2:過(guò)點(diǎn)A作于點(diǎn)D,根據(jù)可得,由此可表示三角形的面積,根據(jù)面積相等可得相應(yīng)等式,由此可得結(jié)論;方法3:作的外接圓,設(shè)的半徑為r,作直徑BD,連接CD,根據(jù)圓周角定理可得,由此可得結(jié)論.【詳解】解:方法1如圖所示,過(guò)點(diǎn)A作于點(diǎn)D,則,在中,,∴,在中,,∴,∴,∴.同理可證,.∴.方法2如圖所示,過(guò)點(diǎn)A作于點(diǎn)D,則,在中,在中,,∴,∴,同理可得,∴,∴,∴,∴.方法3如圖所示,作的外接圓,設(shè)的半徑為r,作直徑BD,連接CD.∵BD是的直徑,∴.∴,∴,同理可得,.∴.2、(1),M(,);(2),(,);(3)證明見(jiàn)試題解析.【解析】【詳解】試題分析:(1)利用配方法把一般式轉(zhuǎn)化為頂點(diǎn)式,然后根據(jù)二次函數(shù)的性質(zhì)求出拋物線的頂點(diǎn)坐標(biāo);(2)連接BC,則BC與對(duì)稱軸的交點(diǎn)為R,此時(shí)CR+AR的值最小;先求出點(diǎn)A、B、C的坐標(biāo),再利用待定系數(shù)法求出直線BC的解析式,進(jìn)而求出其最小值和點(diǎn)R的坐標(biāo);(3)設(shè)點(diǎn)P坐標(biāo)為(x,).根據(jù)NPAB=,列出方程,解方程得到點(diǎn)P坐標(biāo),再計(jì)算得出,由勾股定理的逆定理得出∠MPN=90°,然后利用切線的判定定理即可證明直線MP是⊙N的切線.試題解析:(1)∵=,∴拋物線的解析式化為頂點(diǎn)式為:,頂點(diǎn)M的坐標(biāo)是(,);(2)∵,∴當(dāng)y=0時(shí),,解得x=1或6,∴A(1,0),B(6,0),∵x=0時(shí),y=﹣3,∴C(0,﹣3).連接BC,則BC與對(duì)稱軸x=的交點(diǎn)為R,連接AR,則CR+AR=CR+BR=BC,根據(jù)兩點(diǎn)之間線段最短可知此時(shí)CR+AR的值最小,最小值為BC==.設(shè)直線BC的解析式為,∵B(6,0),C(0,﹣3),∴,解得:,∴直線BC的解析式為:,令x=,得y==,∴R點(diǎn)坐標(biāo)為(,);(3)設(shè)點(diǎn)P坐標(biāo)為(x,).∵A(1,0),B(6,0),∴N(,0),∴以AB為直徑的⊙N的半徑為AB=,∴NP=,即,移項(xiàng)得,,得:,整理得:,解得(與A重合,舍去),,(在對(duì)稱軸的右側(cè),舍去),(與B重合,舍去),∴點(diǎn)P坐標(biāo)為(2,2).∵M(jìn)(,),N(,0),∴==,=

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論