版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
四川內江市第六中學7年級數(shù)學下冊第四章三角形定向測試考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(10小題,每小題2分,共計20分)1、下列四個圖形中,BE不是△ABC的高線的圖是()A. B.C. D.2、如圖,在和中,,,,,連接,交于點,連接.下列結論:①;②;③平分;④平分.其中正確的個數(shù)為()A.1個 B.2個 C.3個 D.4個3、如圖,ABC的面積為18,AD平分∠BAC,且AD⊥BD于點D,則ADC的面積是()A.8 B.10 C.9 D.164、如圖,BD是△ABC的中線,AB=6,BC=4,△ABD和△BCD的周長差為()A.2 B.4 C.6 D.105、小明把一副含有45°,30°角的直角三角板如圖擺放其中∠C=∠F=90°,∠A=45°,∠D=30°,則∠a+∠β等于()A.180° B.210° C.360° D.270°6、如圖,一扇窗戶打開后,用窗鉤AB可將其固定()A.三角形的穩(wěn)定性B.兩點之間線段最短C.四邊形的不穩(wěn)定性D.三角形兩邊之和大于第三邊7、根據(jù)下列已知條件,不能畫出唯一的是()A.,, B.,,C.,, D.,,8、以下列各組線段為邊,能組成三角形的是()A.3cm,4cm,5cm B.3cm,3cm,6cm C.5cm,10cm,4cm D.1cm,2cm,3cm9、若三條線段中a=3,b=5,c為奇數(shù),那么以a、b、c為邊組成的三角形共有()A.1個 B.2個 C.3個 D.4個10、三角形的外角和是()A.60° B.90° C.180° D.360°第Ⅱ卷(非選擇題80分)二、填空題(10小題,每小題2分,共計20分)1、如圖,△PBC的面積為5cm2,BP平分∠ABC,AP⊥BP于點P,則△ABC的面積為_____cm2.2、某段河流的兩岸是平行的,數(shù)學興趣小組在老師帶領下不用涉水過河就測得河的寬度,他們是這樣做的:①在河流的一條岸邊B點,選對岸正對的一棵樹A;②沿河岸直走20米有一樹C,繼續(xù)前行20米到達D處;③從D處沿河岸垂直的方向行走,當?shù)竭_A樹正好被C樹遮擋住的E處停止行走;④測得DE的長為5米;則河的寬度為_____米.3、如圖,在△ABC中,點D為BC邊延長線上一點,若∠ACD=75°,∠A=45°,則∠B的度數(shù)為__________.4、如圖,△ABE≌△ACD,∠A=60°,∠B=20°,則∠DOE的度數(shù)為_____°.5、如圖,AB,CD相交于點O,,請你補充一個條件,使得,你補充的條件是______.6、如圖,在△ABC中,點D,E,F(xiàn)分別為BC,AD,CE的中點,且S△BEF=2cm2,則S△ABC=__________.7、如圖,AE是△ABC的中線,BF是△ABE的中線,若△ABC的面積是20cm2,則S△ABF=_____cm2.8、如圖所示,銳角△ABC中,D,E分別是AB,AC邊上的點,連結BE、CD交于點F.將△ADC和△AEB分別繞著邊AB、AC翻折得到△ADC'和△AEB',且EB'∥DC'∥BC,若∠BAC=42°,則∠BFC的大小是___.9、等腰三角形的一條邊長為4cm,另一條邊長為6cm,則它的周長是________.10、如圖,,,,則、兩點之間的距離為______.三、解答題(6小題,每小題10分,共計60分)1、如圖,已知點A,E,F(xiàn),C在同一條直線上,AE=CF,AB∥CD,∠B=∠D.請問線段AB與CD相等嗎?說明理由.2、如圖,點A,B,C,D在一條直線上,,,.求證:.3、如圖1,AE與BD相交于點C,AC=EC,BC=DC.(1)求證:ABDE;(2)如圖2,過點C作PQ交AB于P,交DE于Q,求證:CP=CQ.(3)如圖3,若AB=4cm,點P從點A出發(fā),沿A→B→A方向以3cm/s的速度運動,點Q從點D出發(fā),沿D→E方向以1cm/s的速度運動,P、Q兩點同時出發(fā).當點P到達點A時,P、Q兩點同時停止運動.設點P的運動時間為t(s).連接PQ,當線段PQ經過點C時,直接寫出t的值為.4、如圖,在△ABC中,AB=AC,∠BAC=30°,點D是△ABC內一點,DB=DC,∠DCB=30°,點E是BD延長線上一點,AE=AB.(1)求∠ADB的度數(shù);(2)線段DE,AD,DC之間有什么數(shù)量關系?請說明理由.(提示:在線段DE上截取線段EM=BD,連接線段AM或者在線段DE上截取線段DM=AD連接線段AM).5、已知∠ACD=90°,MN是過點A的直線,AC=DC,且DB⊥MN于點B,如圖易證BD+ABCB,過程如下:解:過點C作CE⊥CB于點C,與MN交于點E∵∠ACB+∠BCD=90°,∠ACB+∠ACE=90°,∴∠BCD=∠ACE.∵DB⊥MN,∴∠ABC+∠CBD=90°,CE⊥CB,∴∠ABC+∠CEA=90°,∴∠CBD=∠CEA.又∵AC=DC,∴△ACE≌△DCB(AAS),∴AE=DB,CE=CB,∴△ECB為等腰直角三角形,∴BECB.又∵BE=AE+AB,∴BE=BD+AB,∴BD+ABCB.(1)當MN繞A旋轉到如圖(2)位置時,BD、AB、CB滿足什么樣關系式,請寫出你的猜想,并給予證明.(2)當MN繞A旋轉到如圖(3)位置時,BD、AB、CB滿足什么樣關系式,請直接寫出你的結論.6、如圖,(1),已知△ABC中,∠BAC=90°,,AE是過點A的一條直線,且B,C在A,E的異側,于點D,于點E(1)試說明:;(2)若直線AE繞點A旋轉到圖(2)位置時,其余條件不變,問BD與DE,CE的關系如何?請直接寫出結果;-參考答案-一、單選題1、C【分析】利用三角形的高的定義可得答案.【詳解】解:BE不是△ABC的高線的圖是C,故選:C.【點睛】此題主要考查了三角形的高,關鍵是掌握從三角形的一個頂點向底邊作垂線,垂足與頂點之間的線段叫做三角形的高.2、C【分析】由全等三角形的判定及性質對每個結論推理論證即可.【詳解】∵∴∴又∵,∴∴故①正確∵∴由三角形外角的性質有則故②正確作于,于,如圖所示:則°,在和中,,∴,∴,在和中,∴,∴∴平分故④正確假設平分則∵∴即由④知又∵為對頂角∴∴∴∴在和中,∴即AB=AC又∵故假設不符,故不平分故③錯誤.綜上所述①②④正確,共有3個正確.故選:C.【點睛】本題考查了全等三角形的判定及性質,靈活的選擇全等三角形的判定的方法是解題的關鍵,從判定兩個三角形全等的方法可知,要判定兩個三角形全等,需要知道這兩個三角形分別有三個元素(其中至少一個元素是邊)對應相等,這樣就可以利用題目中的已知邊角迅速、準確地確定要補充的邊角,有目的地完善三角形全等的條件,從而得到判定兩個三角形全等的思路.3、C【分析】延長BD交AC于點E,根據(jù)角平分線及垂直的性質可得:,,依據(jù)全等三角形的判定定理及性質可得:,,再根據(jù)三角形的面積公式可得:SΔABD=SΔADE,SΔBDC=S【詳解】解:如圖,延長BD交AC于點E,∵AD平分,,∴,,在和中,,∴,∴,∴SΔABD=S∴SΔADC故選:C.【點睛】題目主要考查全等三角形的判定和性質,角平分線的定義等,熟練掌握基礎知識,進行邏輯推理是解題關鍵.4、A【分析】根據(jù)題意可得,,△ABD和△BCD的周長差為線段的差,即可求解.【詳解】解:根據(jù)題意可得,△ABD的周長為,△BCD的周長為△ABD和△BCD的周長差為故選:A【點睛】本題考查了三角形中線的性質及三角形周長的計算,熟練掌握三角形中線的性質是解答本題的關鍵.5、B【分析】已知,得到,根據(jù)外角性質,得到,,再將兩式相加,等量代換,即可得解;【詳解】解:如圖所示,∵,∴,∵,,∴,∵,,∴,∵,,∴;故選D.【點睛】本題主要考查了三角形外角定理的應用,準確分析計算是解題的關鍵.6、A【分析】由三角形的穩(wěn)定性即可得出答案.【詳解】一扇窗戶打開后,用窗鉤AB可將其固定,故選:A.【點睛】本題考查了三角形的穩(wěn)定性,加上窗鉤AB構成了△AOB,而三角形具有穩(wěn)定性是解題的關鍵.7、B【分析】根據(jù)三角形存在的條件去判斷.【詳解】∵,,,滿足ASA的要求,∴可以畫出唯一的三角形,A不符合題意;∵,,,∠A不是AB,BC的夾角,∴可以畫出多個三角形,B符合題意;∵,,,滿足SAS的要求,∴可以畫出唯一的三角形,C不符合題意;∵,,,AB最大,∴可以畫出唯一的三角形,D不符合題意;故選B.【點睛】本題考查了三角形的存在性,熟練掌握三角形全等的判定方法是解題的關鍵.8、A【分析】三角形的任意兩條之和大于第三邊,任意兩邊之差小于第三邊,根據(jù)原理再分別計算每組線段當中較短的兩條線段之和,再與最長的線段進行比較,若和大于最長的線段的長度,則三條線段能構成三角形,否則,不能構成三角形,從而可得答案.【詳解】解:所以以3cm,4cm,5cm為邊能構成三角形,故A符合題意;所以以3cm,3cm,6cm為邊不能構成三角形,故B不符合題意;所以以5cm,10cm,4cm為邊不能構成三角形,故C不符合題意;所以以1cm,2cm,3cm為邊不能構成三角形,故D不符合題意;故選A【點睛】本題考查的是三角形的三邊之間的關系,掌握“利用三角形三邊之間的關系判定三條線段能否組成三角形”是解本題的關鍵.9、C【分析】根據(jù)三角形的三邊關系,得到合題意的邊,進而求得三角形的個數(shù).【詳解】解:c的范圍是:5﹣3<c<5+3,即2<c<8.∵c是奇數(shù),∴c=3或5或7,有3個值.則對應的三角形有3個.故選:C.【點睛】本題主要考查了三角形三邊關系,準確分析判斷是解題的關鍵.10、D【分析】根據(jù)三角形的內角和定理、鄰補角的性質即可得.【詳解】解:如圖,,,又,,即三角形的外角和是,故選:D.【點睛】本題考查了三角形的內角和定理、鄰補角的性質,熟練掌握三角形的內角和定理是解題關鍵.二、填空題1、10【分析】根據(jù)已知條件證得△ABP≌△EBP,根據(jù)全等三角形的性質得到AP=PE,得出S△ABP=S△EBP,S△ACP=S△ECP,推出S△ABC=2S△PBC,代入求出即可.【詳解】解:延長AP交BC于E,∵BP平分∠ABC,∴∠ABP=∠EBP,∵AP⊥BP,∴∠APB=∠EPB=90°,在△ABP和△EBP中,,∴△ABP≌△EBP(ASA),∴AP=PE,∴S△ABP=S△EBP,S△ACP=S△ECP,∴S△ABC=2S陰影=10(cm2),故答案為:10.【點睛】本題考查了全等三角形的性質和判定,三角形的面積的應用,注意:等底等高的三角形的面積相等.2、5【分析】將題目中的實際問題轉化為數(shù)學問題,利用全等三角形的判定方法證得兩個三角形全等即可得出答案.【詳解】解:由題意知,在和中,,,∴,即河的寬度是5米,故答案為:5.【點睛】題目主要考查全等三角形的應用,熟練應用全等三角形的判定定理和性質是解題關鍵.3、30°【分析】根據(jù)三角形的外角的性質,即可求解.【詳解】解:∵,∴,∵∠ACD=75°,∠A=45°,∴.故答案為:30°【點睛】本題主要考查了三角形的外角性質,熟練掌握三角形的一個外角等于與它不相鄰的兩個內角的和是解題的關鍵.4、100【分析】直接利用三角形的外角的性質得出∠CEO=80°,再利用全等三角形的性質得出答案.【詳解】解:∵∠A=60°,∠B=20°,∴∠CEO=80°,∵△ABE≌△ACD,∴∠B=∠C=20°,∴∠DOE=∠C+∠CEO=100°.故答案為:100.【點睛】此題主要考查了全等三角形的性質以及三角形的外角的性質,求出∠CEO=80°是解題關鍵.5、(答案不唯一)【分析】在與中,已經有條件:所以補充可以利用證明兩個三角形全等.【詳解】解:在與中,所以補充:故答案為:【點睛】本題考查的是全等三角形的判定,掌握“利用邊邊邊公理證明兩個三角形全等”是解本題的關鍵.6、8cm2【分析】由于三角形的中線將三角形分成面積相等的兩部分,則S△CFB=S△EFB=2cm2,于是得到S△CEB=4cm2,再求出S△BDE=2cm2,利用E點為AD的中點得到S△ABD=2S△BDE=4cm2,然后利用S△ABC=2S△ABD求解.【詳解】解:∵F點為CE的中點,∴S△CFB=S△EFB=2cm2,∴S△CEB=4cm2,∵D點為BC的中點,∴S△BDE=S△BCE=2cm2,∵E點為AD的中點,∴S△ABD=2S△BDE=4cm2,∴S△ABC=2S△ABD=8cm2.故答案為:8cm2.【點睛】本題考查了三角形的中線,根據(jù)三角形的中線等分三角形的面積是解本題的關鍵.7、5【分析】利用三角形的中線把三角形分成面積相等的兩個三角形進行解答.【詳解】解:∵AE是△ABC的中線,BF是△ABE的中線,∴S△ABF=S△ABC=×20=5cm2.故答案為:5.【點睛】本題考查了三角形的面積,能夠利用三角形的中線把三角形分成面積相等的兩個三角形的性質求解是解題的關鍵.8、96°96度【分析】根據(jù)題意由翻折的性質和全等三角形的對應角相等、三角形外角定理以及三角形內角和定理進行分析解答.【詳解】解:設∠C′=α,∠B′=β,∵將△ADC和△AEB分別繞著邊AB、AC翻折得到△ADC'和△AEB',∴△ADC≌△ADC′,△AEB≌△AEB′,∴∠ACD=∠C′=α,∠ABE=∠B′=β,∠BAE=∠B′AE=42°,∴∠C′DB=∠BAC′+AC′D=42°+α,∠CEB′=42°+β.∵C′D∥EB′∥BC,∴∠ABC=∠C′DB=42°+α,∠ACB=∠CEB′=42°+β,∴∠BAC+∠ABC+∠ACB=180°,即126°+α+β=180°.則α+β=54°.∵∠BFC=∠BDC+∠DBE,∴∠BFC=42°+α+β=42°+54°=96°.故答案為:96°.【點睛】本題考查全等三角形的性質,解答本題的關鍵是利用“全等三角形的對應角相等”和“兩直線平行,內錯角相等”進行推理.9、16cm或14cm【分析】根據(jù)題意分腰為6cm和底為6cm兩種情況,分別求出即可.【詳解】解:①當腰為6cm時,它的周長為6+6+4=16(cm);②當?shù)诪?cm時,它的周長為6+4+4=14(cm);故答案為:16cm或14cm.【點睛】本題考查了等腰三角形的性質的應用,注意:等腰三角形的兩腰相等,注意分類討論.10、55【分析】根據(jù)題意首先證明△AOB和△DOC全等,再根據(jù)全等三角形對應邊相等即可得出答案.【詳解】解:,,,即,在和中,,≌,.故答案為:.【點睛】本題主要考查全等三角形的應用以及兩點之間的距離,解題的關鍵是掌握全等三角形對應邊相等.三、解答題1、AB=CD,理由見解析.【分析】由平行線的性質得出∠A=∠C,證明△ABF≌△CDE(AAS),由全等三角形的性質得出AB=CD.【詳解】解:AB=CD.理由如下:∵AB∥CD,∴∠A=∠C,∵AE=CF,∴AE+EF=CF+EF,∴AF=CE,在△ABF和△CDE中,,∴△ABF≌△CDE(AAS),∴AB=CD.【點睛】本題考查了全等三角形的判定與性質,解題關鍵是熟練運用全等三角形的判定定理證明三角形全等.2、見解析【分析】根據(jù)平行線的性質得出,運用“角角邊”證明△AEB≌△CFD即可.【詳解】證明:∵,∴,在△AEB和△CFD中,∴△AEB≌△CFD,∴.【點睛】本題考查了全等三角形的判定與性質,解題關鍵是熟練運用全等三角形的判定定理進行證明.3、(1)見詳解;(2)見詳解;(3)1或2【分析】(1)由“SAS”可證△ABC≌△EDC,可得∠A=∠E,可證AB∥DE;(2)由“ASA”可證△DCQ≌△BCP,可得CP=CQ;(3)由全等三角形的性質可得DQ=BP,列出方程可求解.【詳解】解:(1)證明:在△ABC和△EDC中,,∴△ABC≌△EDC(SAS),∴∠A=∠E,∴AB∥DE;(2)證明:∵AB∥DE,∴∠B=∠D,在△DCQ和△BCP中,,∴△DCQ≌△BCP(ASA),∴CP=CQ;(3)解:由(2)可知:當線段PQ經過點C時,△DCQ≌△BCP,可得DQ=BP,∴4﹣3t=t或3t﹣4=t,∴t=1或2.故答案為:1或2.【點睛】本題考查了全等三角形的判定和性質,掌握全等三角形的判定定理和性質定理是解本題的關鍵.4、(1)∠ADB的度數(shù)為.(2),證明見解析.【分析】(1)利用已知條件,先證明,再通過全等三角形的性質,求解,最后利用三角形內角和為,即可求出∠ADB的度數(shù).(2)在線段DE上截取線段DM=AD連接線段AM,證明,進而得到,最后即可證得結論成立.【詳解】(1)解:,為等腰三角形,,,,,.,.在中,..(2)解:,證明:如圖所示:在線段DE上截取線段DM=AD,并連接線段AM,,,是等邊三角形,,,,,,,,,.【點睛】本題主要是考查了三角形的全等以及等腰三角形的性質,正確找到判定三角形全等的條件,并利用其性質證明角相等或邊相等,是解決本題的關鍵,另外,證明邊長之間的關系,一般會在較長的邊上進行截取,這個做題技巧,需要注意.5、(1)AB-BD=CB,證明見解析.(2)BD-AB=CB,證明見解析.【分析】(1)仿照圖(1)的解題過程即可解答.過點C作CE⊥CB于點C,與MN交于點E,根據(jù)同角(等角)的余角相等可證∠BCD=∠ACE及∠CAE=∠D,由ASA可證△ACE≌△DCB,然后由全等三角形的對應邊相等可得:AE=DB,CE=CB,從而確定△ECB為等腰直角三角形,由勾股定理可得:BE=CB,由BE=AB-AE,可得BE=AB-BD,即AB-BD=CB;(2)解題思路同(1),過點C作CE⊥CB于點C,與MN交于點E,根據(jù)等角的余角相等及等式的性質可證∠BCD=∠ACE及∠CAE=∠D,由ASA可證△ACE≌△DCB,然后由全等三角形的對應邊相等可得:AE=DB,CE=CB,從而確定△ECB為等腰直角三角形,由勾股定理可得:BE=CB,由BE=AE-AB,可得BE=BD-AB,即BD-AB=CB.【詳解】解:(1)AB-BD=CB.證明:如圖(2)過點C作CE⊥CB于點C,與MN交于點E,∵∠ACD=90°,∠ECB=90°,∴∠ACE=90°-∠DCE,∠BCD=90°-∠ECD,∴∠BCD=∠ACE.∵DB⊥MN,∴∠CAE=90°-∠AFC,∠D=90°-∠BFD,∵∠AFC=∠BFD,∴∠CAE=∠D,在△ACE和△DCB中,∴△ACE≌△DCB(ASA),∴AE=DB,CE=CB,∴△ECB為等腰直角三角形,∴BE=CB.又∵BE=AB-AE,∴BE=AB-BD,∴AB-BD=CB.(2)BD-A
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年陽江職業(yè)技術學院單招職業(yè)技能考試題庫及一套答案詳解
- 岳塘小學教師招聘2022年考試真題及答案解析一
- 安全員A證考試復習提分資料及答案詳解(易錯題)
- 熱力資源高效利用方案
- 燃氣輸送系統(tǒng)安全評估方案
- 安全員A證考試能力提升B卷題庫及答案詳解(易錯題)
- 安全員A證考試強化訓練附參考答案詳解【典型題】
- 安全員A證考試強化訓練高能【模擬題】附答案詳解
- 安全員A證考試通關測試卷含答案詳解【模擬題】
- 邊坡土石方施工組織方案
- 云南省煙草專賣局(公司)2026年畢業(yè)生招聘備考題庫(第一批)完整參考答案詳解
- 2026重慶江津區(qū)社區(qū)專職工作人員公開招聘642人考試參考題庫及答案解析
- 重癥患者營養(yǎng)支持指南2025
- 2025-2026學年貴州省貴陽市多校高一(上)期末物理試卷(含答案)
- 單位電車充電管理制度規(guī)范
- 社區(qū)救援員培訓課件
- 2026年讀者文化旅游有限責任公司社會招聘參考考試試題及答案解析
- 混凝土擋墻施工工藝方案
- 2025年宿遷市輔警考試真題及答案
- 冬季電纜敷設施工專項方案
- 建筑砌筑工(中級)理論考試題庫及答案
評論
0/150
提交評論