難點解析-吉林省雙遼市中考數學真題分類(勾股定理)匯編定向練習試題(含詳細解析)_第1頁
難點解析-吉林省雙遼市中考數學真題分類(勾股定理)匯編定向練習試題(含詳細解析)_第2頁
難點解析-吉林省雙遼市中考數學真題分類(勾股定理)匯編定向練習試題(含詳細解析)_第3頁
難點解析-吉林省雙遼市中考數學真題分類(勾股定理)匯編定向練習試題(含詳細解析)_第4頁
難點解析-吉林省雙遼市中考數學真題分類(勾股定理)匯編定向練習試題(含詳細解析)_第5頁
已閱讀5頁,還剩22頁未讀, 繼續(xù)免費閱讀

付費下載

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

吉林省雙遼市中考數學真題分類(勾股定理)匯編定向練習考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題14分)一、單選題(7小題,每小題2分,共計14分)1、下面各圖中,不能證明勾股定理正確性的是()A. B. C. D.2、勾股定理是人類最偉大的科學發(fā)現(xiàn)之一,在我國古算書《周髀算經》中早有記載.如圖1,以直角三角形的各邊為邊分別向外作正方形,再把較小的兩張正方形紙片按圖2的方式放置在最大正方形內.若知道圖中陰影部分的面積,則一定能求出(

)A.直角三角形的面積B.最大正方形的面積C.較小兩個正方形重疊部分的面積D.最大正方形與直角三角形的面積和3、以下列各組數的長為邊作三角形,不能構成直角三角形的是(

)A.3,4,5 B.4,5,6 C.6,8,10 D.9,12,154、如圖,以Rt△ABC的兩直角邊為邊向外作正方形,其面積分別為S1,S2,若S1=8cm2,S2=17cm2,則斜邊AB的長是(

)A.3cm B.6cm C.4cm D.5cm5、如圖,在Rt△ABC中,∠ACB=90°,AB=5,AC=3,點D是BC上一動點,連接AD,將△ACD沿AD折疊,點C落在點E處,連接DE交AB于點F,當∠DEB是直角時,DF的長為(

).A.5 B.3 C. D.6、如圖,長方體的底面邊長分別為2cm和3cm,高為6cm.如果用一根細線從點A開始經過4個側面纏繞一圈達到點B,那么所用細線最短需要(

)A.11cm B.2cm C.(8+2)cm D.(7+3)cm7、有一個邊長為1的正方形,以它的一條邊為斜邊,向外作一個直角三角形,再分別以直角三角形的兩條直角邊為邊,向外各作一個正方形,稱為第一次“生長”(如圖1);再分別以這兩個正方形的邊為斜邊,向外各自作一個直角三角形,然后分別以這兩個直角三角形的直角邊為邊,向外各作一個正方形,稱為第二次“生長”(如圖2)……如果繼續(xù)“生長”下去,它將變得“枝繁葉茂”,請你算出“生長”了2021次后形成的圖形中所有的正方形的面積和是(

)A.1 B.2020 C.2021 D.2022第Ⅱ卷(非選擇題86分)二、填空題(8小題,每小題2分,共計16分)1、如圖所示,所有的四邊形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的邊長為7cm,正方形A、B、C的面積分別是,,,則正方形D的面積是______.2、如圖,將一個長方形紙片沿折疊,使C點與A點重合,若,則線段的長是_________.3、把兩個同樣大小含角的三角尺按如圖所示的方式放置,其中一個三角尺的銳角頂點與另一個三角尺的直角頂點重合于點,且另外三個銳角頂點在同一直線上.若,則____.4、如圖,Rt△ABC的兩條直角邊,.分別以Rt△ABC的三邊為邊作三個正方形.若四個陰影部分面積分別為,,,,則的值為______,的值為______.5、《九章算術》中有“折竹抵地”問題:“今有竹高一丈,末折抵地,去根三尺,問折者高幾何?”題意是:有一根竹子原來高1丈(1丈=10尺),中部有一處折斷,竹梢觸地面處離竹根3尺,試問折斷處離地面多高?如圖,設折斷處距離地面x尺,根據題意,可列方程為______.6、學習完《勾股定理》后,尹老師要求數學興趣小組的同學測量學校旗桿的高度.同學們發(fā)現(xiàn)系在旗桿頂端的繩子垂到了地面并多出了一段,但這條繩子的長度未知.如圖,經測量,繩子多出的部分長度為1米,將繩子沿地面拉直,繩子底端距離旗桿底端4米,則旗桿的高度為______米.7、如圖,AB⊥CD于B,△ABD和△BCE都是等腰直角三角形,如果CD=17,BE=5,那么AC的長為_______8、某小區(qū)兩面直立的墻壁之間為安全通道,一架梯子斜靠在左墻DE時,梯子A到左墻的距離AE為0.7m,梯子頂端D到地面的是樣子離DE為2.4m,若梯子底端A保持不動,將梯子斜塞在右墻BC上,梯子頂端C到地面的距離CB為1.5m,則這兩面直立墻壁之間的安全道的寬BE為__________m.三、解答題(7小題,每小題10分,共計70分)1、在一條東西走向河的一側有一村莊C,河邊原有兩個取水點A,B,其中AB=AC,由于種種原因,由C到A的路現(xiàn)在已經不通了,某村為方便村民取水決定在河邊新建一個取水點H(A,H,B在一條直線上),并新修一條路CH,測得CB=3千米,CH=2.4千米,HB=1.8千米.(1)問CH是不是從村莊C到河邊的最近路,請通過計算加以說明;(2)求原來的路線AC的長.2、如圖,某海岸線MN的方向為北偏東75°,甲,乙兩船分別向海島C運送物資,甲船從港口A處沿北偏東45°方向航行,乙船從港口B處沿北偏東30°方向航行,已知港口B到海島C的距離為30海里,求港口A到海島C的距離.3、勾股定理的證明方法是多樣的,其中“面積法”是常用的方法.小麗發(fā)現(xiàn):當四個全等的直角三角形如圖擺放時,可以用“面積法”來證明勾股定理.請寫出勾股定理的內容,并利用給定的圖形進行證明.4、我市《道路交通管理條例》規(guī)定:小汽車在城市街道上的行駛速度不得超過60km/h.如圖,一輛小汽車在一條城市街道上沿直道行駛,某一時刻剛好行駛到車速檢測點A正前方30m的C處,2秒后又行駛到與車速檢測點A相距50m的B處.請問這輛小汽車超速了嗎?若超速,請求出超速了多少?5、如圖,小明家在一條東西走向的公路北側米的點處,小紅家位于小明家北米(米)、東米(米)點處.(1)求小明家離小紅家的距離;(2)現(xiàn)要在公路上的點處建一個快遞驛站,使最小,請確定點的位置,并求的最小值.6、已知,如圖,,C為上一點,與相交于點F,連接.,.(1)求證:;(2)已知,,,求的長度.7、如圖,是一塊草坪,已知AD=12m,CD=9m,∠ADC=90°,AB=39m,BC=36m,求這塊草坪的面積.-參考答案-一、單選題1、C【解析】【分析】把各圖中每一部分的面積和整體的面積分別列式表示,根據每一部分的面積之和等于整體的面積,分別化簡,再根據化簡結果即可解答.【詳解】解:A、∵+c2+ab=(a+b)(a+b),∴整理得:a2+b2=c2,即能證明勾股定理,故本選項不符合題意;B、∵4×+(b﹣a)2=c2,∴整理得:a2+b2=c2,即能證明勾股定理,故本選項不符合題意;C、根據圖形不能證明勾股定理,故本選項符合題意;D、∵4×+c2=(a+b)2,∴整理得:a2+b2=c2,即能證明勾股定理,故本選項不符合題意;故選C.【考點】本題考查勾股定理的證明,解題的關鍵是利用構圖法來證明勾股定理.2、C【解析】【分析】根據勾股定理得到c2=a2+b2,根據正方形的面積公式、長方形的面積公式計算即可.【詳解】設直角三角形的斜邊長為c,較長直角邊為b,較短直角邊為a,由勾股定理得,c2=a2+b2,陰影部分的面積=c2-b2-a(c-b)=a2-ac+ab=a(a+b-c),較小兩個正方形重疊部分的長=a-(c-b),寬=a,則較小兩個正方形重疊部分底面積=a(a+b-c),∴知道圖中陰影部分的面積,則一定能求出較小兩個正方形重疊部分的面積,故選C.【考點】本題考查的是勾股定理,如果直角三角形的兩條直角邊長分別是a,b,斜邊長為c,那么a2+b2=c2.3、B【解析】【分析】先求出兩小邊的平方和,再求出最長邊的平方,最后看看是否相等即可.【詳解】解:A、32+42=52,故是直角三角形,不符合題意;B、42+52≠62,故不是直角三角形,符合題意;C、62+82=102,故是直角三角形,不符合題意;D、92+122=152,故是直角三角形,不符合題意;故選:B.【考點】此題主要考查了勾股定理逆定理,關鍵是掌握如果三角形的三邊長a,b,c滿足a2+b2=c2,那么這個三角形就是直角三角形.4、D【解析】【分析】根據正方形的面積可以得到BC2=8,AC2=17,然后根據勾股定理即可得到AB2,從而可以求得AB的值.【詳解】解:S1=8cm2,S2=17cm2,∴BC2=8,AC2=17,∵∠ACB=90°,∴AB2=BC2+AC2,即AB2=8+17=25,∴AB=5cm,故選:D.【考點】本題考查正方形的面積、勾股定理,解答本題的關鍵是明確正方形的面積是邊長的平方.5、C【解析】【分析】如圖,由題意知,,,,可知三點共線,與重合,在中,由勾股定理得,求的值,設,,在中,由勾股定理得,計算求解即可.【詳解】解:如圖,∵是直角∴由題意知,,∴∴三點共線∴與重合在中,由勾股定理得設,在中,由勾股定理得即解得∴的長為故選C.【考點】本題考查了折疊的性質,勾股定理等知識.解題的關鍵在于明確三點共線,與重合.6、B【解析】【詳解】要求所用細線的最短距離,需將長方體的側面展開,進而根據“兩點之間線段最短”得出結果.解:將長方體展開,連接AB′,則AB′最短.∵AA′=3+2+3+2=10cm,A′B′=6cm,∴AB′=cm.故選B..7、D【解析】【分析】根據題意可得每“生長”一次,面積和增加1,據此即可求得“生長”了2021次后形成的圖形中所有的正方形的面積和.【詳解】解:如圖,由題意得:SA=1,由勾股定理得:SB+SC=1,則“生長”了1次后形成的圖形中所有的正方形的面積和為2,同理可得:“生長”了2次后形成的圖形中所有的正方形面積和為3,“生長”了3次后形成的圖形中所有正方形的面積和為4,……“生長”了2021次后形成的圖形中所有的正方形的面積和是2022,故選:D【考點】本題考查了勾股數規(guī)律問題,找到規(guī)律是解題的關鍵.二、填空題1、15【解析】【分析】根據勾股定理有S正方形1+S正方形2=S大正方形=49,S正方形C+S正方形D=S正方形2,S正方形A+S正方形B=S正方形1,等量代換即可求正方形D的面積.【詳解】解:如圖,根據勾股定理可知,∵S正方形1+S正方形2=S大正方形=49,S正方形C+S正方形D=S正方形2,S正方形A+S正方形B=S正方形1,∴S大正方形=S正方形C+S正方形D+S正方形A+S正方形B=49.∴正方形D的面積=49-8-12-14=15(cm2);故答案為:15.【考點】此題主要考查了勾股定理,注意根據正方形的面積公式以及勾股定理得到圖中正方形的面積之間的關系:以直角三角形的兩條直角邊為邊長的兩個正方形的面積和等于以斜邊為邊長的面積.2、【解析】【分析】根據折疊的性質和勾股定理即可求得.【詳解】解:∵長方形紙片,∴,,根據折疊的性質可得,,,設,,根據勾股定理,即,解得,故答案為:.【考點】本題考查折疊與勾股定理.能正確表示直角三角形的三邊是解題關鍵.3、.【解析】【分析】如圖,先利用等腰直角三角形的性質求出,,再利用勾股定理求出DF,即可得出結論.【詳解】如圖,過點作于,在中,,,,兩個同樣大小的含角的三角尺,,在中,根據勾股定理得,,,故答案為.【考點】此題主要考查了勾股定理,等腰直角三角形的性質,正確作出輔助線是解本題的關鍵.4、

24

0【解析】【分析】先證明從而可得再利用圖形的面積關系可得:兩式相減可得:而證明從而可得第二空的答案.【詳解】解:如圖,以Rt△ABC的三邊為邊作三個正方形,兩式相減可得:而故答案為:24,0【考點】本題考查的是正方形的性質,全等三角形的判定與性質,圖形面積之間的關系,證明是解本題的關鍵.5、【解析】【分析】根據勾股定理即可得出結論.【詳解】解:設未折斷的竹干長為尺,根據題意可列方程為:.故答案為:.【考點】本題考查的是勾股定理的應用,在應用勾股定理解決實際問題時勾股定理與方程的結合是解決實際問題常用的方法,關鍵是從題中抽象出勾股定理這一數學模型,畫出準確的示意圖.領會數形結合的思想的應用.6、7.5;【解析】【分析】旗桿、拉直的繩子與地面構成直角三角形,根據題中數據,用勾股定理即可解答.【詳解】解:如圖,設旗桿的長度為xm,則繩子的長度為:(x+1)m,在Rt△ABC中,由勾股定理得:x2+42=(x+1)2,解得:x=7.5,∴旗桿的高度為7.5m,故答案為7.5.【考點】本題考查的是勾股定理的應用,根據題意得出直角三角形是解答此題的關鍵.7、13【解析】【分析】先根據△BCE等腰直角三角形得出BC的長,進而可得出BD的長,根據△ABD是等腰直角三角形可知AB=BD.在Rt△ABC中利用勾股定理即可求出AC的長.【詳解】∵△BCE等腰直角三角形,BE=5,∴BC=5.∵CD=17,∴DB=CD﹣BE=17﹣5=12.∵△ABD是等腰直角三角形,∴AB=BD=12.在Rt△ABC中,∵AB=12,BC=5,∴AC13.故答案為13.【考點】本題考查了等腰直角三角形的性質及勾股定理,熟知等腰三角形兩腰相等的性質是解答此題的關鍵.8、2.7【解析】【分析】先根據勾股定理求出AD的長,同理可得出AB的長,進而可得出結論.【詳解】在Rt△ACB中,∵∠ACB=90°,AE=0.7米,DE=2.4米,∴AD2=0.72+2.42=6.25.在Rt△A′BD中,∵∠ABC=90°,BC=1.5米,AB2+BC2=AC2,∴AB2+1.52=6.25,∴AB2=4.∵AB>0,∴AB=2米.∴BE=AE+AB=0.7+2=2.7米.故答案為2.7.【考點】本題考查的是勾股定理的應用,在應用勾股定理解決實際問題時,勾股定理與方程的結合是解決實際問題常用的方法,關鍵是從題中抽象出勾股定理這一數學模型,畫出準確的示意圖.領會數形結合的思想的應用.三、解答題1、(1)是,理由見解析;(2)2.5米.【解析】【分析】(1)先根據勾股定理逆定理證得Rt△CHB是直角三角形,然后根據點到直線的距離中,垂線段最短即可解答;(2)設AC=AB=x,則AH=x-1.8,在Rt△ACH中,根據勾股定理列方程求得x即可.【詳解】(1)∵,即,∴Rt△CHB是直角三角形,即CH⊥BH,∴CH是從村莊C到河邊的最近路(點到直線的距離中,垂線段最短);(2)設AC=AB=x,則AH=x-1.8,∵在Rt△ACH,∴,即,解得x=2.5,∴原來的路線AC的長為2.5米.【考點】本題主要考查了勾股定理的應用,靈活應用勾股定理的逆定理和定理是解答本題的關鍵.2、【解析】【分析】過點C作CD⊥AM垂足為D,設CD=x,根據直角三角形的性質求可得AC=2x、BD=BC=x,再利用勾股定理可求得x,進而求得AC的長.【詳解】解:過點C作CD⊥AM垂足為D,∴∠CAD=75°-45°=30°,∠CBD=75°-30°=30°,設CD=x∵在Rt△ACD中,∠CAD=75°-45°=30°∴AC=2x∵在Rt△BCD中,∠CBD=45°,BC=30∴BD=BC=x∴,解得x=∴AC=2x=.答:港口A到海島C的距離是海里.【考點】本題主要考查了直角三角形的性質、勾股定理等知識點,掌握直角三角形的邊角關系是正確解答的前提,作垂線構造直角三角形是解決問題的關鍵.3、見解析【解析】【分析】多邊形的面積可以等于邊長為c的正方形面積加上兩個直角三角形的面積,也可以等于兩個直角梯形的面積和,由此得證.【詳解】解:若直角三角形的兩條直角邊分別為a、b,斜邊為c,則,如圖,這個多邊形的面積為整理得ab+c2=,故.【考點】此題考查了勾股定理的證明,正確掌握多邊形的面積的計算方法及勾股定理的內容是解題的關鍵.4、超速了,超速了12km/h【解析】【分析】由勾股定理可求得小汽車行駛的距離,再除以小汽車行駛的時間即為小汽車行駛的車速,再與限速比較即可.【詳解】.解:由已知得∴在直角三角形ABC中AB2=AC2+BC2∴BC2=AB2-AC2=,又

∵72-60=12km/h∴這輛小汽車超速了,超速了12km/h.【考點】本題考查了勾股定理,其中1米/秒=3.6千米/時的速度換算是易錯點.5、(1)米;(2)見解析,米【解析】【分析】(1)如圖,連接AB,根據勾股定理即可得到結論;(2)如圖,作點A關于直線MN的對稱點A',連接A'B交MN于

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論