版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
人教版8年級數(shù)學(xué)下冊《平行四邊形》章節(jié)測試考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計20分)1、如圖,已知平行四邊形ABCD的面積為8,E、F分別是BC、CD的中點,則△AEF的面積為()A.2 B.3 C.4 D.52、如圖,在矩形ABCD中,點E是BC的中點,連接AE,點F是AE的中點,連接DF,若AB=9,AD,則四邊形CDFE的面積是()A. B. C. D.543、如圖,把一張長方形紙片ABCD沿AF折疊,使B點落在處,若,要使,則的度數(shù)應(yīng)為()A.20° B.55° C.45° D.60°4、在△ABC中,AD是角平分線,點E、F分別是線段AC、CD的中點,若△ABD、△EFC的面積分別為21、7,則的值為()A. B. C. D.5、下列∠A:∠B:∠C:∠D的值中,能判定四邊形ABCD是平行四邊形的是()A.1:2:3:4 B.1:4:2:3C.1:2:2:1 D.3:2:3:2第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計30分)1、如圖,矩形ABCD中,AC、BD相交于點O且AC=12,如果∠AOD=60°,則DC=__.2、在五邊形紙片ABCDE中,AB=2,∠A=120°,將五邊形紙片ABCDE沿BD折疊,點C落在點P處;在AE上取一點Q,將ABQ,EDQ分別沿BQ,DQ折疊,點A,E恰好落在點P處,如圖1.(1)∠BPQ=______°;(2)∠BCD+∠QED=_______°;(3)如圖2,當(dāng)四邊形BCDP是菱形,且Q,P,C三點共線時,BQ=_______.3、正方形的一條對角線長為4,則這個正方形面積是_________.4、如圖,將n個邊長都為1的正方形按如圖所示擺放,點A1,A2,…,An分別是正方形的中心,則n個正方形重疊形成的重疊部分的面積和為_____.5、如圖,直線l經(jīng)過正方形ABCD的頂點B,點A,C到直線l的距離分別是1,3,則正方形ABCD的面積是_____.三、解答題(5小題,每小題10分,共計50分)1、如圖,△ABC為等邊三角形,點D為線段BC上一點,將線段AD以點A為旋轉(zhuǎn)中心順時針旋轉(zhuǎn)60°得到線段AE,連接BE,點D關(guān)于直線BE的對稱點為F,BE與DF交于點G,連接DE,EF.(1)求證:∠BDF=30°(2)若∠EFD=45°,AC=+1,求BD的長;(3)如圖2,在(2)條件下,以點D為頂點作等腰直角△DMN,其中DN=MN=,連接FM,點O為FM的中點,當(dāng)△DMN繞點D旋轉(zhuǎn)時,求證:EO的最大值等于BC.2、已知:?ABCD的對角線AC,BD相交于O,M是AO的中點,N是CO的中點,求證:BM∥DN,BM=DN.
3、D、分別是不等邊三角形即的邊、的中點.是平面上的一動點,連接、,、分別是、的中點,順次連接點、、、.(1)如圖,當(dāng)點在內(nèi)時,求證:四邊形是平行四邊形;(2)若四邊形是菱形,點所在位置應(yīng)滿足什么條件?(直接寫出答案,不需說明理由.)4、已知如圖,在中,點是邊上一點,連接,點是上一動點,連接.(1)如圖1,當(dāng)時,連接,延長交于點,求證:;(2)如圖2,以為直角邊作等腰,連接,若,當(dāng)點在運動過程中,求周長的最小值.
5、在菱形ABCD中,∠ABC=60°,P是直線BD上一動點,以AP為邊向右側(cè)作等邊APE(A,P,E按逆時針排列),點E的位置隨點P的位置變化而變化.(1)如圖1,當(dāng)點P在線段BD上,且點E在菱形ABCD內(nèi)部或邊上時,連接CE,則BP與CE的數(shù)量關(guān)系是,BC與CE的位置關(guān)系是;(2)如圖2,當(dāng)點P在線段BD上,且點E在菱形ABCD外部時,(1)中的結(jié)論是否還成立?若成立,請予以證明;若不成立,請說明理由;(3)當(dāng)點P在直線BD上時,其他條件不變,連接BE.若AB=2,BE=2,請直接寫出APE的面積.-參考答案-一、單選題1、B【解析】【分析】連接AC,由平行四邊形的性質(zhì)可得,再由E、F分別是BC,CD的中點,即可得到,,,由此求解即可.【詳解】解:如圖所示,連接AC,∵四邊形ABCD是平行四邊形,∴AD∥BC,AD=BC,AB=CD,AB∥CD,∴∵E、F分別是BC,CD的中點,∴,,,∴,故選B.【點睛】本題主要考查了平行四邊形的性質(zhì),與三角形中線有關(guān)的面積問題,解題的關(guān)鍵在于能夠熟練掌握平行四邊形的性質(zhì).2、C【解析】【分析】過點F作,分別交于M、N,由F是AE中點得,根據(jù),計算即可得出答案.【詳解】如圖,過點F作,分別交于M、N,∵四邊形ABCD是矩形,∴,,∵點E是BC的中點,∴,∵F是AE中點,∴,∴.故選:C.【點睛】本題考查矩形的性質(zhì)與三角形的面積公式,掌握是解題的關(guān)鍵.3、B【解析】【分析】設(shè)直線AF與BD的交點為G,由題意易得,則有,由折疊的性質(zhì)可知,由平行線的性質(zhì)可得,然后可得,進而問題可求解.【詳解】解:設(shè)直線AF與BD的交點為G,如圖所示:∵四邊形ABCD是矩形,∴,∵,∴,由折疊的性質(zhì)可知,∵,∴,∴,∴;故選B.【點睛】本題主要考查折疊的性質(zhì)及矩形的性質(zhì),熟練掌握折疊的性質(zhì)及矩形的性質(zhì)是解題的關(guān)鍵.4、B【解析】【分析】過點A作△ABC的高,設(shè)為x,過點E作△EFC的高為,可求出,,再由點E、F分別是線段AC、CD的中點,可得出,進而求出,再利用角平分線的性質(zhì)可得出的值為即可求解.【詳解】解:過點A作△ABC的高,設(shè)為x,過點E作△EFC的高為,∴,∴,,∵點E、F分別是線段AC、CD的中點,∴,∴,∵,∴,∴,過點D作DM⊥AB,DN⊥AC,∵AD為平分線,∴DM=DN,∵,∴,即:∴,故選:B.【點睛】本題考查角平分線性質(zhì)定理及三角形中位線的性質(zhì),解題關(guān)鍵是求出.5、D【解析】【分析】兩組對角分別相等的四邊形是平行四邊形,所以∠A和∠C是對角,∠B和∠D是對角,對角的份數(shù)應(yīng)相等.【詳解】解:根據(jù)平行四邊形的判定:兩組對角分別相等的四邊形是平行四邊形,所以只有D符合條件.故選:D.【點睛】本題考查了平行四邊形的判定,在應(yīng)用判定定理判定平行四邊形時,應(yīng)仔細觀察題目所給的條件,仔細選擇適合于題目的判定方法進行解答,避免混用判定方法.二、填空題1、【解析】【分析】根據(jù)矩形的對角線互相平分且相等可得OA=OD,然后判斷出△AOD是等邊三角形,再根據(jù)勾股定理解答即可.【詳解】解:∵四邊形ABCD是矩形,∴OA=OD=AC=×12=6,∠ADC=90°,∵∠AOD=60°,∴△AOD是等邊三角形,∴AD=OA=6,∴.故答案為:.【點睛】本題考查了矩形的性質(zhì)和勾股定理以及等邊三角形的判定,解題關(guān)鍵是根據(jù)矩形的性質(zhì)得出△AOD是等邊三角形.2、120240【解析】【分析】(1)由折疊的性質(zhì)可得∠A=∠BPQ=120°;(2)由周角的性質(zhì)可得∠BPD+∠QPD+∠BPQ=360°,即可求解;(3)由菱形的性質(zhì)可得BQ=QD,QH⊥BD,BH=DH,由“SSS”可證△ABQ≌△EDQ,可得∠AQB=∠BQP=∠EQD=∠PQD=45°,由直角三角形的性質(zhì)可求解.【詳解】解:(1)∵將五邊形紙片ABCDE沿BD折疊,∴∠A=∠BPQ=120°,∠QED=∠QPD,∠BCD=∠BPD,故答案為:120;(2)∵∠BPD+∠QPD+∠BPQ=360°,∴∠BPD+∠QPD=240°,∴∠BCD+∠QED=240°,故答案為:240;(3)如圖,連接PC,交BD于H,∵四邊形BPDC是菱形,∴PC是BD的垂直平分線,BP=PD=BC=CD,∵Q,P,C三點共線,∴QC是BD的垂直平分線,∴BQ=QD,QH⊥BD,BH=DH,由折疊可知:∠A=∠BPQ=120°,AB=BP=2=DE=DP,∠AQB=∠BQP,∠EQD=∠PQD,AQ=QP=QE,∴∠BPH=60°,∴∠PBH=30°,∴PHBP=1,BHPH,在△ABQ和△EDQ中,,∴△ABQ≌△EDQ(SSS),∴∠AQB=∠EQD,∴∠AQB=∠BQP=∠EQD=∠PQD,∵∠AQE=180°,∴∠AQB=∠BQP=∠EQD=∠PQD=45°,∴∠QBH=∠BQP=45°,∴BH=QH,∴BQBH,故答案為:.【點睛】本題考查了翻折變換,菱形的性質(zhì),全等三角形的判定和性質(zhì),直角三角形的性質(zhì)等知識,掌握折疊的性質(zhì)是解題的關(guān)鍵.3、8【解析】【分析】正方形邊長相等設(shè)為,對角線長已知,利用勾股定理求解邊長的平方,即為正方形的面積.【詳解】解:設(shè)邊長為,對角線為故答案為:.【點睛】本題考察了正方形的性質(zhì)以及勾股定理.解題的關(guān)鍵在于求解正方形的邊長.4、【解析】【分析】根據(jù)題意可得,陰影部分的面積是正方形的面積的,已知兩個正方形可得到一個陰影部分,則n個這樣的正方形重疊部分即為(n-1)個陰影部分的和.【詳解】解:由題意可得一個陰影部分面積等于正方形面積的,即是,n個這樣的正方形重疊部分(陰影部分)的面積和為:.故答案為:.【點睛】本題考查了正方形的性質(zhì),解題的關(guān)鍵是得到n個這樣的正方形重疊部分(陰影部分)的面積和的計算方法,難點是求得一個陰影部分的面積.5、10【解析】【分析】根據(jù)正方形的性質(zhì),結(jié)合題意易求證,,,即可利用“ASA”證明,得出.最后根據(jù)勾股定理可求出,即正方形的面積為10.【詳解】∵四邊形ABCD是正方形,∴,,∴.根據(jù)題意可知:,,∴,,∴在和中,,∴,∴.∵在中,,∴正方形ABCD的面積是10.故答案為:10.【點睛】本題考查正方形的性質(zhì),全等三角形的判定和性質(zhì)以及勾股定理.利用數(shù)形結(jié)合的思想是解答本題的關(guān)鍵.三、解答題1、(1)見解析;(2)2;(3)見解析【分析】(1)由△ABC是等邊三角形,可得∠ABC=60°,由D、F關(guān)于直線BE對稱,得到BF=BD,則∠BFD=∠BDF,由三角形外角的性質(zhì)得到∠BFD+∠BDF=∠ABD,則∠BDF=∠BFD=30°;(2)設(shè),由D、F關(guān)于直線BE對稱,得到∠BGD=∠BGF=90°,EF=ED,EG=DG,由含30度角的直角三角形的性質(zhì)和勾股定理得,,證明△EAB≌△DAC得到,再由,得到,由此求解即可;(3)連接OG,先求出,證明OG是三角形DMF的中位線,得到,再根據(jù)兩點之間線段最短可知,則OE的最大值等于BC.【詳解】解:(1)∵△ABC是等邊三角形,∴∠ABC=60°,∵D、F關(guān)于直線BE對稱,∴BF=BD,∴∠BFD=∠BDF,∵∠BFD+∠BDF=∠ABD,∴∠BDF=∠BFD=30°;(2)設(shè),∵D、F關(guān)于直線BE對稱,∴∠BGD=∠BGF=90°,EF=ED,∴∠EDG=EFG=45°,∴EG=DG,∵∠BDG=30°,∴,∴,由旋轉(zhuǎn)的性質(zhì)可得AE=AD,∠EAD=∠BAC=60°,∴∠EAB+∠BAD=∠CAD+∠BAD,即∠EAB=∠DAC,又∵AB=AC,∴△EAB≌△DAC(SAS),∴,∵,∴,∴,∴;(3)如圖所示,連接OG,∵在等腰直角三角形DMN中,,∴,∵D、F關(guān)于直線BE對稱,∴G為DF的中點,又∵O為FM的中點,∴OG是三角形DMF的中位線,∴,由(2)可得,根據(jù)兩點之間線段最短可知,∴OE的最大值等于BC.【點睛】本題主要考查了等邊三角形的性質(zhì),軸對稱的性質(zhì),全等三角形的性質(zhì)與判定,勾股定理,含30度角的直角三角形性質(zhì),三角形中位線定理,兩點之間線段最短等等,解題的關(guān)鍵在于能夠熟練掌握軸對稱的性質(zhì)和等邊三角形的性質(zhì).2、見解析【分析】連接,根據(jù)平行四邊形的性質(zhì)可得AO=OC,DO=OB,由M是AO的中點,N是CO的中點,進而可得MO=ON,進而即可證明四邊形是平行四邊形,即可得證.【詳解】如圖,連接,
∵四邊形ABCD為平行四邊形,∴AO=OC,DO=OB.∵M為AO的中點,N為CO的中點,即∴MO=ON.四邊形是平行四邊形,∴BM∥DN,BM=DN.【點睛】本題考查了平行四邊形的性質(zhì)與判定,掌握平行四邊形的性質(zhì)與判定是解題的關(guān)鍵.3、(1)見解析;(2),且點不在射線、射線上【分析】(1)根據(jù)三角形的中位線定理可證得,DE=GF,即可證得結(jié)論;(2)根據(jù)三角形的中位線定理結(jié)合菱形的判定方法分析即可.【詳解】(1)∵D、E分別是邊AB、AC的中點,∴,DE=BC,同理,,GF=BC,∴,DE=GF,∴四邊形DEFG是平行四邊形;(2)點O的位置滿足兩個要求:AO=BC,且點O不在射線CD、射線BE上.理由如下:連接AO,由(1)得四邊形DEFG是平行四邊形,∵點D、G、F分別是AB、OB、OC的中點,∴,,當(dāng)AO=BC時,GF=DF,∴四邊形DGFE是菱形.【點睛】本題主要考查三角形的中位線定理,平行四邊形、菱形的判定,解題的關(guān)鍵是熟練掌握以上知識點.4、(1)證明見解析;(2)【分析】(1)通過證明△CEK≌△BEF及△KED≌△FED即可證明;(2)延長CE到點P,使EP=CE,先證明點G在過點P且與CE垂直的直線PN上運動,再作點E關(guān)于點P的對稱點Q,連接BQ交PN于點G,此時△BEG的周長最小,求出此時GE+GB+BE的值即可.【詳解】證明:(1)∵四邊形ABCD是平行四邊形,∴,∴∠K=∠ABE,∵BF⊥AB,∴∠ABF=90°,∴∠ABE=90°﹣∠EBF=∠BFE,∴∠K=∠BFE,∵BE=CE,∴△CEK≌△BEF(AAS),∴CK=BF,EK=EF,∵,∴∠KED=∠EBC,∠FED=∠ECB,∵BE=CE,∠EBC=∠ECB,∴∠KED=∠FED,∴ED=ED,∴△KED≌△FED(SAS),∴DK=DF,(2)如圖,作BN⊥BE,GN⊥BN于點N,延長NG交射線CE于點P,
則∠EBN=∠FBG=90°,∴∠NBG=∠EBF=90°﹣∠GBE,∵∠N=∠BEF=90°,BG=BF,∴△BNG≌△BEF(AAS),∴BN=BE;∵∠EBN=∠N=∠BEP=90°,∴四邊形BEPN是正方形,∴PE=BE=CE,∴當(dāng)點F在CE上運動時,點G在PN上運動;延長EP到點Q,使PQ=PE,連接BQ交PN于點G,∵PN垂直平分EQ,∴點Q與點E關(guān)于直線PN對稱,∵兩點之間,線段最短,∴此時GE+GB=GQ+GB=BQ最小,∵BE為定值,∴此時GE+GB+BE最小,即△BEG的周長最??;作DH⊥CE于點H,則∠DHE=∠DHC=90°,∵∠ECB=∠EBC=45°,∴∠HED=∠ECB=45°,∴∠HDE=45°=∠HED,∴DH=EH,∴DH2+EH2=2DH2=DE2=,∴DH=EH=1;∴CH=,∴BE=CE=EH+CH=1+2=3,∴EQ=2PE=2BE=6,∵∠BEQ=90°,∴BQ=,∴GE+GB+BE=,∴△BEG周長的最小值為.【點睛】本題重點考查平行四邊形的性質(zhì)、正方形的判定與性質(zhì)、等腰直角三角形的性質(zhì)、全等三角形的判定與性質(zhì)、勾股定理、以及運用軸對稱的性質(zhì)求線段和的最小值問題的求解等知識與方法,深入探究與挖掘題中的隱含條件并且正確地作出輔助線是解題的關(guān)鍵,此題綜合性強,難度大,屬于考試壓軸題.5、(1)BP=CE,CE⊥BC;(2)仍然成立,見解析;(3)31【分析】(1)連接AC,根據(jù)菱形的性質(zhì)和等邊三角形的性質(zhì)證明△BAP≌△CAE即可證得結(jié)論;(2)(1)中的結(jié)論成立,用(1)中的方法證明△BAP≌△CAE即可;(3)分兩種情形:當(dāng)點P在BD的延長線上時或點P在線段DB的延長線上時,連接AC交BD于點O,由∠BCE=90°,根據(jù)勾股定理求出CE的長即得到BP的長,再求AO、PO、PD的長及等邊三角形APE的邊長可得結(jié)論.【詳解】解:(1)如圖1,連接AC,延長CE交AD于點H,∵四邊形ABCD是菱形,∴AB=BC,∵∠ABC=60°,∴△ABC是等邊三角形,∴AB=AC,∠BAC=60°;∵△APE是等邊三角形,∴AP=AE,∠PAE=60°,∴∠BAP=∠CAE=60°﹣∠PAC,∴△BAP≌△CAE(SAS),∴BP=CE;∵四邊形ABCD是菱形,∴∠ABP=∠ABC=30°,∴
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 高層寫字樓消防安全方案
- 煤礦有限空間作業(yè)安全操作流程
- 2024中考數(shù)學(xué)真題匯編
- 胃潰瘍營養(yǎng)治療大綱
- 高??蒲许椖可陥罅鞒碳安牧锨鍐?/a>
- 中國古典舞腰部訓(xùn)練教程
- 小學(xué)語文課文教學(xué)分析報告
- 二年級語文同步閱讀訓(xùn)練題
- 配送車輛調(diào)度獎勵協(xié)議
- 2025版骨質(zhì)疏松常見癥狀及護理技術(shù)指導(dǎo)
- 極簡化改造實施規(guī)范
- 達托霉素完整版本
- DBJ51-T 139-2020 四川省玻璃幕墻工程技術(shù)標準
- 一帶一路教學(xué)課件教學(xué)講義
- 中醫(yī)熱敏灸療法課件
- 工廠蟲害控制分析總結(jié)報告
- 回顧性中醫(yī)醫(yī)術(shù)實踐資料(醫(yī)案)表
- 延期交房起訴狀
- 廣東省消防安全重點單位消防檔案
- 高考日語形式名詞わけ、べき、はず辨析課件
- 2023學(xué)年完整公開課版節(jié)氣門
評論
0/150
提交評論