難點解析-京改版數(shù)學(xué)9年級上冊期末測試卷【B卷】附答案詳解_第1頁
難點解析-京改版數(shù)學(xué)9年級上冊期末測試卷【B卷】附答案詳解_第2頁
難點解析-京改版數(shù)學(xué)9年級上冊期末測試卷【B卷】附答案詳解_第3頁
難點解析-京改版數(shù)學(xué)9年級上冊期末測試卷【B卷】附答案詳解_第4頁
難點解析-京改版數(shù)學(xué)9年級上冊期末測試卷【B卷】附答案詳解_第5頁
已閱讀5頁,還剩33頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

京改版數(shù)學(xué)9年級上冊期末測試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題26分)一、單選題(6小題,每小題2分,共計12分)1、如圖,在中,,,,以點為圓心,為半徑的圓與所在直線的位置關(guān)系是(

)A.相交 B.相離 C.相切 D.無法判斷2、二次函數(shù)的圖象如圖所示,對稱軸是直線.下列結(jié)論:①;②;③;④(為實數(shù)).其中結(jié)論正確的個數(shù)為(

)A.1個 B.2個 C.3個 D.4個3、一個等腰直角三角形的內(nèi)切圓與外接圓的半徑之比為(

)A. B. C. D.4、已知函數(shù)是反比例函數(shù),圖象在第一、三象限內(nèi),則的值是()A.3 B.-3 C. D.5、如圖所示,某校數(shù)學(xué)興趣小組利用標桿測量建筑物的高度,已知標桿高,測得,,則建筑物的高是()A. B. C. D.6、古希臘數(shù)學(xué)家歐多克索斯在深入研究比例理論時,提出了分線段的“中末比”問題:點G將一線段分為兩線段,,使得其中較長的一段是全長與較短的段的比例中項,即滿足,后人把這個數(shù)稱為“黃金分割”數(shù),把點G稱為線段的“黃金分割”點.如圖,在中,已知,,若D,E是邊的兩個“黃金分割”點,則的面積為(

)A. B. C. D.二、多選題(7小題,每小題2分,共計14分)1、如圖,在中,,于點D,下列結(jié)論正確的是(

)A. B. C. D.2、二次函數(shù)(a,b,c是常數(shù),)的自變量x與函數(shù)值y的部分對應(yīng)值如下表:x…-2-1012……tm22n…已知.則下列結(jié)論中,正確的是(

)A. B.和是方程的兩個根C. D.(s取任意實數(shù))3、如圖所示,二次函數(shù)的圖象的一部分,圖像與x軸交于點.下列結(jié)論中正確的是(

)A.拋物線與x軸的另一個交點坐標是B.C.若拋物線經(jīng)過點,則關(guān)于x的一元二次方程的兩根分別為,5D.將拋物線向左平移3個單位,則新拋物線的表達式為4、已知:如圖,△ABC中,∠A=60°,BC為定長,以BC為直徑的⊙O分別交AB、AC于點D、E.連接DE、OE.下列結(jié)論中正確的結(jié)論是()A.BC=2DE B.D點到OE的距離不變 C.BD+CE=2DE D.AE為外接圓的切線5、已知拋物線(,,是常數(shù),)經(jīng)過點,,當時,與其對應(yīng)的函數(shù)值.下列結(jié)論正確的是(

)A. B.C. D.關(guān)于的方程有兩個不等的實數(shù)根6、如圖,在△ABC中,D,E分別是邊AB,AC上的點,DE∥BC,AD:DB=2:1,下列結(jié)論中正確的是()A. B.C. D.AD?AB=AE?AC7、在Rt△ABC中,∠C=90°,下列式子一定成立的是(

)A.sinA=sinB B.cosA=sinB C.sinA=cosB D.∠A+∠B=90°第Ⅱ卷(非選擇題74分)三、填空題(7小題,每小題2分,共計14分)1、如果二次函數(shù)的圖像在它的對稱軸右側(cè)部分是上升的,那么的取值范圍是__________.2、定義:由a,b構(gòu)造的二次函數(shù)叫做一次函數(shù)y=ax+b的“滋生函數(shù)”,一次函數(shù)y=ax+b叫做二次函數(shù)的“本源函數(shù)”(a,b為常數(shù),且).若一次函數(shù)y=ax+b的“滋生函數(shù)”是,那么二次函數(shù)的“本源函數(shù)”是______.3、舉出一個生活中應(yīng)用反比例函數(shù)的例子:______.4、將二次函數(shù)化成一般形式,其中二次項系數(shù)為________,一次項系數(shù)為________,常數(shù)項為________.5、若,則________.6、在平面直角坐標系中,二次函數(shù)過點(4,3),若當0≤x≤a時,y有最大值7,最小值3,則a的取值范圍是_____.7、已知=,則=________.四、解答題(6小題,每小題10分,共計60分)1、某公司電商平臺,在2021年五一長假期間,舉行了商品打折促銷活動,經(jīng)市場調(diào)查發(fā)現(xiàn),某種商品的周銷售量y(件)是關(guān)于售價x(元/件)的一次函數(shù),下表僅列出了該商品的售價x,周銷售量y,周銷售利潤W(元)的三組對應(yīng)值數(shù)據(jù).x407090y1809030W360045002100(1)求y關(guān)于x的函數(shù)解析式(不要求寫出自變量的取值范圍);(2)若該商品進價a(元/件),售價x為多少時,周銷售利潤W最大?并求出此時的最大利潤;(3)因疫情期間,該商品進價提高了m(元/件)(),公司為回饋消費者,規(guī)定該商品售價x不得超過55(元/件),且該商品在今后的銷售中,周銷售量與售價仍滿足(1)中的函數(shù)關(guān)系,若周銷售最大利潤是4050元,求m的值.2、某校舉行田徑運動會,學(xué)校準備了某種氣球,這些氣球內(nèi)充滿了一定質(zhì)量的氣體,當溫度不變時,氣球內(nèi)氣體的氣壓是氣體體積的反比例函數(shù),其圖象如圖所示.(1)求這一函數(shù)的解析式.(2)當氣體的體積為時,氣壓是多少?(3)當氣球內(nèi)的氣壓大于時,氣球會將爆炸,為了安全起見,氣體的體積應(yīng)不小于多少?3、如圖,拋物線與軸交于兩點,與軸交于點,且,.(1)求拋物線的表達式;(2)點是拋物線上一點.①在拋物線的對稱軸上,求作一點,使得的周長最小,并寫出點的坐標;②連接并延長,過拋物線上一點(點不與點重合)作軸,垂足為,與射線交于點,是否存在這樣的點,使得,若存在,求出點的坐標;若不存在,請說明理由.4、如圖,小明家窗外有一堵圍墻AB,由于圍墻的遮擋,清晨太陽光恰好從窗戶的最高點C射進房間的地板F處,中午太陽光恰好能從窗戶的最低點D射進房間的地板E處,小明測得窗子距地面的高度OD=1m,窗高CD=1.5m,并測得OE=1m,OF=5m,求圍墻AB的高度.5、如圖,在Rt△ABC中,∠C=90°,BD平分∠ABC,點O在AB上,以點O為圓心,OB為半徑的圓經(jīng)過點D,交BC于點E(1)求證:AC是⊙O的切線;(2)若OB=2,CD=,求圖中陰影部分的面積(結(jié)果保留).6、已知:如圖,二次函數(shù)y=ax2+bx+的圖象經(jīng)過點A(2,6)和B(4,4),直線l經(jīng)過點B并與x軸垂直,垂足為Q.(1)求二次函數(shù)的表達式;(2)如圖1,作AK⊥x軸,垂足為K,連接AO,點R是直線1上的點,如果△AOK與以O(shè),Q,R為頂點的三角形相似,請直接寫出點R的縱坐標;(3)如圖2,正方形CDEF的頂點C是第二象限拋物線上的點,點D,E在直線1上,以CF為底向右做等腰△CFM,直線l與CM,F(xiàn)M的交點分別是G,H,并且CG=GM,F(xiàn)H=HM,連接CE,與FM的交點為N,且點N的縱坐標是﹣1.求:①tan∠DCG的值;②點C的坐標.-參考答案-一、單選題1、A【解析】【分析】過點C作CD⊥AB于點D,由題意易得AB=5,然后可得,進而根據(jù)直線與圓的位置關(guān)系可求解.【詳解】解:過點C作CD⊥AB于點D,如圖所示:∵,,,∴,根據(jù)等積法可得,∴,∵以點為圓心,為半徑的圓,∴該圓的半徑為,∵,∴圓與AB所在的直線的位置關(guān)系為相交,故選A.【考點】本題主要考查直線與圓的位置關(guān)系,熟練掌握直線與圓的位置關(guān)系是解題的關(guān)鍵.2、C【解析】【分析】①由拋物線開口方向得到,對稱軸在軸右側(cè),得到與異號,又拋物線與軸正半軸相交,得到,可得出,選項①錯誤;②把代入中得,所以②正確;③由時對應(yīng)的函數(shù)值,可得出,得到,由,,,得到,選項③正確;④由對稱軸為直線,即時,有最小值,可得結(jié)論,即可得到④正確.【詳解】解:①∵拋物線開口向上,∴,∵拋物線的對稱軸在軸右側(cè),∴,∵拋物線與軸交于負半軸,∴,∴,①錯誤;②當時,,∴,∵,∴,把代入中得,所以②正確;③當時,,∴,∴,∵,,,∴,即,所以③正確;④∵拋物線的對稱軸為直線,∴時,函數(shù)的最小值為,∴,即,所以④正確.故選C.【考點】本題考查了二次函數(shù)圖象與系數(shù)的關(guān)系:二次項系數(shù)決定拋物線的開口方向和大小.當時,拋物線向上開口;當時,拋物線向下開口;一次項系數(shù)和二次項系數(shù)共同決定對稱軸的位置:當與同號時,對稱軸在軸左;當與異號時,對稱軸在軸右.常數(shù)項決定拋物線與軸交點:拋物線與軸交于.拋物線與軸交點個數(shù)由判別式確定:時,拋物線與軸有2個交點;時,拋物線與軸有1個交點;時,拋物線與軸沒有交點.3、D【解析】【分析】設(shè)等腰直角三角形的直角邊是1,則其斜邊是.根據(jù)直角三角形的內(nèi)切圓半徑是兩條直角邊的和與斜邊的差的一半,得其內(nèi)切圓半徑是;其外接圓半徑是斜邊的一半,得其外接圓半徑是.所以它們的比為=.【詳解】解:設(shè)等腰直角三角形的直角邊是1,則其斜邊是;∵內(nèi)切圓半徑是,外接圓半徑是,∴所以它們的比為=.故選:D.【考點】本題考查三角形的內(nèi)切圓與外接圓的知識,解題的關(guān)鍵是熟記直角三角形外接圓的半徑和內(nèi)切圓的半徑公式:直角三角形的內(nèi)切圓半徑等于兩條直角邊的和與斜邊的差的一半;直角三角形外接圓的半徑是斜邊的一半.4、A【解析】【分析】根據(jù)反比例函數(shù)的定義建立關(guān)于m的一元二次方程,再根據(jù)反比例函數(shù)的性質(zhì)解答.【詳解】∵函數(shù)是反比例函數(shù),∴m2-10=-1,解得,m2=9,∴m=±3,當m=3時,m-2>0,圖象位于一、三象限;當m=-3時,m-2<0,圖象位于二、四象限;故選A.【考點】本題考查了反比例函數(shù)的定義和性質(zhì),對于反比例函數(shù)y=(k≠0),(1)k>0,反比例函數(shù)圖象在一、三象限;(2)k<0,反比例函數(shù)圖象在第二、四象限內(nèi).5、A【解析】【分析】先求得AC,再說明△ABE∽△ACD,最后根據(jù)相似三角形的性質(zhì)列方程解答即可.【詳解】解:∵,∴AC=1.2m+12.8m=14m∵標桿和建筑物CD均垂直于地面∴BE//CD∴△ABE∽△ACD∴,即,解得CD=17.5m.故答案為A.【考點】本題考查了相似三角形的應(yīng)用,正確判定相似三角形并利用相似三角形的性質(zhì)列方程計算是解答本題的關(guān)鍵.6、A【解析】【分析】作AF⊥BC,根據(jù)等腰三角形ABC的性質(zhì)求出AF的長,再根據(jù)黃金分割點的定義求出BE、CD的長度,得到中DE的長,利用三角形面積公式即可解題.【詳解】解:過點A作AF⊥BC,∵AB=AC,∴BF=BC=2,在Rt,AF=,∵D是邊的兩個“黃金分割”點,∴即,解得CD=,同理BE=,∵CE=BC-BE=4-(-2)=6-,∴DE=CD-CE=4-8,∴S△ABC===,故選:A.【考點】本題考查了“黃金分割比”的定義、等腰三角形的性質(zhì)、勾股定理的應(yīng)用以及三角形的面積公式,求出DE和AF的長是解題的關(guān)鍵。二、多選題1、BC【解析】【分析】根據(jù)等角的余角相等,先把跟相等的角找出來,在不同直角三角形根據(jù)正弦值的定義即可解答.【詳解】在中,,,于點D,,,在中,,故A錯誤;在中,,故B正確;在中,,故C正確,D錯誤.故選:BC.【考點】本題考查了銳角三角形的定義,掌握正弦值的表示是解題的關(guān)鍵.2、BC【解析】【分析】由表中數(shù)據(jù),結(jié)合二次函數(shù)的對稱性,可知,二次函數(shù)的對稱軸為,結(jié)合拋物線對稱軸為:,得出,由,,結(jié)合二次函數(shù)圖象性質(zhì),逐一分析各個選項,即可作出相應(yīng)的判斷.【詳解】解:由表格數(shù)據(jù)可知,當時,,將點代入中,可得.由表格數(shù)據(jù)可知,當時,;當時,;即拋物線對稱軸為:,∵拋物線對稱軸為:,∴,化簡得,.∵,,∴拋物線解析式化為,.將點代入中,化簡得,,∵,∴,解得.∵,∴.∵,,,∴,故A選項說法錯誤,不符合題意;∵二次函數(shù)對稱軸為,∴和時,對應(yīng)的函數(shù)值相等,∵時,對應(yīng)函數(shù)值為,∴和是方程的兩個根,故B選項說法正確,符合題意;由表中數(shù)據(jù)可知,二次函數(shù)過點和,將點和分別代入二次函數(shù)解析式中,可得,,,故,C選項說法正確,符合題意;∵,∴,∵,∴,即,∵,∴,s取任意實數(shù),故D選項說法錯誤,不符合題意;故選:BC.【考點】本題考查了二次函數(shù)的圖象性質(zhì),二次函數(shù)與一元二次方程的關(guān)系,深入理解函數(shù)概念,熟練掌握二次函數(shù)圖象性質(zhì)是解題的關(guān)鍵.3、ABD【解析】【分析】結(jié)合圖象,根據(jù)二次函數(shù)的性質(zhì)進行判斷即可求解【詳解】∵拋物線開口向下,∴a<0,將(-1,0)代入拋物線方程,可得:4a+k=0,∵4a+k=0,∴k=-4a,∴k+a=-3a,∵a<0,∴k+a=-3a>0,即B選項正確;將k=-4a代入拋物線方程,可得:拋物線方程為:,當y=0時,方程的根為-1和3,∴拋物線與x軸的另一個交點為(3,0),即A項正確;將點(-3,m)代入到拋物線方程,可得m=12a,∵結(jié)合k=-4a,∴方程,化簡為:,∵a<0,∴,即,顯然方程無實數(shù)解,故C項說法錯誤;向左平移3個單位,依據(jù)左加右減原則,可得新拋物線為:,即D說法正確,故選:ABD.【考點】本題考查了拋物線的性質(zhì)與圖象的知識,解答本題時需注重運用數(shù)形結(jié)合的思想.4、AB【解析】【分析】連接OD,可證明△ODE是等邊三角形,所以A,B正確;通過舉反例:當重合,時,可得:<可得C不一定成立,根據(jù)切線的定義,可得D不正確,從而可得答案.【詳解】解:連接OD,∵∠A=60°∴∠B+∠C=120°,的度數(shù)為∵的度數(shù)為∴的度數(shù)為∴∠DOE=60°,又OD=OE,∴△ODE是等邊三角形,即所以A正確,符合題意;則D到OE的長度是等邊△ODE的高,而等邊的邊長等于圓的半徑,則高一定是一個定值,因而B正確,符合題意;如圖:當重合,時,則為的切線,同理可得:此時則為的直徑,>此時<所以C不符合題意;與的外接圓有兩個交點,不是外接圓的切線,所以D不符合題意;故選:AB.【考點】本題考查的是圓的基本性質(zhì),圓弧的度數(shù)與其所對的圓周角的度數(shù)之間的關(guān)系,切線的概念的理解,等邊三角形的判定與性質(zhì),靈活運用以上知識解題是解題的關(guān)鍵.5、BCD【解析】【分析】根據(jù)函數(shù)與點的關(guān)系,一元二次方程根的判別式,不等式的性質(zhì),逐一計算判斷即可.【詳解】∵拋物線(是常數(shù),)經(jīng)過點(-1,-1),,當時,與其對應(yīng)的函數(shù)值,∴c=1>0,a-b+c=-1,4a-2b+c>1,∴a-b=-2,2a-b>0,∴2a-a-2>0,∴a>2>0,∴b=a+2>0,∴abc>0,故A錯誤;∵b=a+2,a>2,c=1,,故B正確;∴a+b+c=a+a+2+1=2a+3,∵a>2,∴2a>4,∴2a+3>4+3>7,即,故C正確;∵,∴△==>0,∴有兩個不等的實數(shù)根,故D正確.故選:BCD.【考點】本題考查了二次函數(shù)的性質(zhì),一元二次方程根的判別式,不等式的基本性質(zhì),熟練掌握二次函數(shù)的性質(zhì),靈活使用根的判別式,準確掌握不等式的基本性質(zhì)是解題的關(guān)鍵.6、ABC【解析】【分析】由DE∥BC,AD:DB=2:1,可得△ADE∽△ABC,推出,,推出,由此即可判斷;【詳解】解:∵DE∥BC,AD:DB=2:1,∴△ADE∽△ABC,∴,,∴,∴選項A、B、C正確,∵DE∥BC,∴,選項D錯誤,故選:ABC.【考點】本題考查了平行線分線段成比例定理,相似三角形的判定和性質(zhì)等知識,解題的關(guān)鍵是熟練掌握基本知識.7、BCD【解析】【分析】根據(jù)互為余角的三角函數(shù)關(guān)系,可判斷A、B、C;根據(jù)直角三角形的性質(zhì),可判斷D.【詳解】解:∵∠C=90°,∴∠A+∠B=90°,A、A≠B時,sinA≠sinB,故A錯誤;B、∵∠A+∠B=90°,∴cosA=sinB,故B正確;C、∵∠A+∠B=90°,∴sinA=cosB,故C正確;D、∵∠C=90°,∴∠A+∠B=90°,故D正確;故選:BCD.【考點】本題考查了互余兩角三角函數(shù)的關(guān)系,熟記同角(或余角)的三角函數(shù)關(guān)系式是解題的關(guān)鍵.三、填空題1、【解析】【分析】由題意得:二次函數(shù)的圖像開口向上,進而,可得到答案.【詳解】∵二次函數(shù)的圖像在它的對稱軸右側(cè)部分是上升的,∴二次函數(shù)的圖像開口向上,∴.故答案是:【考點】本題主要考查二次函數(shù)圖象和二次函數(shù)的系數(shù)之間的關(guān)系,掌握二次函數(shù)的系數(shù)的幾何意義,是解題的關(guān)鍵.2、【解析】【分析】由“滋生函數(shù)”和“本源函數(shù)”的定義,運用待定系數(shù)法求出函數(shù)的本源函數(shù).【詳解】解:由題意得解得∴函數(shù)的本源函數(shù)是.故答案為:.【考點】本題考查新定義運算下的一次函數(shù)和二次函數(shù)的應(yīng)用,解題關(guān)鍵是充分理解新定義“本源函數(shù)”.3、路程s一定,速度v與時間t之間的關(guān)系(答案不唯一).【解析】【分析】利用反比例函數(shù)的定義并結(jié)合生活中的實例來解答此題即可【詳解】根據(jù)路程=速度時間,速度v則可以用反比例函數(shù)來表示.故答案可以為路程s一定,速度v與時間t之間的關(guān)系(答案不唯一).【考點】本題主要考查了反比例函數(shù)的定義形式如(k為常數(shù),)的函數(shù)稱為反比例函數(shù).其中x是自變量,y是函數(shù),自變量x的取值范圍是不等于0的一切實數(shù).4、

【解析】【分析】通過去括號,移項,可以把方程化成二次函數(shù)的一般形式,然后確定二次項系數(shù),一次項系數(shù),常數(shù)項.【詳解】y=﹣2(x﹣2)2變形為:y=﹣2x2+8x﹣8,所以二次項系數(shù)為﹣2;一次項系數(shù)為8;常數(shù)項為﹣8.故答案為﹣2,8,﹣8.【考點】本題考查的是二次函數(shù)的一般形式,通過去括號,移項,合并同類項,得到二次函數(shù)的一般形式,確定二次項系數(shù),一次項系數(shù),常數(shù)項的值.5、【解析】【分析】設(shè),,代入求解即可.【詳解】由可設(shè),,k是非零整數(shù),則.故答案為:.【考點】本題主要考查了比例的基本性質(zhì),準確利用性質(zhì)變形是解題的關(guān)鍵.6、2≤a≤4.【解析】【分析】先求得拋物線的解析式,根據(jù)二次函數(shù)的性質(zhì)以及二次函數(shù)圖象上點的坐標特征即可得到a的取值范圍.【詳解】解:∵二次函數(shù)y=-x2+mx+3過點(4,3),∴3=-16+4m+3,∴m=4,∴y=-x2+4x+3,∵y=-x2+4x+3=-(x-2)2+7,∴拋物線開口向下,對稱軸是x=2,頂點為(2,7),函數(shù)有最大值7,把y=3代入y=-x2+4x+3得3=-x2+4x+3,解得x=0或x=4,∵當0≤x≤a時,y有最大值7,最小值3,∴2≤a≤4.故答案為:2≤a≤4.【考點】本題考查了待定系數(shù)法求二次函數(shù)的解析式,二次函數(shù)圖象上點的坐標特征,熟練掌握二次函數(shù)的性質(zhì)是解題的關(guān)鍵.7、【解析】【分析】利用比例的性質(zhì)進行變形,然后代入代數(shù)式中合并約分即可.【詳解】解:∵,∴,則.故答案為:.【考點】本題考查比例問題,關(guān)鍵掌握比例的性質(zhì),會利用性質(zhì)把比例式進行恒等變形,會根據(jù)需要選擇靈活的比例式解決問題.四、解答題1、(1);(2)售價60元時,周銷售利潤最大為4800元;(3)【解析】【分析】(1)①依題意設(shè)y=kx+b,解方程組即可得到結(jié)論;(2)根據(jù)題意得,再由表格數(shù)據(jù)求出,得到,根據(jù)二次函數(shù)的頂點式,求出最值即可;(3)根據(jù)題意得,由于對稱軸是直線,根據(jù)二次函數(shù)的性質(zhì)即可得到結(jié)論.【詳解】解:(1)設(shè),由題意有,解得,所以y關(guān)于x的函數(shù)解析式為;(2)由(1),又由表可得:,,.所以售價時,周銷售利潤W最大,最大利潤為4800;(3)由題意,其對稱軸,時上述函數(shù)單調(diào)遞增,所以只有時周銷售利潤最大,..【考點】本題考查了二次函數(shù)在實際生活中的應(yīng)用,重點是掌握求最值的問題.注意:數(shù)學(xué)應(yīng)用題來源于實踐,用于實踐,在當今社會市場經(jīng)濟的環(huán)境下,應(yīng)掌握一些有關(guān)商品價格和利潤的知識,總利潤等于總收入減去總成本,然后再利用二次函數(shù)求最值.2、(1);(2)60KPa;(3)【解析】【分析】(1)設(shè),A(0.5,120)在反比例函數(shù)上,即可求得反比例函數(shù)解析式;(2)把V=1代入(1)中的函數(shù)關(guān)系式求P即可;(3)依題意P≤150,即,解不等式即可.【詳解】(1)設(shè),∵A(0.5,120)在反比例函數(shù)上∴∴k=60∴;故答案為:(2)當V=1m3時,=60(KPa);故答案為:60KPa(3)當P>150KPa時,氣球?qū)⒈?,∴P≤150,∴,解得V0.4(m3).故答案為:為了安全起見,氣體的體積應(yīng)不小于0.4(m3).【考點】本題考查了反比例函數(shù)的應(yīng)用,將實際的問題轉(zhuǎn)化為數(shù)學(xué)問題,建立反比例函數(shù)的數(shù)學(xué)模型.要熟練掌握物理或化學(xué)學(xué)科中的一些具有反比例函數(shù)關(guān)系的公式.同時體會數(shù)學(xué)中的轉(zhuǎn)化思想.3、(1);(2)①連接交拋物線對稱軸于點,則點即為所求,點的坐標為;②存在;點的坐標為或.【解析】【分析】(1)由,得到A(-2,0),C(3,0),即可寫出拋物線的交點式.(2)①因為關(guān)于對稱軸對稱,所以,由兩點之間線段最短,知連接交拋物線對稱軸于點,則點即為所求,先用待定系數(shù)法求出解析式,將對稱軸代入得到點坐標.②設(shè)點,根據(jù)拋物線的解析式、直線的解析式,寫出Q、M的坐標,分當在上方、下方兩種情況,列關(guān)于m的方程,解出并取大于-2的解,即可寫出的坐標.【詳解】(1)∵,,結(jié)合圖象,得A(-2,0),C(3,0),∴拋物線可表示為:,∴拋物線的表達式為;(2)①∵關(guān)于對稱軸對稱,∴,∴連接交拋物線對稱軸于點,則點即為所求.將點,的坐標代入一次函數(shù)表達式,得直線的函數(shù)表達式為.拋物線的對稱軸為直線,當時,,故點的坐標為;②存在;設(shè)點,則,.當在上方時,,,,解得(舍)或;當在下方時,,,,解得(舍)或,綜上所述,的值為或5,點的坐標為或.【考點】本題考查了二次函數(shù)與一次函數(shù)綜合問題,熟練掌握待定系數(shù)法求解析式、最短路徑問題是解題的基礎(chǔ),動點問題中分類討論與數(shù)形結(jié)合轉(zhuǎn)化為方程問題是解題的關(guān)鍵.4、4m【解析】【分析】首先根據(jù)DO=OE=1m,可得∠DEB=45°,然后證明AB=BE,再證明△ABF∽△COF,可得,然后代入數(shù)值可得方程,解出方程即可得到答案.【詳解】解:延長OD,∵DO⊥BF,∴∠DOE=90°,∵OD=1m,OE=1m,∴∠DEB=45°,∵AB⊥BF,∴∠BAE=45°,∴AB=BE,設(shè)AB=EB=xm,∵AB⊥BF,CO⊥BF,∴AB∥CO,∴△ABF∽△COF,∴,,解得:x=4.經(jīng)檢驗:x=4是原方程的解.答:圍墻AB的高度是4m.【考點】此題主要考查了相似三角形的應(yīng)用,解決問題的關(guān)鍵是求出AB=BE,根據(jù)相似三角形的判定方法證明△ABF∽△COF.5、(1)見解析;(2)【解析】【分析】(1)欲證明AC是⊙O的切線,只要證明OD⊥AC即可.(2)證明△OBE是等邊三角形即可解決問題.【詳解】(1)證明:連接OD,如圖,∵BD為∠ABC平分線,∴∠1=∠2,∵OB=OD,∴∠1=∠3,∴∠2=∠3,∴OD∥BC,∵∠C=90°,∴∠ODA=90°,∴OD⊥AC,∴AC是⊙O的切線.(2)過O作OG⊥BC,連接OE,則四邊形ODCG為矩形,∴GC=OD=OB=2,OG=CD=,在Rt△OBG中,利用勾股定理得:BG=1,∴BE=2,則△OBE是等邊三角形,∴陰影部分面積為﹣×2×=.【考點】本題考查切線的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論