難點(diǎn)解析-重慶市實(shí)驗(yàn)中學(xué)7年級數(shù)學(xué)下冊第四章三角形章節(jié)測評試題(含詳解)_第1頁
難點(diǎn)解析-重慶市實(shí)驗(yàn)中學(xué)7年級數(shù)學(xué)下冊第四章三角形章節(jié)測評試題(含詳解)_第2頁
難點(diǎn)解析-重慶市實(shí)驗(yàn)中學(xué)7年級數(shù)學(xué)下冊第四章三角形章節(jié)測評試題(含詳解)_第3頁
難點(diǎn)解析-重慶市實(shí)驗(yàn)中學(xué)7年級數(shù)學(xué)下冊第四章三角形章節(jié)測評試題(含詳解)_第4頁
難點(diǎn)解析-重慶市實(shí)驗(yàn)中學(xué)7年級數(shù)學(xué)下冊第四章三角形章節(jié)測評試題(含詳解)_第5頁
已閱讀5頁,還剩29頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

重慶市實(shí)驗(yàn)中學(xué)7年級數(shù)學(xué)下冊第四章三角形章節(jié)測評考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(10小題,每小題2分,共計(jì)20分)1、有一個三角形的兩邊長分別為2和5,則第三邊的長可能是()A.2 B.2.5 C.3 D.52、已知三角形的兩邊長分別為和,則下列長度的四條線段中能作為第三邊的是()A. B. C. D.3、一把直尺與一塊三角板如圖放置,若,則()A.120° B.130° C.140° D.150°4、如圖,≌,和是對應(yīng)角,和是對應(yīng)邊,則下列結(jié)論中一定成立的是()A. B.C. D.5、已知:如圖,D、E分別在AB、AC上,若AB=AC,AD=AE,∠A=60°,∠B=25°,則∠BDC的度數(shù)是()A.95° B.90° C.85° D.80°6、如圖,點(diǎn)F,C在BE上,AC=DF,BF=EC,AB=DE,AC與DF相交于點(diǎn)G,則與2∠DFE相等的是()A.∠A+∠D B.3∠B C.180°﹣∠FGC D.∠ACE+∠B7、已知:如圖,∠BAD=∠CAE,AB=AD,∠B=∠D,則下列結(jié)論正確的是()A.AC=DE B.∠ABC=∠DAE C.∠BAC=∠ADE D.BC=DE8、如圖,在△ABC和△DEF中,∠A=∠D,AF=DC,添加下列條件中的一個仍無法證明△ABC≌△DEF的是()A.BC=EF B.AB=DE C.∠B=∠E D.∠ACB=∠DFE9、如圖,已知,要使,添加的條件不正確的是()A. B. C. D.10、已知三角形的兩邊長分別是3cm和7cm,則下列長度的線段中能作為第三邊的是()A.3cm B.4cm C.7cm D.10cm第Ⅱ卷(非選擇題80分)二、填空題(10小題,每小題2分,共計(jì)20分)1、如圖,在△AOB和△COD中,OA=OB,OC=OD,OA<OC,∠AOB=∠COD=50°,連接AC、BD交于點(diǎn)M,連接OM.下列結(jié)論:①AC=BD,②∠AMB=50°;③OM平分∠AOD;④MO平分∠AMD.其中正確的結(jié)論是_____.(填序號)2、在△ABC中,若AC=3,BC=7則第三邊AB的取值范圍為________.3、如圖,AE是△ABC的中線,BF是△ABE的中線,若△ABC的面積是20cm2,則S△ABF=_____cm2.4、如圖,∠1=∠2,加上條件_____,可以得到△ADB≌△ADC(SAS).5、如圖,,,,點(diǎn)在線段上以的速度由點(diǎn)向點(diǎn)運(yùn)動,同時,點(diǎn)在線段上由點(diǎn)向點(diǎn)運(yùn)動.它們運(yùn)動的時間為設(shè)點(diǎn)的運(yùn)動速度為,若使得與全等,則的值為______.6、如圖,在△ABC中,∠C=90°,AD是BC邊上的中線,交BC于點(diǎn)D,CD=5cm,AC=12cm,則△ABD的面積是__________cm2.7、如圖,在Rt△ABC中,∠C=90°,兩銳角的角平分線交于點(diǎn)P,點(diǎn)E、F分別在邊BC、AC上,且都不與點(diǎn)C重合,若∠EPF=45°,連接EF,當(dāng)AC=6,BC=8,AB=10時,則△CEF的周長為_____.8、如圖,在△ABC中,∠ACB=90°,AC=8,BC=10,點(diǎn)P從點(diǎn)A出發(fā)沿線段AC以每秒1個單位長度的速度向終點(diǎn)C運(yùn)動,點(diǎn)Q從點(diǎn)B出發(fā)沿折線BC﹣CA以每秒3個單位長度的速度向終點(diǎn)A運(yùn)動,P、Q兩點(diǎn)同時出發(fā).分別過P、Q兩點(diǎn)作PE⊥l于E,QF⊥l于F,當(dāng)△PEC與△QFC全等時,CQ的長為______.9、如圖,在中,,一條線段,P,Q兩點(diǎn)分別在線段和的垂線上移動,若以A、B、C為頂點(diǎn)的三角形與以A、P、Q為頂點(diǎn)的三角形全等,則的長為_________.10、如圖,某同學(xué)把一塊三角形的玻璃打碎成了三片,現(xiàn)在他要到玻璃店去配一塊完全一樣形狀的玻璃,那么最省事的辦法是帶____(填序號)去配,這樣做的科學(xué)依據(jù)是_______.三、解答題(6小題,每小題10分,共計(jì)60分)1、如圖△ABC中,已知∠A=60°,角平分線BD、CE交于點(diǎn)O.(1)求∠BOC的度數(shù);(2)判斷線段BE、CD、BC長度之間有怎樣的數(shù)量關(guān)系,請說明理由.2、已知:如圖,CD=BE,CD∥BE,AD∥CE.求證:△ACD≌△CBE.3、在△ABC中,∠ACB=90°,AC=BC,直線MN經(jīng)過點(diǎn)C,且AD⊥MN于D,BE⊥MN于E.(感知)(1)當(dāng)直線MN繞點(diǎn)C旋轉(zhuǎn)到圖①的位置時,易證△ADC≌△CEB(不需要證明),進(jìn)而得到DE、AD、BE之間的數(shù)量關(guān)系為.(探究)(2)當(dāng)直線MN繞點(diǎn)C旋轉(zhuǎn)到圖②的位置時,求證:DE=AD-BE.(3)當(dāng)直線MN繞點(diǎn)C旋轉(zhuǎn)到圖③的位置時,直接寫出DE、AD、BE之間的數(shù)量關(guān)系.4、已知的三邊長分別為a,b,c.若a,b,c滿足,試判斷的形狀.5、已知AMCN,點(diǎn)B在直線AM、CN之間,AB⊥BC于點(diǎn)B.(1)如圖1,請直接寫出∠A和∠C之間的數(shù)量關(guān)系:.(2)如圖2,∠A和∠C滿足怎樣的數(shù)量關(guān)系?請說明理由.(3)如圖3,AE平分∠MAB,CH平分∠NCB,AE與CH交于點(diǎn)G,則∠AGH的度數(shù)為.6、如圖,在△ABC中,AB=AC,∠BAC=30°,點(diǎn)D是△ABC內(nèi)一點(diǎn),DB=DC,∠DCB=30°,點(diǎn)E是BD延長線上一點(diǎn),AE=AB.(1)求∠ADB的度數(shù);(2)線段DE,AD,DC之間有什么數(shù)量關(guān)系?請說明理由.(提示:在線段DE上截取線段EM=BD,連接線段AM或者在線段DE上截取線段DM=AD連接線段AM).-參考答案-一、單選題1、D【分析】根據(jù)三角形三邊關(guān)系,兩邊之和第三邊,兩邊之差小于第三邊即可判斷.【詳解】解:設(shè)第三邊為x,則5?2<x<5+2,即3<x<7,所以選項(xiàng)D符合題意.故選:D.【點(diǎn)睛】本題考查三角形三邊關(guān)系定理,記住兩邊之和第三邊,兩邊之差小于第三邊,屬于基礎(chǔ)題,中考??碱}型.2、C【分析】根據(jù)三角形的三邊關(guān)系可得,再解不等式可得答案.【詳解】解:設(shè)三角形的第三邊為,由題意可得:,即,故選:C.【點(diǎn)睛】本題主要考查了三角形的三邊關(guān)系,解題的關(guān)鍵是掌握三角形兩邊之和大于第三邊;三角形的兩邊差小于第三邊.3、B【分析】由BC∥ED,得到∠2=∠CBD,由三角形外角的性質(zhì)得到∠CBD=∠1+∠A=130°,由此即可得到答案.【詳解】解:如圖所示,由題意得:∠A=90°,BC∥EF,∴∠2=∠CBD,又∵∠CBD=∠1+∠A=130°,∴∠2=130°,故選B.【點(diǎn)睛】本題主要考查了三角形外角的性質(zhì),平行線的性質(zhì),熟知相關(guān)知識是解題的關(guān)鍵.4、D【分析】根據(jù)全等三角形的性質(zhì)求解即可.【詳解】解:∵≌,和是對應(yīng)角,和是對應(yīng)邊,∴,,∴,∴選項(xiàng)A、B、C錯誤,D正確,故選:D.【點(diǎn)睛】本題考查全等三角形的性質(zhì),熟練掌握全等三角形的性質(zhì)是解答的關(guān)鍵.5、C【分析】根據(jù)SAS證△ABE≌△ACD,推出∠C=∠B,求出∠C的度數(shù),根據(jù)三角形的外角性質(zhì)得出∠BDC=∠A+∠C,代入求出即可.【詳解】解:在△ABE和△ACD中,,∴△ABE≌△ACD(SAS),∴∠C=∠B,∵∠B=25°,∴∠C=25°,∵∠A=60°,∴∠BDC=∠A+∠C=85°,故選C.【點(diǎn)睛】本題主要考查了全等三角形的性質(zhì)與判定,三角形外角的性質(zhì),解題的關(guān)鍵在于能夠熟練掌握全等三角形的性質(zhì)與判定條件.6、C【詳解】由題意根據(jù)等式的性質(zhì)得出BC=EF,進(jìn)而利用SSS證明△ABC與△DEF全等,利用全等三角形的性質(zhì)得出∠ACB=∠DFE,最后利用三角形內(nèi)角和進(jìn)行分析解答.【分析】解:∵BF=EC,∴BF+FC=EC+FC,∴BC=EF,在△ABC與△DEF中,,∴△ABC≌△DEF(SSS),∴∠ACB=∠DFE,∴2∠DFE=180°﹣∠FGC,故選:C.【點(diǎn)睛】本題考查全等三角形的判定與性質(zhì),其中全等三角形的判定方法有:SSS;SAS;ASA;AAS;以及HL(直角三角形的判定方法).7、D【分析】根據(jù)已知條件利用ASA證明可得AC=AE,BC=DE,進(jìn)而逐一進(jìn)行判斷.【詳解】解:∵∠BAD=∠CAE,∴∠BAD-∠CAD=∠CAE-∠CAD,即∠BAC=∠DAE,所以B、C選項(xiàng)錯誤;在和中,,∴(ASA),∴AC=AE,BC=DE.所以A選項(xiàng)錯誤;D選項(xiàng)正確.故選:D.【點(diǎn)睛】本題考查了全等三角形的判定與性質(zhì),解決本題的關(guān)鍵是掌握全等三角形的判定與性質(zhì).8、A【分析】根據(jù)AF=DC求出AC=DF,再根據(jù)全等三角形的判定定理逐個判斷即可.【詳解】解:∵AF=DC,∴AF+FC=DC+FC,即AC=DF,A、BC=EF,AC=DF,∠A=∠D,不符合全等三角形的判定定理,不能推出△ABC≌△DEF,故本選項(xiàng)符合題意;B、AB=DE,∠A=∠D,AC=DF,符合全等三角形的判定定理SAS,能推出△ABC≌△DEF,故本選項(xiàng)不符合題意;C.∠B=∠E,∠A=∠D,AC=DF,符合全等三角形的判定定理AAS,能推出△ABC≌△DEF,故本選項(xiàng)不符合題意;D.∠ACB=∠DFE,AC=DF,∠A=∠D,符合全等三角形的判定定理ASA,能推出△ABC≌△DEF,故本選項(xiàng)不符合題意;故選:A.【點(diǎn)睛】本題考查了全等三角形的判定定理,能熟記全等三角形的判定定理是解此題的關(guān)鍵,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,兩直角三角形全等還有HL.9、D【分析】已知條件AB=AC,還有公共角∠A,然后再結(jié)合選項(xiàng)所給條件和全等三角形的判定定理進(jìn)行分析即可.【詳解】解:A、添加BD=CE可得AD=AE,可利用利用SAS定理判定△ABE≌△ACD,故此選項(xiàng)不合題意;B、添加∠ADC=∠AEB可利用AAS定理判定△ABE≌△ACD,故此選項(xiàng)不合題意;C、添加∠B=∠C可利用ASA定理判定△ABE≌△ACD,故此選項(xiàng)不合題意;D、添加BE=CD不能判定△ABE≌△ACD,故此選項(xiàng)符合題意;故選:D.【點(diǎn)睛】本題考查三角形全等的判定方法,判定兩個三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL(直角三角形),掌握三角形全等的判定方法是解題關(guān)鍵.10、C【分析】設(shè)三角形第三邊的長為xcm,再根據(jù)三角形的三邊關(guān)系求出x的取值范圍,找出符合條件的x的值即可.【詳解】解:設(shè)三角形的第三邊是xcm.則7-3<x<7+3.即4<x<10,四個選項(xiàng)中,只有選項(xiàng)C符合題意,故選:C.【點(diǎn)睛】本題主要考查了三角形三邊關(guān)系的應(yīng)用.此類求三角形第三邊的范圍的題,實(shí)際上就是根據(jù)三角形三邊關(guān)系定理列出不等式,然后解不等式即可.二、填空題1、①②④【分析】由證明得出,,①正確;由全等三角形的性質(zhì)得出,由三角形的外角性質(zhì)得:,得出,②正確;作于,于,如圖所示:則,利用全等三角形對應(yīng)邊上的高相等,得出,由角平分線的判定方法得出平分,④正確;假設(shè)平分,則,由全等三角形的判定定理可得,得,而,所以,而,故③錯誤;即可得出結(jié)論.【詳解】解:,,即,在和中,,,,,故①正確;,由三角形的外角性質(zhì)得:,,故②正確;作于,于,如圖所示,則,,,平分,故④正確;假設(shè)平分,則,在與中,,,,,,而,故③錯誤;所以其中正確的結(jié)論是①②④.故答案為:①②④.【點(diǎn)睛】本題考查了全等三角形的判定與性質(zhì)、三角形的外角性質(zhì)、角平分線的判定等知識;證明三角形全等是解題的關(guān)鍵.2、4<AB<10【分析】根據(jù)三角形的三邊關(guān)系,直接求解即可.【詳解】解:∵在△ABC中,AC=3,BC=7,,即,解得.故答案為:.【點(diǎn)睛】本題考查的是三角形的三邊關(guān)系,熟悉相關(guān)性質(zhì)是解題的關(guān)鍵.三角形中第三邊的長大于其他兩邊之差,小于其他兩邊之和.3、5【分析】利用三角形的中線把三角形分成面積相等的兩個三角形進(jìn)行解答.【詳解】解:∵AE是△ABC的中線,BF是△ABE的中線,∴S△ABF=S△ABC=×20=5cm2.故答案為:5.【點(diǎn)睛】本題考查了三角形的面積,能夠利用三角形的中線把三角形分成面積相等的兩個三角形的性質(zhì)求解是解題的關(guān)鍵.4、AB=AC(答案不唯一)【分析】根據(jù)全等三角形的判定定理SAS證得△ADB≌△ADC.【詳解】解:加上條件,AB=AC,可以得到△ADB≌△ADC(SAS).在△ADB與△ADC中,,∴△ADB≌△ADC(SAS),故答案為:AB=AC(答案不唯一).【點(diǎn)睛】本題考查三角形全等的判定方法,判定兩個三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定兩個三角形全等,判定兩個三角形全等時,必須有邊的參與,若有兩邊一角對應(yīng)相等時,角必須是兩邊的夾角.5、或【分析】分兩種情形:①當(dāng)≌時,可得:;②當(dāng)≌時,,根據(jù)全等三角形的性質(zhì)分別求解即可.【詳解】解:①當(dāng)≌時,可得:,運(yùn)動時間相同,,的運(yùn)動速度也相同,;②當(dāng)≌時,,,,,故答案為:或.【點(diǎn)睛】本題考查全等三角形的性質(zhì),路程、速度、時間之間的關(guān)系等知識,解題的關(guān)鍵是理解題意,靈活運(yùn)用所學(xué)知識進(jìn)行分類解決問題.6、30【分析】根據(jù)三角形的面積公式求出△ACD的面積,利用三角形中線的性質(zhì)即可求解.【詳解】解:∵∠C=90°,CD=5cm,AC=12cm,∴△ACD的面積為(cm2),∵AD是BC邊上的中線,∴△ACD的面積=△ABD的面積為(cm2),故答案為:30.【點(diǎn)睛】本題考查了三角形的面積和三角形中線的性質(zhì),關(guān)鍵是根據(jù)三角形的中線把三角形分成面積相等的兩部分解答.7、4【分析】根據(jù)題意過點(diǎn)P作PM⊥BC于M,PN⊥AC于N,PK⊥AB于K,在EB上取一點(diǎn)J,使得MJ=FN,連接PJ,進(jìn)而利用全等三角形的性質(zhì)證明EF=EM+EN,即可得出結(jié)論.【詳解】解:如圖,過點(diǎn)P作PM⊥BC于M,PN⊥AC于N,PK⊥AB于K,在EB上取一點(diǎn)J,使得MJ=FN,連接PJ.∵BP平分∠BC,PA平分∠CAB,PM⊥BC,PN⊥AC,PK⊥AB,∴PM=PK,PK=PN,∴PM=PN,∵∠C=∠PMC=∠PNC=90°,∴四邊形PMCN是矩形,∴四邊形PMCN是正方形,∴CM=PM,∴∠MPN=90°,在△PMJ和△PNF中,,∴△PMJ≌△PNF(SAS),∴∠MPJ=∠FPN,PJ=PF,∴∠JPF=∠MPN=90°,∵∠EPF=45°,∴∠EPF=∠EPJ=45°,在△PEF和△PEJ中,,∴△PEF≌△PEJ(SAS),∴EF=EJ,∴EF=EM+FN,∴△CEF的周長=CE+EF+CF=CE+EM+CF+FN=2EM=2PM,∵S△ABC=?BC?AC=(AC+BC+AB)?PM,∴PM=2,∴△ECF的周長為4,故答案為:4.【點(diǎn)睛】本題考查角平分線的性質(zhì)定理,正方形的判定,全等三角形的判定和性質(zhì)等知識,解題的關(guān)鍵是學(xué)會添加常用輔助線,構(gòu)造全等三角形解決問.8、7或3.5【分析】分兩種情況:(1)當(dāng)P在AC上,Q在BC上時;(2)當(dāng)P在AC上,Q在AC上時,即P、Q重合時;【詳解】解:當(dāng)P在AC上,Q在BC上時,∵∠ACB=90°,∴∠PCE+∠QCF=90°,∵PE⊥l于E,QF⊥l于F.∴∠PEC=∠CFQ=90°,∴∠EPC+∠PCE=90°,∴∠EPC=∠QCF,∵△PEC與△QFC全等,∴此時是△PCE≌△CQF,∴PC=CQ,∴8-t=10-3t,解得t=1,∴CQ=10-3t=7;當(dāng)P在AC上,Q在AC上時,即P、Q重合時,則CQ=PC,由題意得,8-t=3t-10,解得t=4.5,∴CQ=3t-10=3.5,綜上,當(dāng)△PEC與△QFC全等時,滿足條件的CQ的長為7或3.5,故答案為:7或3.5.【點(diǎn)睛】本題主要考查了全等三角形的性質(zhì),根據(jù)題意得出關(guān)于的方程是解題的關(guān)鍵.9、6cm或12cm【分析】先根據(jù)題意得到∠BCA=∠PAQ=90°,則以A、B、C為頂點(diǎn)的三角形與以A、P、Q為頂點(diǎn)的三角形全等,只有△ACB≌△QAP和△ACB≌△PAQ兩種情況,由此利用全等三角形的性質(zhì)求解即可.【詳解】解:∵AX是AC的垂線,∴∠BCA=∠PAQ=90°,∴以A、B、C為頂點(diǎn)的三角形與以A、P、Q為頂點(diǎn)的三角形全等,只有△ACB≌△QAP和△ACB≌△PAQ兩種情況,當(dāng)△ACB≌△QAP,∴;當(dāng)△ACB≌△PAQ,∴,故答案為:6cm或12cm.【點(diǎn)睛】本題主要考查了全等三角形的性質(zhì),熟知全等三角形的性質(zhì)是解題的關(guān)鍵.10、③ASA【分析】由題意已知三角形破損部分的邊角,得到原來三角形的邊角,根據(jù)三角形全等的判定方法進(jìn)行分析即可.【詳解】解:第一塊和第二塊只保留了原三角形的一個角和部分邊,根據(jù)這兩塊中的任一塊均不能配一塊與原來完全一樣的;第三塊不僅保留了原來三角形的兩個角還保留了一邊,則可以根據(jù)ASA來配一塊一樣的玻璃.故答案為:③;ASA.【點(diǎn)睛】本題主要考查全等三角形的判定方法的實(shí)際應(yīng)用,要求學(xué)生將所學(xué)的知識運(yùn)用于實(shí)際生活中,要認(rèn)真觀察圖形,根據(jù)已知選擇方法.三、解答題1、(1)120°;(2)BC=BE+CD,理由見解析【分析】(1)利用角平分線的定義以及三角形內(nèi)角和定理計(jì)算即可;(2)只要證明∠BOF=∠BOE=60°,可得∠COD=∠COF=60°即可證明.【詳解】解:(1)在△ABC中,∠A=60°,BD和CE分別平分∠ABC和∠ACB,∴∠OBC+∠OCB=(∠ABC+∠ACB)=(180°﹣60°)=60°,∴∠BOC=180°﹣60°=120°.(2)BC=BE+CD.理由如下:在BC上截取BF=BE,連接OF,∵BD平分∠ABC,∴∠EBO=∠FBO,在△OBE和△OBF中,,∴△OBE≌△OBF(SAS),∴∠BOE=∠BOF,∵∠BOC=120°,∴∠BOE=60°,∴∠BOF=∠COF=∠COD=60°,∵OC=OC,∠OCD=∠OCF,∴△COD≌△COF(ASA).∴CF=CD,∴BC=BF+CF=BE+CD.【點(diǎn)睛】本題考查全等三角形的判定和性質(zhì)、角平分線的定義等知識,解題的關(guān)鍵是正確尋找全等三角形全等的條件,屬于中考??碱}型.2、見解析【分析】根據(jù)兩直線平行,同位角相等,求出∠ACD=∠B,,然后利用AAS即可證明△ACD≌△CBE.【詳解】證明:如圖,在和中(AAS).【點(diǎn)睛】本題主要考查了全等三角形的判定,解題關(guān)鍵是掌握全等三角形判定方法,找準(zhǔn)邊角對應(yīng)條件.3、(1)DE=AD+BE;(2)見解析;(3)DE=BE-AD(或AD=BE-DE,BE=AD+DE等)【分析】(1)由已知推出∠ADC=∠BEC=90°,因?yàn)椤螦CD+∠BCE=90°,∠DAC+∠ACD=90°,推出∠DAC=∠BCE,根據(jù)AAS即可得到△ADC≌△CEB,得到AD=CE,CD=BE,即可求出答案;(2)與(1)證法類似可證出∠ACD=∠EBC,能推出△ADC≌△CEB,得到AD=CE,CD=BE,代入已知即可得到答案;(3)與(1)(2)證法類似可證出∠ACD=∠EBC,能推出△ADC≌△CEB,得到AD=CE,CD=BE,代入已知即可得到答案;【詳解】解:(1)證明:∵AD⊥DE,BE⊥DE,∴∠ADC=∠BEC=90°,∵∠ACB=90°,∴∠ACD+∠BCE=90°,∠DAC+∠ACD=90°,∴∠DAC=∠BCE,在△ADC和△CEB中∴△ADC≌△CEB(AAS),∴AD=CE,CD=BE,∵DC+CE=DE,∴DE=AD+BE.(2)證明:∵AD⊥MN,BE⊥MN,∵∠ADC=∠CEB=90°,又∵∠ACB=90°,∴∠CAD+∠ACD=90°,∠ACD+∠BCE=90°.∴∠CAD=∠BCE.∵AC=BC,∴△ADC≌△CEB.∴CE=AD,CD=BE,∴DE=CE-CD=AD-BE;(3)DE=BE-AD,理由:∵BE⊥EC,AD⊥CE,∴∠ADC=∠BEC=90°,∴∠EBC+∠ECB=90°,∵∠ACB=90°,∴∠ECB+∠ACE=90°,∴∠ACD=∠EBC,在△ADC和△CEB中,,∴△ADC≌△CEB(AAS),∴AD=CE,CD=BE,∴DE=CD-CE=BE-AD(或AD=BE-DE,BE=AD+DE等).【點(diǎn)睛】本題考查了鄰補(bǔ)角的意義,同角的余角相等,直角三角形的性質(zhì),全等三角形的判定和性質(zhì)等知識點(diǎn),能根據(jù)已知證出符合全等的條件是解此題的關(guān)鍵,題型較好,綜合性比較強(qiáng).4、的形狀是等邊三角形.【分析】利用平方數(shù)的非負(fù)性,求解a,b,c的關(guān)系,進(jìn)而判斷.【詳解】解:∵,∴,∴a=b=c,∴是等邊三角形.【點(diǎn)睛】本題主要是考查了三角形的分類,熟練掌握各類三角形的特點(diǎn),例如三邊相等為等邊三角形,含的三角形為直角三角形等,這是解決此類題的關(guān)鍵.5、(1)∠A+∠C=90°;(2)∠C﹣∠A=90°,見解析;(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論