版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
人教版8年級(jí)數(shù)學(xué)下冊(cè)《平行四邊形》專項(xiàng)訓(xùn)練考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來(lái)的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無(wú)效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計(jì)20分)1、在ABCD中,添加以下哪個(gè)條件能判斷其為菱形()A.AB⊥BC B.BC⊥CD C.CD⊥AC D.AC⊥BD2、已知菱形的邊長(zhǎng)為6,一個(gè)內(nèi)角為60°,則菱形較長(zhǎng)的對(duì)角線長(zhǎng)是()A. B. C.3 D.63、如圖,菱形ABCD的對(duì)角線AC、BD的長(zhǎng)分別為6和8,O為AC、BD的交點(diǎn),H為AB上的中點(diǎn),則OH的長(zhǎng)度為()A.3 B.4 C.2.5 D.54、如圖,矩形ABCD的面積為1cm2,對(duì)角線交于點(diǎn)O;以AB、AO為鄰邊作平行四邊形AOC1B,對(duì)角線交于點(diǎn)O1;以AB、AO1為鄰邊作平行四邊形AO1C2B,…;依此類推,則平行四邊形AO2014C2015B的面積為()cmA.
B.
C.
D.5、如圖,在△ABC中,∠ABC=90°,AC=18,BC=14,D,E分別是AB,AC的中點(diǎn),連接DE,BE,點(diǎn)M在CB的延長(zhǎng)線上,連接DM,若∠MDB=∠A,則四邊形DMBE的周長(zhǎng)為()A.16 B.24 C.32 D.40第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計(jì)30分)1、菱形的對(duì)角線之比為3:4,且面積為24,則它的對(duì)角線分別為________.2、如圖,在矩形ABCD中,對(duì)角線AC、BD相交于點(diǎn)O,點(diǎn)E、F分別是AO、AD的中點(diǎn),若AB=6cm,BC=8cm,則EF=_____cm.3、如圖,直線l經(jīng)過(guò)正方形ABCD的頂點(diǎn)B,點(diǎn)A,C到直線l的距離分別是1,3,則正方形ABCD的面積是_____.4、如圖,矩形ABCD中,AB=9,AD=12,點(diǎn)M在對(duì)角線BD上,點(diǎn)N為射線BC上一動(dòng)點(diǎn),連接MN,DN,且∠DNM=∠DBC,當(dāng)DMN是等腰三角形時(shí),線段BN的長(zhǎng)為___.5、如圖,菱形ABCD的對(duì)角線AC,BD相交于點(diǎn)O,E為DC的中點(diǎn),若,則菱形的周長(zhǎng)為__________.三、解答題(5小題,每小題10分,共計(jì)50分)1、(3)點(diǎn)P為AC上一動(dòng)點(diǎn),則PE+PF最小值為.2、如圖,是的中位線,延長(zhǎng)到,使,連接.求證:.
3、如圖,?ABCD的對(duì)角線AC,BD相交于點(diǎn)O,點(diǎn)E,點(diǎn)F在線段BD上,且DE=BF.求證:AE∥CF.4、如圖,在正方形中,是直線上的一點(diǎn),連接,過(guò)點(diǎn)作,交直線于點(diǎn),連接.(1)當(dāng)點(diǎn)在線段上時(shí),如圖①,求證:;(2)當(dāng)點(diǎn)在直線上移動(dòng)時(shí),位置如圖②、圖③所示,線段,與之間又有怎樣的數(shù)量關(guān)系?請(qǐng)直接寫出你的猜想,不需證明.5、已知如圖,在中,點(diǎn)是邊上一點(diǎn),連接,點(diǎn)是上一動(dòng)點(diǎn),連接.(1)如圖1,當(dāng)時(shí),連接,延長(zhǎng)交于點(diǎn),求證:;(2)如圖2,以為直角邊作等腰,連接,若,當(dāng)點(diǎn)在運(yùn)動(dòng)過(guò)程中,求周長(zhǎng)的最小值.
-參考答案-一、單選題1、D【解析】【分析】根據(jù)對(duì)角線互相垂直的平行四邊形是菱形,結(jié)合選項(xiàng)找到對(duì)角線互相垂直即可求解.【詳解】A、∵AB⊥BC,∴∠ABC=90°,又∵四邊形ABCD是平行四邊形,∴四邊形ABCD是矩形;故選項(xiàng)A不符合題意;B、C選項(xiàng),同A選項(xiàng)一樣,均為鄰邊垂直,ABCD是矩形;故選項(xiàng)B、C不符合題意;D、∵四邊形ABCD是平行四邊形,又∵AC⊥BD,∴四邊形ABCD是菱形;故選項(xiàng)D符合題意故選D【點(diǎn)睛】本題考查了菱形的判定,掌握菱形的判定定理是解題的關(guān)鍵.2、B【解析】【分析】根據(jù)一個(gè)內(nèi)角為60°可以判斷較短的對(duì)角線與兩鄰邊構(gòu)成等邊三角形,求出較長(zhǎng)的對(duì)角線的一半,再乘以2即可得解.【詳解】解:如圖,菱形ABCD,∠ABC=60°,∴AB=BC,AC⊥BD,OB=OD,∴△ABC是等邊三角形,菱形的邊長(zhǎng)為6,∴AC=6,∴AO=AC=3,在Rt△AOB中,BO===3,∴菱形較長(zhǎng)的對(duì)角線長(zhǎng)BD是:2×3=6.故選:B.【點(diǎn)睛】本題考查了菱形的性質(zhì)和勾股定理,等邊三角形的判定,解題關(guān)鍵是熟練運(yùn)用菱形的性質(zhì)和等邊三角形的判定求出對(duì)角線長(zhǎng).3、C【解析】【分析】根據(jù)菱形的性質(zhì)求得邊長(zhǎng),進(jìn)而根據(jù)三角形中位線定理求得的長(zhǎng)度.【詳解】∵四邊形ABCD是菱形,∴AO=OC,OB=OD,AO⊥BO,又∵點(diǎn)H是AD中點(diǎn),∴OH是△DAB的中位線,在Rt△AOB中,AB5,則OHAB=2.5故選C【點(diǎn)睛】本題考查了菱形的性質(zhì),三角形中位線定理,求得的長(zhǎng)是解題的關(guān)鍵.4、C【解析】【分析】根據(jù)“同底等高”的原則可知平行四邊形AOC1B底邊AB上的高等于BC的,則有平行四邊形AOC1B的面積,平行四邊形AOC2B的邊AB上的高等于平行四邊形AOC1B底邊AB上的高的,則有平行四邊形ABC3O2的面積,…;由此規(guī)律可進(jìn)行求解.【詳解】解:∵O1為矩形ABCD的對(duì)角線的交點(diǎn),∴平行四邊形AOC1B底邊AB上的高等于BC的,∴平行四邊形AOC1B的面積=×1=,∵平行四邊形AO1C2B的對(duì)角線交于點(diǎn)O2,∴平行四邊形AOC2B的邊AB上的高等于平行四邊形AOC1B底邊AB上的高的,∴平行四邊形ABC3O2的面積=××1=,…,依此類推,平行四邊形ABC2014O2015的面積=cm2.故答案為:C.【點(diǎn)睛】本題主要考查矩形的性質(zhì)與平行四邊形的性質(zhì),熟練掌握矩形的性質(zhì)與平行四邊形的性質(zhì)是解題的關(guān)鍵.5、C【解析】【分析】由中點(diǎn)的定義可得AE=CE,AD=BD,根據(jù)三角形中位線的性質(zhì)可得DE//BC,DE=BC,根據(jù)平行線的性質(zhì)可得∠ADE=∠ABC=90°,利用ASA可證明△MBD≌△EDA,可得MD=AE,DE=MB,即可證明四邊形DMBE是平行四邊形,可得MD=BE,進(jìn)而可得四邊形DMBE的周長(zhǎng)為2DE+2MD=BC+AC,即可得答案.【詳解】∵D,E分別是AB,AC的中點(diǎn),∴AE=CE,AD=BD,DE為△ABC的中位線,∴DE//BC,DE=BC,∵∠ABC=90°,∴∠ADE=∠ABC=90°,在△MBD和△EDA中,,∴△MBD≌△EDA,∴MD=AE,DE=MB,∵DE//MB,∴四邊形DMBE是平行四邊形,∴MD=BE,∵AC=18,BC=14,∴四邊形DMBE的周長(zhǎng)=2DE+2MD=BC+AC=18+14=32.故選:C.【點(diǎn)睛】本題考查全等三角形的判定與性質(zhì)、三角形中位線的性質(zhì)及平行四邊形的判定與性質(zhì),三角形中位線平行于第三邊且等于第三邊的一半;有一組對(duì)邊平行且相等的四邊形是平行四邊形;熟練掌握相關(guān)性質(zhì)及判定定理是解題關(guān)鍵.二、填空題1、6和8##8和6【解析】【分析】根據(jù)比例設(shè)兩條對(duì)角線分別為3x、4x,再根據(jù)菱形的面積等于兩對(duì)角線乘積的一半列式求出x的值即可.【詳解】解:設(shè)兩條對(duì)角線分別為3x、4x,根據(jù)題意得,×3x?4x=24,解得x=2(負(fù)值舍去),∴菱形的兩對(duì)角線的長(zhǎng)分別為,.故答案為:6和8.【點(diǎn)睛】本題考查了菱形的面積,主要利用了菱形的對(duì)角線互相垂直平分的性質(zhì),菱形的面積的求法,需熟記.2、####【解析】【分析】根據(jù)勾股定理求出AC,根據(jù)矩形性質(zhì)得出∠ABC=90°,BD=AC,BO=OD,求出BD、OD,根據(jù)三角形中位線求出即可.【詳解】解:∵四邊形ABCD是矩形,∴∠ABC=90°,BD=AC,BO=OD,∵AB=6cm,BC=8cm,∴由勾股定理得:(cm),∴DO=5cm,∵點(diǎn)E、F分別是AO、AD的中點(diǎn),∴EF=OD=2.5cm,故答案為:2.5.【點(diǎn)睛】本題考查了矩形的性質(zhì)的應(yīng)用,勾股定理,三角形中位線的應(yīng)用,解本題的關(guān)鍵是求出OD長(zhǎng)及證明EF=OD.3、10【解析】【分析】根據(jù)正方形的性質(zhì),結(jié)合題意易求證,,,即可利用“ASA”證明,得出.最后根據(jù)勾股定理可求出,即正方形的面積為10.【詳解】∵四邊形ABCD是正方形,∴,,∴.根據(jù)題意可知:,,∴,,∴在和中,,∴,∴.∵在中,,∴正方形ABCD的面積是10.故答案為:10.【點(diǎn)睛】本題考查正方形的性質(zhì),全等三角形的判定和性質(zhì)以及勾股定理.利用數(shù)形結(jié)合的思想是解答本題的關(guān)鍵.4、15或24或【解析】【分析】分三種情形討論求解即可.【詳解】解:①如圖1中,當(dāng)NM=ND時(shí),∴∠NDM=∠NMD,∵∠MND=∠CBD,∴∠BDN=∠BND,∴BD=BN==15;②如圖2中,當(dāng)DM=DN時(shí),此時(shí)M與B重合,∴BC=CN=12,∴BN=24;③如圖3中,當(dāng)MN=MD時(shí),∴∠NDM=∠MND,∵∠MND=∠CBD,∴∠NDM=∠MND=∠CBD,∴BN=DN,設(shè)BN=DN=x,在Rt△DNC中,∵DN2=CN2+CD2,∴x2=(12-x)2+92,∴x=,綜上,當(dāng)DMN是等腰三角形時(shí),線段BN的長(zhǎng)為15或24或.故答案為:15或24或.【點(diǎn)睛】本題考查了矩形的性質(zhì)、等腰三角形的判定和性質(zhì)、勾股定理等知識(shí),解題的關(guān)鍵是學(xué)會(huì)用分類討論的思想思考問(wèn)題,注意不能漏解.5、16【解析】【分析】由菱形的性質(zhì)和三角形中位線定理即可得菱形的邊長(zhǎng),從而可求得菱形的周長(zhǎng).【詳解】∵四邊形ABCD是菱形,且對(duì)角線相交于點(diǎn)O∴點(diǎn)O是AC的中點(diǎn)∵E為DC的中點(diǎn)∴OE為△CAD的中位線∴AD=2OE=2×2=4∴菱形的周長(zhǎng)為:4×4=16故答案為:16【點(diǎn)睛】本題考查了菱形的性質(zhì)及三角形中位線定理、菱形周長(zhǎng)等知識(shí),掌握這些知識(shí)是解答本題的關(guān)鍵.三、解答題1、【分析】(1)根據(jù)折疊的性質(zhì)可得:∠1=∠2,再由矩形的性質(zhì),可得∠2=∠3,從而得到∠1=∠3,即可求解;(2)設(shè)FD=x,則AF=CF=8-x,再由勾股定理,可得DF=3,從而得到CF=5,即可求解;(3)連接PB,根據(jù)折疊的性質(zhì)可得△ECP≌△BCP,從而得到PE=PB,進(jìn)而得到當(dāng)點(diǎn)F、P、B三點(diǎn)共線時(shí),PE+PF最小,最小值為BF的長(zhǎng),再由勾股定理,即可求解.【詳解】(1)解:△ACF是等腰三角形,理由如下:如圖,由折疊可知,∠1=∠2,∵四邊形ABCD是矩形,∴AB∥CD,∴∠2=∠3,∴∠1=∠3,∴AF=CF,∴△ACF是等腰三角形;(2)∵四邊形ABCD是矩形且AB=8,BC=4,∴AD=BC=4,CD=AB=8,∠D=90°,設(shè)FD=x,則AF=CF=8-x,在Rt△AFD中,根據(jù)勾股定理得AD2+DF2=AF2,∴42+x2=(8-x)2,解得x=3,即DF=3,∴CF=8-3=5,∴;(3)如圖,連接PB,根據(jù)折疊得:CE=CB,∠ECP=∠BCP,∵CP=CP,∴△ECP≌△BCP,∴PE=PB,∴PE+PF=PE+PB,∴當(dāng)點(diǎn)F、P、B三點(diǎn)共線時(shí),PE+PF最小,最小值為BF的長(zhǎng),由(2)知:CF=5,∵BC=4,∠BCF=90°,∴,即PE+PF最小值為.【點(diǎn)睛】本題主要考查了矩形與折疊問(wèn)題,等腰三角形的判定,熟練掌握矩形和折疊的性質(zhì)是解題的關(guān)鍵.2、見(jiàn)解析【分析】由已知條件可得DF=AB及DF∥AB,從而可得四邊形ABFD為平行四邊形,則問(wèn)題解決.【詳解】∵是的中位線∴DE∥AB,,AD=DC∴DF∥AB∵EF=DE∴DF=AB∴四邊形ABFD為平行四邊形∴AD=BF∴BF=DC【點(diǎn)睛】本題主要考查了平行四邊形的判定與性質(zhì)、三角形中位線的性質(zhì)定理,掌握它們是解答本題的關(guān)鍵.當(dāng)然本題也可以用三角形全等的知識(shí)來(lái)解決.3、見(jiàn)解析【分析】首先根據(jù)平行四邊形的性質(zhì)推出AD=CB,AD∥BC,得到∠ADE=∠CBF,從而證明△ADE≌△CBF,得到∠AED=∠CFB,即可證明結(jié)論.【詳解】證:∵四邊形ABCD是平行四邊形,∴AD=CB,AD∥BC,∴∠ADE=∠CBF,在△ADE和△CBF中,∴△ADE≌△CBF(SAS),∴∠AED=∠CFB,∴AE∥CF.【點(diǎn)睛】本題考查平行四邊形的性質(zhì),以及全等三角形的判定與性質(zhì)等,掌握平行四邊形的基本性質(zhì),準(zhǔn)確證明全等三角形并利用其性質(zhì)是解題關(guān)鍵.4、(1)見(jiàn)解析;(2)圖②中,圖③中【分析】(1)在上截取,連接,可先證得,則,,進(jìn)而可證得△AED為等腰直角三角形,即可得證;(2)仿照(1)的證明思路,作出相應(yīng)的輔助線,即可證得對(duì)應(yīng)的,與之間的數(shù)量關(guān)系.【詳解】解:(1)證明:如圖,在上截取,連接.∵四邊形是正方形,,,,,,,,,,,,,,∴△ECF是等腰直角三角形,在中,,,;
(2)圖②:,理由如下:如下圖,在延長(zhǎng)線上截取,連接.
∵四邊形是正方形,,,,,,,,,,,,,∴△ECF是等腰直角三角形,在中,,,;圖③:如圖,在DE上截取DF=BE,連接.
∵四邊形是正方形,,,,,,,,,,,,,∴△ECF是等腰直角三角形,在中,,,.【點(diǎn)睛】本題是四邊形綜合題,考查了正方形的性質(zhì)、全等三角形的判定及性質(zhì)、等腰直角三角形、勾股定理等相關(guān)知識(shí),正確作出輔助線構(gòu)造全等三角形是解決本題的關(guān)鍵.5、(1)證明見(jiàn)解析;(2)【分析】(1)通過(guò)證明△CEK≌△BEF及△KED≌△FED即可證明;(2)延長(zhǎng)CE到點(diǎn)P,使EP=CE,先證明點(diǎn)G在過(guò)點(diǎn)P且與CE垂直的直線PN上運(yùn)動(dòng),再作點(diǎn)E關(guān)于點(diǎn)P的對(duì)稱點(diǎn)Q,連接BQ交PN于點(diǎn)G,此時(shí)△BEG的周長(zhǎng)最小,求出此時(shí)GE+GB+BE的值即可.【詳解】證明:(1)∵四邊形ABCD是平行四邊形,∴,∴∠K=∠ABE,∵BF⊥AB,∴∠ABF=90°,∴∠ABE=90°﹣∠EBF=∠BFE,∴∠K=∠BFE,∵BE=CE,∴△CEK≌△BEF(AAS),∴CK=BF,EK=EF,∵,∴∠KED=∠EBC,∠FED=∠ECB,∵BE=CE,∠EBC=∠ECB,∴∠KED=∠FED
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 鵝口瘡護(hù)理的多學(xué)科合作模式
- 初中人文考試試題及答案
- 2025-2026人教版小學(xué)二年級(jí)科學(xué)上學(xué)期期末測(cè)試卷
- 焊工多項(xiàng)選擇試題及答案
- 2025-2026人教版五年級(jí)科學(xué)期末測(cè)試
- 磷化、電泳表面處理建設(shè)項(xiàng)目環(huán)評(píng)報(bào)告
- 衛(wèi)生員院感培訓(xùn)制度
- 衛(wèi)生所院感防控制度
- 衛(wèi)生監(jiān)督抽檢制度
- 醫(yī)院衛(wèi)生巡檢制度
- 急性發(fā)熱課件
- 農(nóng)村建房合同協(xié)議書電子版(2025年版)
- SJG 46-2023 建設(shè)工程安全文明施工標(biāo)準(zhǔn)
- 部編版小學(xué)語(yǔ)文四年級(jí)上冊(cè)習(xí)作《我的心兒怦怦跳》精美課件
- DLT 593-2016 高壓開關(guān)設(shè)備和控制設(shè)備
- DB11∕T 190-2016 公共廁所建設(shè)標(biāo)準(zhǔn)
- 房屋過(guò)戶提公積金合同
- D-二聚體和FDP聯(lián)合檢測(cè)在臨床中的應(yīng)用現(xiàn)狀
- 高一英語(yǔ)完形填空專項(xiàng)訓(xùn)練100(附答案)及解析
- 婚禮中心工作總結(jié)
- 公路水運(yùn)工程生產(chǎn)安全事故應(yīng)急預(yù)案
評(píng)論
0/150
提交評(píng)論