版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
京改版數(shù)學(xué)9年級上冊期中試題考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題26分)一、單選題(6小題,每小題2分,共計12分)1、二次函數(shù)的頂點坐標(biāo)為,圖象如圖所示,有下列四個結(jié)論:①;②;③④,其中結(jié)論正確的個數(shù)為(
)A.個 B.個 C.個 D.個2、如圖,AD//BC,∠D=90°,AD=3,BC=4,DC=6,若在邊DC上有點P,使△PAD與△PBC相似,則這樣的點P有(
)A.1個 B.2個 C.3個 D.4個3、已知二次函數(shù)y=ax2+bx+c,其中a<0,若函數(shù)圖象與x軸的兩個交點均在負(fù)半軸,則下列判斷錯誤的是(
)A.a(chǎn)bc<0 B.b>0 C.c<0 D.b+c<04、二次函數(shù)的圖象的對稱軸是(
)A. B. C. D.5、將拋物線C1:y=(x-3)2+2向左平移3個單位長度,得到拋物線C2,拋物線C2與拋物線C3關(guān)于x軸對稱,則拋物線C3的解析式為().A.y=x2-2 B.y=-x2+2 C.y=x2+2 D.y=-x2-26、如圖,Rt△ABC中,,,,D為BC的中點,若動點E以1cm/s的速度從A點出發(fā),沿AB向B點運動,設(shè)E點的運動時間為t秒,連接DE,當(dāng)以B、D、E為頂點的三角形與△ABC相似時,t的值為()A.2或3.5 B.2或3.2 C.2或3.4 D.3.2或3.4二、多選題(7小題,每小題2分,共計14分)1、下列函數(shù)中,當(dāng)0≤x≤2時,y隨x的增大而減小的是()A.y=﹣x+1 B.y=x2﹣4x+5 C.y=x2 D.y=2、在反比例函數(shù)y=的圖象中,陰影部分的面積等于4的是()A. B.C. D.3、如圖,CB=CA,∠ACB=90°,點D在邊BC上(與B、C不重合),四邊形ADEF為正方形,過點F作FG⊥CA,交CA的延長線于點G,連接FB,交DE于點Q,給出以下結(jié)論,其中正確的結(jié)論是()A.AC=FG B.S△FAB:S四邊形CBFG=1:2 C.∠ABC=∠ABF D.AD2=FQ?AC4、如圖,,AD與BC相交于點O,那么在下列比例式中,不正確的是(
)A. B.C. D.5、如圖,在矩形、銳角三角形、正五邊形、直角三角形的外邊加一個寬度一樣的外框,保證外框的邊與原圖形的對應(yīng)邊平行,則外框與原圖一定相似的有()A. B.C. D.6、如圖,在中,,,,將沿圖示中的虛線剪開,剪下的陰影三角形與原三角形不相似的是(
)A. B.C. D.7、下列四個命題中正確的命題有(
)A.兩個矩形一定相似 B.兩個菱形都有一個角是40°,那么這兩個菱形相似C.兩個正方形一定相似 D.有一個角相等的兩個等腰梯形相似第Ⅱ卷(非選擇題74分)三、填空題(7小題,每小題2分,共計14分)1、在平面直角坐標(biāo)系中,已知和是拋物線上的兩點,將拋物線的圖象向上平移n(n是正整數(shù))個單位,使平移后的圖象與x軸沒有交點,則n的最小值為_____.2、如圖,在△ABC中,∠B=45°,tanC=,AB=,則AC=_____.3、如圖,D是的邊BC上一點,,,.如果的面積為15,那么的面積為______.4、如圖所示,在中,,,.(1)如圖1,四邊形為的內(nèi)接正方形,則正方形的邊長為_________;(2)如圖2,若內(nèi)有并排的n個全等的正方形,它們組成的矩形內(nèi)接于,則正方形的邊長為_________.5、小亮同學(xué)在探究一元二次方程的近似解時,填好了下面的表格:根據(jù)以上信息請你確定方程的一個解的范圍是________.6、對于任意實數(shù),拋物線與軸都有公共點.則的取值范圍是_______.7、如圖,AB是⊙O的直徑,AC是⊙O的切線,切點為A,BC交⊙O于點D,直線DE是⊙O的切線,切點為D,交AC于E,若⊙O半徑為1,BC=4,則圖中陰影部分的面積為_____.四、解答題(6小題,每小題10分,共計60分)1、如圖,公路為東西走向,在點北偏東方向上,距離千米處是村莊,在點北偏東方向上,距離千米處是村莊;要在公路旁修建一個土特產(chǎn)收購站(取點在上),使得,兩村莊到站的距離之和最短,請在圖中作出的位置(不寫作法)并計算:(1),兩村莊之間的距離;(2)到、距離之和的最小值.(參考數(shù)據(jù):sin36.5°=0.6,cos36.5°=0.8,tan36.5°=0.75計算結(jié)果保留根號.)2、受“新冠”疫情的影響,某銷售商在網(wǎng)上銷售A、B兩種型號的“手寫板”,獲利頗豐.已知A型,B型手寫板進價、售價和每日銷量如表格所示:進價(元/個)售價(元/個)銷量(個/日)A型600900200B型8001200400根據(jù)市場行情,該銷售商對A手寫板降價銷售,同時對B手寫板提高售價,此時發(fā)現(xiàn)A手寫板每降低5就可多賣1,B手寫板每提高5就少賣1,要保持每天銷售總量不變,設(shè)其中A手寫板每天多銷售x,每天總獲利的利潤為y(1)求y、x間的函數(shù)關(guān)系式并寫出x取值范圍;(2)要使每天的利潤不低于234000元,直接寫出x的取值范圍;(3)該銷售商決定每銷售一個B手寫板,就捐a元給因“新冠疫情”影響的困難家庭,當(dāng)時,每天的最大利潤為229200元,求a的值.3、小明和小麗先后從A地出發(fā)同一直道去B地,設(shè)小麗出發(fā)第時,小麗、小明離B地的距離分別為、,與x之間的數(shù)表達式,與x之間的函數(shù)表達式是.(1)小麗出發(fā)時,小明離A地的距離為.(2)小麗發(fā)至小明到達B地這段時間內(nèi),兩人何時相距最近?最近距離是多少?4、如圖,拋物線與軸交于兩點,與軸交于點,且,.(1)求拋物線的表達式;(2)點是拋物線上一點.①在拋物線的對稱軸上,求作一點,使得的周長最小,并寫出點的坐標(biāo);②連接并延長,過拋物線上一點(點不與點重合)作軸,垂足為,與射線交于點,是否存在這樣的點,使得,若存在,求出點的坐標(biāo);若不存在,請說明理由.5、如圖所示,直線y=x+2與坐標(biāo)軸交于A、B兩點,與反比例函數(shù)y=(x>0)交于點C,已知AC=2AB.(1)求反比例函數(shù)解析式;(2)若在點C的右側(cè)有一平行于y軸的直線,分別交一次函數(shù)圖象與反比例函數(shù)圖象于D、E兩點,若CD=CE,求點D坐標(biāo).6、為增加農(nóng)民收入,助力鄉(xiāng)村振興.某駐村干部指導(dǎo)農(nóng)戶進行草莓種植和銷售,已知草莓的種植成本為8元/千克,經(jīng)市場調(diào)查發(fā)現(xiàn),今年五一期間草莓的銷售量y(千克)與銷售單價x(元/千克)(8≤x≤40)滿足的函數(shù)圖象如圖所示.(1)根據(jù)圖象信息,求y與x的函數(shù)關(guān)系式;(2)求五一期間銷售草莓獲得的最大利潤.-參考答案-一、單選題1、A【解析】【分析】根據(jù)二次函數(shù)的性質(zhì)和已知條件,對每一項逐一進行判斷即可.【詳解】解:由圖像可知a<0,c>0,∵對稱軸在正半軸,∴>0,∴b>0,∴,故①正確;當(dāng)x=2時,y>0,故,故③正確;函數(shù)解析式為:y=a(x-1)2+2=ax2-2ax+a+2假設(shè)成立,結(jié)合解析式則有a+2<,解得a<,故②,④正確;故選:A.【考點】本題考查了二次函數(shù)圖象與系數(shù)的關(guān)系,結(jié)合圖象,運用所學(xué)知識是解題關(guān)鍵.2、A【解析】【分析】根據(jù)已知分兩種情況△PAD∽△PBC或△PAD∽△CBP來進行分析,求得PD的長,從而確定P存在的個數(shù).【詳解】解:∵AD∥BC,∠D=90°,∴∠C=∠D=90°,∵DC=6,AD=3,BC=4,設(shè)PD=x,則PC=6-x.①若PD:PC=AD:BC,則△PAD∽△PBC,則,解得:x=,經(jīng)檢驗:x=是原方程的解;②若PD:BC=AD:PC,則△PAD∽△BPC,則,解得:x無解,所以這樣的點P存在的個數(shù)有1個.故選:A.【考點】此題考查了相似三角形的性質(zhì),熟練掌握相似三角形對應(yīng)邊成比例是解本題的關(guān)鍵.3、B【解析】【分析】根據(jù)函數(shù)圖象與x軸的兩個交點均在負(fù)半軸,可得拋物線的對稱軸與x軸負(fù)半軸相交,可以判斷a,b,c的符號,進而可得結(jié)論.【詳解】解:因為函數(shù)圖象與x軸的兩個交點均在負(fù)半軸,所以拋物線的對稱軸與x軸負(fù)半軸相交,所以﹣<0,c<0,因為a<0,所以b<0,因為c<0,所以abc<0,b+c<0,故選:B.【考點】本題考查了二次函數(shù)圖象與系數(shù)的關(guān)系,解決本題的關(guān)鍵是掌握二次函數(shù)圖象與系數(shù)的關(guān)系.4、A【解析】【分析】將二次函數(shù)寫成頂點式,進而可得對稱軸.【詳解】解:.二次函數(shù)的圖象的對稱軸是.故選A.【考點】本題考查了二次函數(shù)的性質(zhì),將一般式轉(zhuǎn)化為頂點式是解題的關(guān)鍵.5、D【解析】【分析】根據(jù)拋物線C1的解析式得到頂點坐標(biāo),利用二次函數(shù)平移的規(guī)律:左加右減,上加下減,并根據(jù)平移前后二次項的系數(shù)不變可得拋物線C2的頂點坐標(biāo),再根據(jù)關(guān)于x軸對稱的兩條拋物線的頂點橫坐標(biāo)相等,縱坐標(biāo)互為相反數(shù),二次項系數(shù)互為相反數(shù)可得到拋物線C3所對應(yīng)的解析式.【詳解】解:∵拋物線C1:y=(x-3)2+2,其頂點坐標(biāo)為(3,2)∵向左平移3個單位長度,得到拋物線C2∴拋物線C2的頂點坐標(biāo)為(0,2)∵拋物線C2與拋物線C3關(guān)于x軸對稱∴拋物線C3的橫坐標(biāo)不變,縱坐標(biāo)互為相反數(shù),二次項系數(shù)互為相反數(shù)∴拋物線C3的頂點坐標(biāo)為(0,-2),二次項系數(shù)為-1∴拋物線C3的解析式為y=-x2-2故選:D.【考點】本題主要考查了二次函數(shù)圖象的平移、對稱問題,熟練掌握平移的規(guī)律以及關(guān)于x軸對稱的兩條拋物線的頂點的橫坐標(biāo)相等,縱坐標(biāo)互為相反數(shù),二次項系數(shù)互為相反數(shù)是解題的關(guān)鍵.6、A【解析】【分析】求出AB=2BC=4cm,分兩種情況:①當(dāng)∠EDB=∠ACB=90°時,DE∥AC,△EBD∽△ABC,得出AE=BE=AB=2cm,即可得出t=2s;②當(dāng)∠DEB=∠ACB=90°時,證出△DBE∽△ABC,得出∠BDE=∠A=30°,因此BE=BD=cm,得出AE=3.5cm,t=3.5s;即可得出結(jié)果.【詳解】解:∵∠ACB=90°,∠ABC=60°,∴∠A=30°,∴AB=2BC=4cm,分兩種情況:①當(dāng)∠EDB=∠ACB=90°時,DE∥AC,所以△EBD∽△ABC,E為AB的中點,AE=BE=AB=2cm,∴t=2s;②當(dāng)∠DEB=∠ACB=90°時,∵∠B=∠B,∴△DBE∽△ABC,∴∠BDE=∠A=30°,∵D為BC的中點,∴BD=BC=1cm,∴BE=BD=0.5cm,∴AE=3.5cm,∴t=3.5s;綜上所述,當(dāng)以B、D、E為頂點的三角形與△ABC相似時,t的值為2或3.5,故選A.【考點】本題考查了相似三角形的判定、平行線的性質(zhì)、含30°角的直角三角形的性質(zhì)等知識;熟記相似三角形的判定方法是解決問題的關(guān)鍵,注意分類討論.二、多選題1、AB【解析】【分析】利用一次函數(shù),二次函數(shù),反比例函數(shù)及正比例函數(shù)的性質(zhì)判定即可.【詳解】解:A、y=-x+1,∵k=-1<0,∴當(dāng)0≤x≤2時y隨x的增大而減小,說法正確,B、y=x2-4x+5,∴拋物線開口向上,對稱軸為直線x=2,∴當(dāng)0≤x≤2時y隨x的增大而減小,說法正確,C、y=x2,∴拋物線開口向上,對稱軸為y軸,∴當(dāng)0≤x≤2時y隨x的增大而增大,說法錯誤;D、y=,∴雙曲線在一,三象限,在每個象限y隨x的增大而減小,∴當(dāng)0<x≤2時y隨x的增大而減小,而x不能為0,故原說法錯誤,故答案為AB.【考點】本題綜合考查二次函數(shù)、反比例函數(shù)、一次函數(shù)的增減性(單調(diào)性),熟練掌握二次函數(shù)、一次函數(shù)、反比例函數(shù)的性質(zhì)是解題的關(guān)鍵.2、ACD【解析】【分析】根據(jù)反比例函數(shù)y=中k的幾何意義,過雙曲線上任意一點引x軸、y軸垂線,所得矩形面積為|k|解答即可.【詳解】解:A、陰影圖形面積為|k|=4;B、陰影是梯形,面積大于4;C、D陰影圖形面積均為兩個三角形面積之和,為2×(|k|)=4.故選:ACD.【考點】主要考查了反比例函數(shù)y=中k的幾何意義,即過雙曲線上任意一點引x軸、y軸垂線,所得矩形面積為|k|,是經(jīng)??疾榈囊粋€知識點;這里體現(xiàn)了數(shù)形結(jié)合的思想,做此類題一定要正確理解k的幾何意義.圖象上的點與原點所連的線段、坐標(biāo)軸、向坐標(biāo)軸作垂線所圍成的直角三角形面積S的關(guān)系即S=|k|.3、ABCD【解析】【分析】根據(jù)正方形的性質(zhì)及垂直的定義證明△CAD≌△GFA,即可判斷A選項;證明四邊形CBFG是矩形,由此判斷B選項;根據(jù)矩形的性質(zhì)及等腰直角三角形的性質(zhì)即可判斷C選項;證明△CAD∽△EFQ,即可判斷D選項.【詳解】解:∵四邊形ADEF為正方形,∴,∴,∵FG⊥CA,∴,∴,∴,∴△CAD≌△GFA,∴AC=FG,故A選項正確;∵,∴GF∥BC,∵CB=CA,CA=GF,∴GF=BC,∴四邊形CBFG是平行四邊形,∵,∴四邊形CBFG是矩形,∴S△FAB:S四邊形CBFG=1:2,故B選項正確;∵四邊形CBFG是矩形,∴,∵CB=CA,∠ACB=90°,∴,∴,故C選項正確;∵四邊形ADEF為正方形,∴,AD=EF,∴,∵四邊形CBFG是矩形,∴,∴,∴,∵,∴,∵,∴△CAD∽△EFQ,∴,∵AD=EF,∴AD2=FQ?AC,故D選項正確;故選:ABCD.【考點】此題考查矩形的判定及性質(zhì),等腰直角三角形的性質(zhì),正方形的性質(zhì),全等三角形的判定及性質(zhì),相似三角形的判定及性質(zhì),熟記各知識點并熟練應(yīng)用解決問題是解題的關(guān)鍵.4、ABD【解析】【分析】先判斷三角形相似,再根據(jù)相似三角形的對應(yīng)邊成比例,則可判斷A、B、C的正確性,根據(jù)基本事實,一組平行線被兩條直線所截的對應(yīng)線段成比例,判斷D的正確性.【詳解】解:∵,∴∠A=∠D,∠B=∠C,∴,∴故A不正確;故B不正確;故C正確;∵,∴即故D不正確;故選:ABD.【考點】本題考查了相似三角形的判定和相似三角形的性質(zhì)以及基本事實的應(yīng)用,根據(jù)性質(zhì)找到對應(yīng)的邊成比例是解答此題的關(guān)鍵.5、BCD【解析】【分析】根據(jù)相似多邊形的判定定理對各個選項進行分析,從而確定最后答案.【詳解】解:矩形不相似,因為其對應(yīng)角的度數(shù)一定相同,但對應(yīng)邊的比值不一定相等,不符合相似的條件,故A不符合題意;銳角三角形、正五邊形、直角三角形的原圖與外框相似,因為其對應(yīng)角均相等,對應(yīng)邊均對應(yīng)成比例,符合相似的條件,故B、C、D符合題意.故選BCD.【考點】此題主要考查了相似圖形判定,注意邊數(shù)相同、各角對應(yīng)相等、各邊對應(yīng)成比例的兩個多邊形是相似多邊形.6、CD【解析】【分析】根據(jù)相似三角形的判定定理對各選項進行逐一判定即可.【詳解】解:A、陰影部分的三角形與原三角形有兩個角相等,故兩三角形相似,故本選項錯誤;B、陰影部分的三角形與原三角形有兩個角相等,故兩三角形相似,故本選項錯誤;C、兩三角形的對應(yīng)邊不成比例,故兩三角形不相似,故本選項正確.D、,兩三角形對應(yīng)邊不成比例,故兩三角形不相似,故本選項正確;故選:.【考點】本題考查的是相似三角形的判定,熟知相似三角形的判定定理是解答此題的關(guān)鍵.7、BC【解析】【分析】根據(jù)兩個圖形相似的性質(zhì)及判定方法,對應(yīng)邊的比相等,對應(yīng)角相等,兩個條件同時滿足來判斷正誤.【詳解】解:A兩個矩形對應(yīng)角都是直角相等,對應(yīng)邊不一定成比例,所以不一定相似,故本小題錯誤;B兩個菱形有一個角相等,則其它對應(yīng)角也相等,對應(yīng)邊成比例,所以一定相似,故本小題正確;C兩個正方形一定相似,正確;D有一個角相等的兩個等腰梯形,對應(yīng)角一定相等,但對應(yīng)邊的比不一定相等,故本小題錯誤.故選:BC.【考點】本題考查的是相似多邊形的判定及菱形,矩形,正方形,等腰梯形的性質(zhì)及其定義.三、填空題1、4【解析】【分析】通過A、B兩點得出對稱軸,再根據(jù)對稱軸公式算出b,由此可得出二次函數(shù)表達式,從而算出最小值即可推出n的最小值.【詳解】∵A、B的縱坐標(biāo)一樣,∴A、B是對稱的兩點,∴對稱軸,即,∴b=-4.∴拋物線解析式為:.∴拋物線頂點(2,-3).∴滿足題意n的最小值為4,故答案為:4.【考點】本題考查二次函數(shù)對稱軸的性質(zhì),頂點式的變形及拋物線的平移,關(guān)鍵在于根據(jù)對稱軸的性質(zhì)從題意中判斷出對稱軸.2、【解析】【分析】先過點A作AD⊥BC,垂足是點D,得出AD2+BD2=AB2=2,再根據(jù)∠B=45°,得出AD=BD=1,然后根據(jù)tanC=,得出=,CD=2,最后根據(jù)勾股定理即可求出AC.【詳解】過點A作AD⊥BC,垂足是點D,∵AB=,∴AD2+BD2=AB2=2,∵∠B=45°,∴∠BAD=∠B=45°,∴AD=BD,∴AD2=BD2=1,∴AD=BD=1,∵tanC=,∴=,∴CD=2,∴AC===.故答案為.【考點】此題考查了解直角三角形,用到的知識點是勾股定理、解直角三角形等,關(guān)鍵是作出輔助線,構(gòu)造直角三角形.3、5【解析】【分析】先證明△ACD∽△BCA,再根據(jù)相似三角形的性質(zhì)得到:△ACD的面積:△ABC的面積為1:4,再結(jié)合△ABD的面積為15,然后求出△ACD的面積即可.【詳解】∵,,∴,∵,,∴,∴的面積,故答案是:5.【考點】本題主要考查了相似三角形的判定和性質(zhì)、掌握相似三角形的面積比等于相似比的平方是解答本題的關(guān)鍵.4、
【解析】【分析】(1)根據(jù)題意畫出圖形,作CN⊥AB,再根據(jù)GF∥AB,可知△CGF∽△CAB,由相似三角形的性質(zhì)即可求出正方形的邊長;(2)設(shè)正方形的邊長是x,則過點C作CN⊥AB,垂足為N,交GF于點M,易得△CGF∽△CAB,所以,求出x值即可.【詳解】解:(1)在圖1中,作CN⊥AB,交GF于點M,交AB于點N.在Rt△ABC中,∵AC=4,BC=3,∴AB=5,∴AB?CN=BC?AC,∴CN=,∵GF∥AB,∴△CGF∽△CAB,∴CM:CN=GF:AB,設(shè)正方形邊長為x,則,解得:,∴正方形DEFG的邊長為;(2)如圖,過點C作CN⊥AB,垂足為N,交GF于點M,設(shè)小正方形的邊長為x,∵四邊形GDEF為矩形,∴GF∥AB,CM⊥GF,同理算出CN=,∴,即,∴,即小正方形的邊長是.【考點】本題主要考查了正方形,矩形的性質(zhì)和相似三角形的性質(zhì).會利用三角形相似中的相似比來得到相關(guān)的線段之間的等量關(guān)系是解題的關(guān)鍵.5、【解析】【分析】觀察表格可知,隨x的值逐漸增大,ax2+bx+c的值在3.24~3.25之間由負(fù)到正,故可判斷ax2+bx+c=0時,對應(yīng)的x的值在3.24<x<3.25之間.【詳解】根據(jù)表格可知,ax2+bx+c=0時,對應(yīng)的x的值在3.24<x<3.25之間.故答案為3.24<x<3.25.【考點】本題考查了一元二次方程的知識點,解題的關(guān)鍵是根據(jù)表格求出一元二次方程的近似根.6、【解析】【分析】由題意易得,則有,然后設(shè),由無論a取何值時,拋物線與軸都有公共點可進行求解.【詳解】解:由拋物線與軸都有公共點可得:,即,∴,設(shè),則,要使對于任意實數(shù),拋物線與軸都有公共點,則需滿足小于等于的最小值即可,∴,即的最小值為,∴;故答案為.【考點】本題主要考查二次函數(shù)的綜合,熟練掌握二次函數(shù)的綜合是解題的關(guān)鍵.7、【解析】【分析】連接OD、OE、AD,AD交OE于F,如圖,根據(jù)切線的性質(zhì)得到∠BAC=90°,利用余弦的定義可計算出∠B=60°,則根據(jù)圓周角定理得到∠ADB=90°,∠AOD=120°,于是可計算出BD=1,AD=,接著證明△ADE為等邊三角形,求出OF=,根據(jù)扇形的面積公式,利用S陰影部分=S四邊形OAED﹣S扇形AOD=S△ADE+S△AOD﹣S扇形AOD進行計算.【詳解】解:連接OD、OE、AD,AD交OE于F,如圖,∵AC是⊙O的切線,切點為A,∴AB⊥AC,∴∠BAC=90°,在Rt△ABC中,cosB===,∴∠B=60°,∴∠AOD=2∠B=120°,∵AB為直徑,∴∠ADB=90°,∴∠BAD=90°-∠B=90°-60°=30°,在Rt△ADB中,BD=AB=1,∴AD=BDtan60°=BD=,∵直線DE、EA都是⊙O的切線,∴EA=ED,∠DAE=90°-∠BAD=90°-30°=60°,∴△ADE為等邊三角形,而OA=OD,∴OE垂直平分AD,∴∠AFO=90°,在Rt△AOF中,∠OAF=30°,∴OF=OA=,∴S陰影部分=S四邊形OAED﹣S扇形AOD,=S△ADE+S△AOD﹣S扇形AOD,=×()2+××﹣,=.故答案為.【考點】本題考查圓的切線,圓周角定理,扇形面積公式,銳角三角函數(shù)求角,30°角直角三角形的性質(zhì),掌握和運用圓的切線,圓周角定理,扇形面積公式,銳角三角函數(shù)求角,30°角直角三角形的性質(zhì)是解題關(guān)鍵.四、解答題1、(1)M,N兩村莊之間的距離為千米;(2)村莊M、N到P站的最短距離和是5千米.【解析】【分析】(1)作N關(guān)于AB的對稱點N'與AB交于E,連結(jié)MN’與AB交于P,則P為土特產(chǎn)收購站的位置.求出DN,DM,利用勾股定理即可解決問題.(2)由題意可知,M、N到AB上點P的距離之和最短長度就是MN′的長.【詳解】解:作N關(guān)于AB的對稱點N'與AB交于E,連結(jié)MN’與AB交于P,則P為土特產(chǎn)收購站的位置.(1)在Rt△ANE中,AN=10,∠NAB=36.5°∴NE=AN?sin∠NAB=10?sin36.5°=6,AE=AN?cos∠NAB=10?cos36.5°=8,過M作MC⊥AB于點C,在Rt△MAC中,AM=5,∠MAB=53.5°∴AC=MA?sin∠AMB=MA?sin36.5°=3,MC=MA?cos∠AMC=MA?cos36.5°=4,過點M作MD⊥NE于點D,在Rt△MND中,MD=AE-AC=5,ND=NE-MC=2,∴MN==,即M,N兩村莊之間的距離為千米.(2)由題意可知,M、N到AB上點P的距離之和最短長度就是MN′的長.DN′=10,MD=5,在Rt△MDN′中,由勾股定理,得MN′==5(千米)∴村莊M、N到P站的最短距離和是5千米.【考點】本題考查解直角三角形,軸對稱變換等知識,解題的關(guān)鍵是熟練掌握基本知識,學(xué)會添加常用輔助線,構(gòu)造直角三角形解決問題.2、(1)(),且x為整數(shù);(2),且x為整數(shù);(3)a=30【解析】【分析】(1)根據(jù)題意列函數(shù)關(guān)系式和不等式組,于是得到結(jié)論;(2)根據(jù)題意列方程和不等式,于是得到結(jié)論;(3)根據(jù)題意列函數(shù)關(guān)系式,然后根據(jù)二次函數(shù)的性質(zhì)即可得到結(jié)論.【詳解】解:(1)由題意得,,解得,故的取值范圍為且為整數(shù);(2)的取值范圍為.理由如下:,當(dāng)時,,,,解得:或.要使,得;,;(3)設(shè)捐款后每天的利潤為元,則,對稱軸為,,,拋物線開口向下,當(dāng)時,隨的增大而增大,當(dāng)時,最大,,解得.【考點】本題考查了二次函數(shù)的應(yīng)用,一元一次不等式的應(yīng)用,列函數(shù)關(guān)系式等等,最大銷售利潤的問題常利用函數(shù)的增減性來解答.3、(1)250;(2)當(dāng)小麗出發(fā)第時,兩人相距最近,最近距離是【解析】【分析】(1)由x=0時,根據(jù)-求得結(jié)果即可;(2)求出兩人相距的函數(shù)表達式,求出最小值即可.【詳解】解(1)當(dāng)x=0時,=2250,=2000∴-=2250-2000=250(m)故答案為:250(2)設(shè)小麗出發(fā)第時,兩人相距,則即其中因此,當(dāng)時S有最小值,也就是說,當(dāng)小麗出發(fā)第時,兩人相距最近,最近距離是【考點】此題主要考查了二次函數(shù)的性質(zhì)的應(yīng)用,熟練掌握二次函數(shù)的性質(zhì)是解答本題的關(guān)鍵.4、(1);(2)①連接交拋物線對稱軸于點,則點即為所求,點的坐標(biāo)為;②存在;點的坐標(biāo)為或.【解析】【分析】(1)由,得到A(-2,0),C(3,0),即可寫出拋物線的交點式.(2)①因為關(guān)于對稱軸對稱,所以,由兩點之間線段最短,知連接交拋物線對稱軸于點,則點即為所求,先用待定系數(shù)法求出解析式,將對稱軸代入得到點坐標(biāo).②設(shè)點,根據(jù)拋物線的解析式、直線的解析式,寫出Q、M的坐標(biāo),分當(dāng)在上方、下方兩種情況,列關(guān)于m的方程,解出并取大于-2的解,即可寫出的坐標(biāo).【詳解】(1)∵,,結(jié)合圖象,得A(-2,0),C(3,0),∴拋物線可表示為:,∴拋物線的表達式為;(2)①∵關(guān)于對稱軸對稱,∴,∴連接交拋物線對稱軸于點,則點即為所求.將點,的坐標(biāo)代入一次函數(shù)表達式,得直線的函數(shù)表達式為.拋物線的對稱軸為直線,當(dāng)時,,故點的坐標(biāo)為;②存在;設(shè)點,則,.當(dāng)在上方時,,,,解得(舍)或;當(dāng)在下方時,,,,解得(舍)或,綜上所述,的值為或5,點的坐標(biāo)為或.【考點】本題考查了二次函數(shù)與一次函數(shù)綜合問題,熟練掌握待定系數(shù)法求解析式、最短路徑問題是解題的基礎(chǔ),動點問題中分類討論與數(shù)形結(jié)合轉(zhuǎn)化為方程問題是解題的關(guān)鍵.5
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026浙江嘉興海寧市遠(yuǎn)達教育集團招聘備考題庫(十)及一套參考答案詳解
- 2026貴州省審計廳所屬事業(yè)單位招聘2人備考題庫帶答案詳解
- 2026陜西省公務(wù)員招錄備考題庫(5272人)及完整答案詳解1套
- 隋唐時期介紹
- 職業(yè)健康檔案電子化管理的人才培養(yǎng)體系
- 職業(yè)健康師資教學(xué)檔案管理
- 職業(yè)健康促進的衛(wèi)生資源經(jīng)濟學(xué)
- 職業(yè)健康與職業(yè)康復(fù)的質(zhì)量控制體系
- 銅陵2025年安徽銅陵經(jīng)濟技術(shù)開發(fā)區(qū)招聘工作人員12人筆試歷年參考題庫附帶答案詳解
- 衢州2025年浙江衢州市柯城區(qū)招聘公辦幼兒園臨聘保育員48人筆試歷年參考題庫附帶答案詳解
- 安全生產(chǎn)目標(biāo)及考核制度
- (2026版)患者十大安全目標(biāo)(2篇)
- 大數(shù)據(jù)安全技術(shù)與管理
- 2026青島海發(fā)國有資本投資運營集團有限公司招聘計劃筆試備考試題及答案解析
- 2026年北大拉丁語標(biāo)準(zhǔn)考試試題
- 鼻飼技術(shù)操作課件
- 臨床護理操作流程禮儀規(guī)范
- 2025年酒店總經(jīng)理年度工作總結(jié)暨戰(zhàn)略規(guī)劃
- 空氣栓塞課件教學(xué)
- 置景服務(wù)合同范本
- 隧道掛防水板及架設(shè)鋼筋臺車施工方案
評論
0/150
提交評論