版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
人教版8年級數(shù)學下冊《平行四邊形》專題測評考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計20分)1、如圖,菱形ABCD的對角線AC、BD的長分別為6和8,O為AC、BD的交點,H為AB上的中點,則OH的長度為()A.3 B.4 C.2.5 D.52、直角三角形的兩條直角邊分別為5和12,那么這個三角形的斜邊上的中線長為()A.6 B.6.5 C.10 D.133、四邊形四條邊長分別是a,b,c,d,其中a,b為對邊,且滿足,則這個四邊形是()A.任意四邊形 B.平行四邊形 C.對角線相等的四邊形 D.對角線垂直的四邊形4、如圖,在?ABCD中,AD=2AB,F(xiàn)是AD的中點,作CE⊥AB于E,在線段AB上,連接EF、CF.則下列結(jié)論:①∠BCD=2∠DCF;②∠ECF=∠CEF;③S△BEC=2S△CEF;④∠DFE=3∠AEF,其中一定正確的是(
)A.②④ B.①②④
C.①②③④
D.②③④5、如圖,平行四邊形ABCD的周長為36,對角線AC,BD相交于點O,點E是CD的中點,BD=12,則△DOE的周長是()A.12 B.15 C.18 D.24第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計30分)1、如圖,在正方形ABCD中,點O在內(nèi),,則的度數(shù)為______.2、如圖,M,N分別是矩形ABCD的邊AD,AB上的點,將矩形ABCD沿MN折疊,使點A恰好落在邊BC上的點E處,連接MC,若AB=8,AD=16,BE=4,則MC的長為________.3、如圖,在平行四邊形ABCD中,,E、F分別在CD和BC的延長線上,,,則______.4、如圖,點P是矩形ABCD的對角線AC上一點,過點P作EF∥BC,分別交AB,CD于點E、F,連接PB、PD,若AE=2,PF=9,則圖中陰影面積為______;5、如圖,已知在矩形中,,,將沿對角線AC翻折,點B落在點E處,連接,則的長為_________.三、解答題(5小題,每小題10分,共計50分)1、如圖:在中,,,點為的中點,點為直線上的動點(不與點,重合),連接,,以為邊在的上方作等邊,連接.(1)是________三角形;(2)如圖1,當點在邊上時,運用(1)中的結(jié)論證明;(3)如圖2,當點在的延長線上時,(2)中的結(jié)論是否依然成立?若成立,請加以證明,若不成立,請說明理由.2、如圖,已知△ABC中,D是AB上一點,AD=AC,AE⊥CD,垂足是E,F(xiàn)是BC的中點,求證:BD=2EF.
3、如圖,在△ABC中,點D,E分別是AC,AB的中點,點F是CB延長線上的一點,且CF=3BF,連接DB,EF.(1)求證:四邊形DEFB是平行四邊形;(2)若∠ACB=90°,AC=12cm,DE=4cm,求四邊形DEFB的周長.4、如圖,四邊形ABCD是一個菱形綠草地,其周長為40m,∠ABC=120°,在其內(nèi)部有一個矩形花壇EFGH,其四個頂點恰好在菱形ABCD各邊中點,現(xiàn)準備在花壇中種植茉莉花,其單價為30元/m2,則需投資資金多少元?(取1.732)5、我們知道正多邊形的定義是:各邊相等,各角也相等的多邊形叫做正多邊形.(1)如圖①,在各邊相等的四邊形ABCD中,當AC=BD時,四邊形ABCD正四邊形;(填“是”或“不是”)(2)如圖②,在各邊相等的五邊形ABCDE中,AC=CE=EB=BD=DA,求證:五邊形ABCDE是正五邊形;(3)如圖③,在各邊相等的五邊形ABCDE中,減少相等對角線的條數(shù)也能判定它是正五邊形,問:至少需要幾條對角線相等才能判定它是正五邊形?請說明理由.-參考答案-一、單選題1、C【解析】【分析】根據(jù)菱形的性質(zhì)求得邊長,進而根據(jù)三角形中位線定理求得的長度.【詳解】∵四邊形ABCD是菱形,∴AO=OC,OB=OD,AO⊥BO,又∵點H是AD中點,∴OH是△DAB的中位線,在Rt△AOB中,AB5,則OHAB=2.5故選C【點睛】本題考查了菱形的性質(zhì),三角形中位線定理,求得的長是解題的關鍵.2、B【解析】【分析】根據(jù)勾股定理可求得直角三角形斜邊的長,再根據(jù)直角三角形斜邊上的中線等于斜邊的一半即可求解.【詳解】解:∵直角三角形兩直角邊長為5和12,∴斜邊=,∴此直角三角形斜邊上的中線的長==6.5.故選:B.【點睛】本題主要考查勾股定理及直角三角形斜邊中線定理,熟練掌握勾股定理及直角三角形斜邊中線定理是解題的關鍵.3、B【解析】【分析】根據(jù)完全平方公式分解因式得到a=b,c=d,利用邊的位置關系得到該四邊形的形狀.【詳解】解:,,,,∴a=b,c=d,∵四邊形四條邊長分別是a,b,c,d,其中a,b為對邊,∴c、d是對邊,∴該四邊形是平行四邊形,故選:B.【點睛】此題考查了完全平方公式分解因式,平行四邊形的判定方法,熟練掌握完全平方公式分解因式是解題的關鍵.4、B【解析】【分析】根據(jù)易得DF=CD,由平行四邊形的性質(zhì)AD∥BC即可對①作出判斷;延長EF,交CD延長線于M,可證明△AEF≌△DMF,可得EF=FM,由直角三角形斜邊上中線的性質(zhì)即可對②作出判斷;由△AEF≌△DMF可得這兩個三角形的面積相等,再由MC>BE易得S△BEC<2S△EFC,從而③是錯誤的;設∠FEC=x,由已知及三角形內(nèi)角和可分別計算出∠DFE及∠AEF,從而可判斷④正確與否.【詳解】①∵F是AD的中點,∴AF=FD,∵在?ABCD中,AD=2AB,∴AF=FD=CD,∴∠DFC=∠DCF,∵AD∥BC,∴∠DFC=∠FCB,∴∠DCF=∠BCF,∴∠BCD=2∠DCF,故①正確;②延長EF,交CD延長線于M,∵四邊形ABCD是平行四邊形,∴AB∥CD,∴∠A=∠MDF,∵F為AD中點,∴AF=FD,在△AEF和△DFM中,,∴△AEF≌△DMF(ASA),∴FE=MF,∠AEF=∠M,∵CE⊥AB,∴∠AEC=90°,∴∠AEC=∠ECD=90°,∵FM=EF,∴FC=FE,∴∠ECF=∠CEF,故②正確;③∵EF=FM,∴S△EFC=S△CFM,∵MC>BE,,∴S△BEC<2S△EFC,故S△BEC=2S△CEF,故③錯誤;④設∠FEC=x,則∠FCE=x,∴∠DCF=∠DFC=90°﹣x,∴∠EFC=180°﹣2x,∴∠EFD=90°﹣x+180°﹣2x=270°﹣3x,∵∠AEF=90°﹣x,∴∠DFE=3∠AEF,故④正確,故選:B.【點睛】本題考查了平行四邊形的性質(zhì),全等三角形的判定與性質(zhì),直角三角形斜邊上中線的性質(zhì),三角形的面積等知識,構(gòu)造輔助線證明三角形全等是本題的關鍵和難點.5、B【解析】【分析】根據(jù)平行四邊形的對邊相等和對角線互相平分可得,OB=OD,又因為E點是CD的中點,可得OE是△BCD的中位線,可得OE=BC,所以易求△DOE的周長.【詳解】解:∵?ABCD的周長為36,∴2(BC+CD)=36,則BC+CD=18.∵四邊形ABCD是平行四邊形,對角線AC,BD相交于點O,BD=12,∴OD=OB=BD=6.又∵點E是CD的中點,∴OE是△BCD的中位線,DE=CD,∴OE=BC,∴△DOE的周長=OD+OE+DE=BD+(BC+CD)=6+9=15,故選:B.【點睛】本題考查了三角形中位線定理、平行四邊形的性質(zhì).解題時,利用了“平行四邊形對角線互相平分”、“平行四邊形的對邊相等”的性質(zhì).二、填空題1、135°【解析】【分析】先根據(jù)正方形的性質(zhì)得到∠OAC+∠OAD=45°,再由∠OAC=∠ODA,推出∠ODA+∠OAD=45°,即可利用三角形內(nèi)角和定理求解.【詳解】解:∵四邊形ABCD是正方形,∴∠CAD=45°,∴∠OAC+∠OAD=45°,又∵∠OAC=∠ODA,∴∠ODA+∠OAD=45°,∴∠AOD=180°-∠ODA-∠OAD=135°,故答案為:135°.【點睛】本題主要考查了正方形的性質(zhì),三角形內(nèi)角和定理,解題的關鍵在于能夠熟練掌握正方形的性質(zhì).2、10【解析】【分析】過E作EF⊥AD于F,根據(jù)矩形ABCD沿MN折疊,使點A恰好落在邊BC上的點E處,得出△ANM≌△ENM,可得AM=EM,根據(jù)矩形ABCD,得出∠B=∠A=∠D=90°,再證四邊形ABEF為矩形,得出AF=BE=4,F(xiàn)E=AB=8,設AM=EM=m,F(xiàn)M=m-4,根據(jù)勾股定理,即,解方程m=10即可.【詳解】解:過E作EF⊥AD于F,∵矩形ABCD沿MN折疊,使點A恰好落在邊BC上的點E處,∴△ANM≌△ENM,∴AM=EM,∵矩形ABCD,∴∠B=∠A=∠D=90°,∵FE⊥AD,∴∠AFE=∠B=∠A=90°,∴四邊形ABEF為矩形,∴AF=BE=4,F(xiàn)E=AB=8,設AM=EM=m,F(xiàn)M=m-4在Rt△FEM中,根據(jù)勾股定理,即,解得m=10,∴MD=AD-AM=16-10=6,在Rt△MDC中,∴MC=.故答案為10.【點睛】本題考查折疊軸對稱性質(zhì),矩形判定與性質(zhì),勾股定理,掌握折疊軸對稱性質(zhì),矩形判定與性質(zhì),勾股定理是解題關鍵.3、8【解析】【分析】證明四邊形ABDE是平行四邊形,得到DE=CD=,,過點E作EH⊥BF于H,證得CH=EH,利用勾股定理求出EH,再根據(jù)30度角的性質(zhì)求出EF.【詳解】解:∵四邊形ABCD是平行四邊形,∴,AB=CD,∵,∴四邊形ABDE是平行四邊形,∴DE=CD=,,過點E作EH⊥BF于H,∵,∴∠ECH=,∴CH=EH,∵,,∴CH=EH=4,∵∠EHF=90°,,∴EF=2EH=8,故答案為:8.【點睛】此題考查了平行四邊形的判定及性質(zhì),勾股定理,直角三角形30度角的性質(zhì),熟記各知識點并應用解決問題是解題的關鍵.4、【解析】【分析】作PM⊥AD于M,交BC于N,根據(jù)矩形的性質(zhì)可得S△PEB=S△PFD即可求解.【詳解】解:作PM⊥AD于M,交BC于N.則有四邊形AEPM,四邊形DFPM,四邊形CFPN,四邊形BEPN都是矩形,,∴,,∴S陰=9+9=18,故答案為:18.【點睛】本題考查矩形的性質(zhì)、三角形的面積等知識,解題的關鍵是證明.5、【解析】【分析】過點E作EF⊥AD于點F,先證明CG=AG,再利用勾股定理列方程,求出AG的值,結(jié)合三角形的面積法和勾股定理,即可求解.【詳解】解:如圖所示:過點E作EF⊥AD于點F,有折疊的性質(zhì)可知:∠ACB=∠ACE,∵AD∥BC,∴∠ACB=∠CAD,∴∠CAD=∠ACE,∴CG=AG,設CG=x,則DG=8-x,∵在中,,∴x=5,∴AG=5,在中,EG=,EF⊥AD,∠AEG=90°,∴,∵在中,,、∴DF=8-=,∴在中,,故答案是:.【點睛】本題主要考查矩形的性質(zhì),折疊的性質(zhì),勾股定理,等腰三角形的判定定理,添加輔助線構(gòu)造直角三角形,是解題的關鍵.三、解答題1、(1)等邊;(2)見解析;(3)成立,理由見解析【分析】(1)根據(jù)含30度角的直角三角形的性質(zhì),直角三角形斜邊上的中線等于斜邊的一半可證明,即可證明△OBC是等邊三角形;
(2)先證明,即可利用SAS證明,得到;(3)先證明,即可利用SAS證明,得到.【詳解】(1)∵∠ACB=90°,∠A=30°,O是AB的中點,∴,∴△OBC是等邊三角形,故答案為:等邊;(2)由(1)可知,,,是等邊三角形,,,,即,在和中,,;(3)成立,證明:由(1)可知,,,是等邊三角形,,,,即,在和中,,.【點睛】本題主要考查了等邊三角形的性質(zhì)與判定,全等三角形的性質(zhì)與判定,含30度角的直角三角形的性質(zhì),直角三角形斜邊上的中線,熟練掌握等邊三角形的性質(zhì)與判定條件是解題的關鍵.2、見解析.【分析】先證明再證明EF是△CDB的中位線,從而可得結(jié)論.【詳解】證明:∵AD=AC,AE⊥CD∴CE=ED∵F是BC的中點∴EF是△CDB的中位線∴BD=2EF【點睛】本題考查的是等腰三角形的性質(zhì),三角形的中位線的性質(zhì),掌握“三角形的中位線平行于第三邊且等于第三邊的一半”是解題的關鍵.3、(1)見解析;(2)平行四邊形DEFB的周長=【分析】(1)證DE是△ABC的中位線,得DE∥BC,BC=2DE,再證DE=BF,即可得出四邊形DEFB是平行四邊形;(2)由(1)得:BC=2DE=8(cm),BF=DE=4cm,四邊形DEFB是平行四邊形,得BD=EF,再由勾股定理求出BD=10(cm),即可求解.【詳解】(1)證明:∵點D,E分別是AC,AB的中點,∴DE是△ABC的中位線,∴DE//BC,BC=2DE,∵CF=3BF,∴BC=2BF,∴DE=BF,∴四邊形DEFB是平行四邊形;(2)解:由(1)得:BC=2DE=8(cm),BF=DE=4cm,四邊形DEFB是平行四邊形,∴BD=EF,∵D是AC的中點,AC=12cm,∴CD=AC=6(cm),∵∠ACB=90°,∴BD==10(cm),∴平行四邊形DEFB的周長=2(DE+BD)=2(4+10)=28(cm).【點睛】本題考查了平行四邊形的判定與性質(zhì)、三角形中位線定理、勾股定理等知識;熟練掌握三角形中位線定理,證明四邊形DEFB為平行四邊形是解題的關鍵.4、2598元【分析】根據(jù)菱形的性質(zhì),先求出菱形的一條對角線,由勾股定理求出另一條對角線的長,由三角形的中位線定理,求出矩形的兩條邊,再求出矩形的面積,最后求得投資資金.【詳解】連接BD,AD相交于點O,如圖:∵四邊形ABCD是一個菱形,∴AC⊥BD,∵∠ABC=120°,∴∠A=60°,∴△ABD為等邊三角形,∵菱形的周長為40m,∴菱形的邊長為10m,∴BD=10m,BO=5m,∴在Rt△AOB中,m,∴AC=2OA=m,∵E、F、G、H分別是AB、BC、CD、DA的中點,∴EH=BD=5m,EF=AC=5m,∴S矩形=5×5=50m2,則需投資資金50×30=1500×1.732≈2598元【點睛】本題考查了二次根式的應用,勾股定理,菱形的性質(zhì),等邊三角形的判定與性質(zhì),三角形的中位線平行于第三邊并且等于第三邊的一半,熟記各性質(zhì)與定理是解題的關鍵.5、(1)是;(2)見解析;(3)至少需要3條對角線相等才能判定它是正五邊形,見解析【分析】(1)根據(jù)對角線相等的菱形是正方形,證明即可;(2)由SSS證明△ABC≌△BCD≌△CDE≌△DEA≌△EAB得出∠ABC=∠BCD=∠CDE=∠DEA=∠EAB,即可得出結(jié)論;(3)由SSS證明△ABE≌△BCA≌△DEC得出∠BAE=∠CBA=∠EDC,∠AEB=∠ABE=∠BAC=∠BCA=∠DCE=∠DEC,由SSS證明△ACE≌△BEC得出∠ACE=∠CEB,∠CEA=∠CAE=∠EBC=∠ECB,由四邊形ABCE內(nèi)角和為360°得出∠ABC+∠ECB=180°,證出AB∥CE,由平行線的性質(zhì)得出∠ABE=∠BEC,∠BAC=∠ACE,證出∠
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 互聯(lián)網(wǎng)法規(guī)培訓課件模板
- 2026年劇本殺運營公司異業(yè)合作洽談管理制度
- 互聯(lián)網(wǎng)會計面試自我介紹
- 人工智能推進基礎教育公平的現(xiàn)實隱憂與優(yōu)化路徑
- 2025年智能機器人行業(yè)創(chuàng)新與全球市場趨勢報告
- 2025年人工智能智能客服機器人技術創(chuàng)新在教育行業(yè)的應用可行性報告
- 邊防輔警面試題目及答案
- 保險公司紀檢巡查制度
- 分級護理制度的護理團隊建設
- 企業(yè)案經(jīng)日制度
- 企業(yè)財務知識培訓目的
- 警務基礎解脫技術
- xx市燃氣改造項目可行性研究報告
- 煤礦井下安全員考試題庫及答案
- 海洋油氣新型結(jié)構(gòu)材料分析報告
- 2025年無人駕駛公共交通產(chǎn)品競爭力分析可行性報告
- 自然分娩的好處
- 2025年電大法理學期末考試題庫及答案
- 2025年職業(yè)技能鑒定-冷作工-冷作工職業(yè)技能監(jiān)定(中級)歷年參考題庫含答案解析(5套)
- 新生兒查體步驟及內(nèi)容
- 2025至2030鸚鵡馴養(yǎng)繁殖行業(yè)市場發(fā)展現(xiàn)狀及競爭格局與投資價值報告
評論
0/150
提交評論