難點(diǎn)詳解人教版8年級(jí)數(shù)學(xué)上冊(cè)《全等三角形》專題訓(xùn)練試卷(含答案詳解)_第1頁(yè)
難點(diǎn)詳解人教版8年級(jí)數(shù)學(xué)上冊(cè)《全等三角形》專題訓(xùn)練試卷(含答案詳解)_第2頁(yè)
難點(diǎn)詳解人教版8年級(jí)數(shù)學(xué)上冊(cè)《全等三角形》專題訓(xùn)練試卷(含答案詳解)_第3頁(yè)
難點(diǎn)詳解人教版8年級(jí)數(shù)學(xué)上冊(cè)《全等三角形》專題訓(xùn)練試卷(含答案詳解)_第4頁(yè)
難點(diǎn)詳解人教版8年級(jí)數(shù)學(xué)上冊(cè)《全等三角形》專題訓(xùn)練試卷(含答案詳解)_第5頁(yè)
已閱讀5頁(yè),還剩17頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

人教版8年級(jí)數(shù)學(xué)上冊(cè)《全等三角形》專題訓(xùn)練考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫(xiě)在試卷規(guī)定位置上3、答案必須寫(xiě)在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來(lái)的答案,然后再寫(xiě)上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無(wú)效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計(jì)20分)1、如圖,AD是的角平分線,,垂足為F,,和的面積分別為60和35,則的面積為A.25 B. C. D.2、如圖,在△ABC中,∠C=90°,點(diǎn)D在AC上,DE∥AB,若∠CDE=165°,則∠B的度數(shù)為()A.15° B.55° C.65° D.75°3、如圖,在梯形中,,,,那么下列結(jié)論不正確的是()A. B.C. D.4、如圖,已知圖中的兩個(gè)三角形全等,則∠α的度數(shù)是()A.72° B.60° C.58° D.50°5、已知,則為(

)A.銳角三角形 B.鈍角三角形 C.直角三角形 D.以上都有可能第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計(jì)30分)1、如圖,在和中,,,,,以點(diǎn)為頂點(diǎn)作,兩邊分別交,于點(diǎn),,連接,則的周長(zhǎng)為_(kāi)_____.2、在△ABC中,AB=5,BC邊上的中線AD=4,則AC的長(zhǎng)m的取值范圍是_______.3、如圖,在△ABC中,∠ACB的平分線交AB于點(diǎn)D,

DE⊥AC于點(diǎn)E,F為BC上一點(diǎn),若DF=AD,△ACD與△CDF的面積分別為10和4,則△AED的面積為_(kāi)_____4、如圖所示,在中,∠B=90°,AD平分∠BAC,交BC于點(diǎn)D,DE⊥AC,垂足為點(diǎn)E,若BD=3,則DE的長(zhǎng)為_(kāi)_______.5、如圖,PM⊥OA,PN⊥OB,∠BOC=30°,PM=PN,則∠AOB=_________.三、解答題(5小題,每小題10分,共計(jì)50分)1、如圖,PA=PB,∠PAM+∠PBN=180°,求證:OP平分∠AOB.2、(1)如圖①,和都是等邊三角形,且點(diǎn),,在一條直線上,連結(jié)和,直線,相交于點(diǎn).則線段與的數(shù)量關(guān)系為_(kāi)____________.與相交構(gòu)成的銳角的度數(shù)為_(kāi)__________.(2)如圖②,點(diǎn),,不在同一條直線上,其它條件不變,上述的結(jié)論是否還成立.(3)應(yīng)用:如圖③,點(diǎn),,不在同一條直線上,其它條件依然不變,此時(shí)恰好有.設(shè)直線交于點(diǎn),請(qǐng)把圖形補(bǔ)全.若,則___________.3、如圖,已知:AO=BO,OC=OD.求證:∠ADC=∠BCD.4、已知如圖,△ABC中,AB=AC,D、E分別是AC、AB上的點(diǎn),M、N分別是CE、BD上的點(diǎn),若MA⊥CE,AN⊥BD,AM=AN.求證:EM=DN.5、已知△ABC與ΔADE均為等腰直角三角形,且∠BAC=∠DAE=90°,點(diǎn)D在直線BC上.(1)如圖1,當(dāng)點(diǎn)D在CB延長(zhǎng)線上時(shí),求證:BE⊥CD;(2)如圖2,當(dāng)D點(diǎn)不在直線BC上時(shí),BE、CD相交于M,①直接寫(xiě)出∠CME的度數(shù);②求證:MA平分∠CME-參考答案-一、單選題1、D【解析】【分析】過(guò)點(diǎn)D作DH⊥AC于H,根據(jù)角平分線上的點(diǎn)到角的兩邊距離相等可得DF=DH,再利用“HL”證明Rt△ADF和Rt△ADH全等,Rt△DEF和Rt△DGH全等,然后根據(jù)全等三角形的面積相等列方程求解即可.【詳解】如圖,過(guò)點(diǎn)D作于H,是的角平分線,,,在和中,,≌,,在和中,≌,,和的面積分別為60和35,,=12.5,故選D.【考點(diǎn)】本題考查了角平分線上的點(diǎn)到角的兩邊距離相等的性質(zhì),全等三角形的判定與性質(zhì),熟記掌握相關(guān)性質(zhì)、正確添加輔助線構(gòu)造出全等三角形是解題的關(guān)鍵.2、D【解析】【分析】根據(jù)鄰補(bǔ)角定義可得∠ADE=15°,由平行線的性質(zhì)可得∠A=∠ADE=15°,再根據(jù)三角形內(nèi)角和定理即可求得∠B=75°.【詳解】解:∵∠CDE=165°,∴∠ADE=15°,∵DE∥AB,∴∠A=∠ADE=15°,∴∠B=180°﹣∠C﹣∠A=180°﹣90°﹣15°=75°,故選D.【考點(diǎn)】本題考查了平行線的性質(zhì)、三角形內(nèi)角和定理等,熟練掌握平行線的性質(zhì)以及三角形內(nèi)角和定理是解題的關(guān)鍵.3、A【解析】【分析】A、根據(jù)三角形的三邊關(guān)系即可得出A不正確;B、通過(guò)等腰梯形的性質(zhì)結(jié)合全等三角形的判定與性質(zhì)即可得出∠ADB=90°,從而得出B正確;C、由梯形的性質(zhì)得出AB∥CD,結(jié)合角的計(jì)算即可得出∠ABC=60°,即C正確;D、由平行線的性質(zhì)結(jié)合等腰三角形的性質(zhì)即可得出∠DAC=∠CAB,即D正確.綜上即可得出結(jié)論.【詳解】A、∵AD=DC,∴AC<AD+DC=2CD,故A不正確;B、∵四邊形ABCD是等腰梯形,∴∠ABC=∠BAD,在△ABC和△BAD中,,∴△ABC≌△BAD(SAS),∴∠BAC=∠ABD,∵AB∥CD,∴∠CDB=∠ABD,∠ABC+∠DCB=180°,∵DC=CB,∴∠CDB=∠CBD=∠ABD=∠BAC,∵∠ACB=90°,∴∠CDB=∠CBD=∠ABD=30°,∴∠ABC=∠ABD+∠CBD=60°,B正確,C、∵AB∥CD,∴∠DCA=∠CAB,∵AD=DC,∴∠DAC=∠DCA=∠CAB,C正確.D、∵△DAB≌△CBA,∴∠ADB=∠BCA.∵AC⊥BC,∴∠ADB=∠BCA=90°,∴DB⊥AD,D正確;故選:A.【考點(diǎn)】本題考查了梯形的性質(zhì)、平行線的性質(zhì)、等腰三角形的性質(zhì)以及全等三角形的判定與性質(zhì),解題的關(guān)鍵是逐項(xiàng)分析四個(gè)選項(xiàng)的正誤.本題屬于中檔題,稍顯繁瑣,但好在該題為選擇題,只需由三角形的三邊關(guān)系得出A不正確即可.4、D【解析】【分析】根據(jù)∠α是a、c邊的夾角,50°的角是a、c邊的夾角,然后根據(jù)兩個(gè)三角形全等寫(xiě)出即可.【詳解】解:∵∠α是a、c邊的夾角,50°的角是a、c邊的夾角,又∵兩個(gè)三角形全等,∴∠α的度數(shù)是50°.故選:D.【考點(diǎn)】本題考查了全等三角形的性質(zhì),熟練掌握全等三角形的性質(zhì)是解答本題的關(guān)鍵.全等三角形的對(duì)應(yīng)角相等,對(duì)應(yīng)邊相等.對(duì)應(yīng)邊的對(duì)角是對(duì)應(yīng)角,對(duì)應(yīng)角的對(duì)邊是對(duì)應(yīng)邊.5、C【解析】【分析】根據(jù)∠A和∠B的度數(shù)可得與互余,從而得出為直角三角形.【詳解】解:,即與互余,則為直角三角形,故選C.【考點(diǎn)】此題考查的是直角三角形的判定,掌握有兩個(gè)內(nèi)角互余的三角形是直角三角形是解決此題的關(guān)鍵.二、填空題1、4【解析】【分析】延長(zhǎng)AC至E,使CE=BM,連接DE.證明△BDM≌△CDE(SAS),得出MD=ED,∠MDB=∠EDC,證明△MDN≌△EDN(SAS),得出MN=EN=CN+CE,進(jìn)而得出答案.【詳解】延長(zhǎng)AC至E,使CE=BM,連接DE.∵BD=CD,且∠BDC=140°,∴∠DBC=∠DCB=20°,∵∠A=40°,AB=AC=2,∴∠ABC=∠ACB=70°,∴∠MBD=∠ABC+∠DBC=90°,同理可得∠NCD=90°,∴∠ECD=∠NCD=∠MBD=90°,在△BDM和△CDE中,,∴△BDM≌△CDE(SAS),∴MD=ED,∠MDB=∠EDC,∴∠MDE=∠BDC=140°,∵∠MDN=70°,∴∠EDN=70°=∠MDN,在△MDN和△EDN中,,∴△MDN≌△EDN(SAS),∴MN=EN=CN+CE,∴△AMN的周長(zhǎng)=AM+MN+AN=AM+CN+CE+AN=AM+AN+CN+BM=AB+AC=4;故答案為:4.【考點(diǎn)】本題考查了全等三角形的判定與性質(zhì)、等腰三角形的性質(zhì)等知識(shí);構(gòu)造輔助線證明三角形全等是解題的關(guān)鍵.2、3<m<13【解析】【分析】延長(zhǎng)AD至E,使DE=AD=4,連接CE,利用SAS證明△ABD≌△ECD,可得CE=AB,再根據(jù)三角形的三邊的關(guān)系即可解決問(wèn)題.【詳解】解:如圖,延長(zhǎng)AD至E,使DE=AD=4,連接CE,∵AD是BC邊上的中線,∴BD=CD,在△ADB和△CDE中,,∴△ABD≌△ECD(SAS),∴CE=AB,在△ACE中,AE-CE<AC<AE+CE,∵CE=AB=5,AE=8,∴8-5<AC<8+5,∴3<AC<13,∴3<m<13.故答案為:3<m<13.【考點(diǎn)】此題考查了全等三角形的性質(zhì)與判定,三角形的三邊的關(guān)系,解題的關(guān)鍵是利用已知條件構(gòu)造全等三角形,然后利用三角形的三邊的關(guān)系解決問(wèn)題.3、3【解析】【分析】如圖(見(jiàn)解析),過(guò)點(diǎn)D作,根據(jù)角平分線的性質(zhì)可得,再利用三角形全等的判定定理得出,從而有,最后根據(jù)三角形面積的和差即可得出答案.【詳解】如圖,過(guò)點(diǎn)D作平分,又則解得故答案為:3.【考點(diǎn)】本題考查了角平分線的性質(zhì)、直角三角形全等的判定定理等知識(shí)點(diǎn),通過(guò)作輔助線,構(gòu)造兩個(gè)全等的三角形是解題關(guān)鍵.4、3【解析】【分析】根據(jù)角平分線的性質(zhì),即角平分線上任意一點(diǎn)到角兩邊的距離相等計(jì)算即可;【詳解】∵在中,∠B=90°,AD平分∠BAC,DE⊥AC,∴,∵,∴;故答案是3.【考點(diǎn)】本題主要考查了角平分線的性質(zhì)應(yīng)用,準(zhǔn)確計(jì)算是解題的關(guān)鍵.5、60°或60度【解析】【分析】根據(jù)到角的兩邊距離相等的點(diǎn)在角的平分線上判斷出OC平分∠AOB,再根據(jù)角平分線的定義可得∠AOB=2∠BOC.【詳解】解:∵PM⊥OA,PN⊥OB,PM=PN,∴OC平分∠AOB,∴∠AOB=2∠BOC,又∠BOC=30°,∴∠AOB=60°.故答案為:60°.【考點(diǎn)】本題考查了角平分線的判定,掌握角平分線的判定是解題的關(guān)鍵.三、解答題1、詳見(jiàn)解析【解析】【分析】過(guò)點(diǎn)P分別作PE⊥OM,PF⊥ON,垂足分別為E,F(xiàn),根據(jù)等角的補(bǔ)角相等可得出∠PAE=∠PBF,結(jié)合∠AEP=∠BFP、PA=PB即可證出△APE≌△BPF(AAS),根據(jù)全等三角形的性質(zhì)可得出PE=PF,進(jìn)而可證出OP平分∠AOB.【詳解】如圖,過(guò)點(diǎn)P分別作PE⊥OM,PF⊥ON,垂足分別為E,F(xiàn),則∠PEA=∠PFB=90°.又∵∠PAM+∠PBN=180°,∠PBF+∠PBN=180°,∴∠PAM=∠PBF,即∠PAE=∠PBF.在△PAE與△PBF中,,∴△PAE≌△PBF(AAS).∴PE=PF.又∵PE⊥OM,PF⊥ON,∴OP平分∠AOB.【考點(diǎn)】本題考查了全等三角形的判定與性質(zhì)以及角平分線的性質(zhì),利用全等三角形的判定定理AAS證出△APE≌△BPF是解題的關(guān)鍵.2、(1)相等,;(2)成立,證明見(jiàn)解析;(3)見(jiàn)解析,4.【解析】【分析】(1)證明△BCD≌△ACE,并運(yùn)用三角形外角和定理和等邊三角形的性質(zhì)求解即可;(2)是第(1)問(wèn)的變式,只是位置變化,結(jié)論保持不變;(3)根據(jù)∠AEC=30°,判定AE是等邊三角形CDE的高,運(yùn)用前面的結(jié)論,把條件集中到一個(gè)含有30°角的直角三角形中求解即可.【詳解】(1)相等;

.理由如下:∵和都是等邊三角形,∴,,,∴,在和中,∴.∴,.又∵,∴.(2)成立;理由如下:證明:∵和都是等邊三角形,∴,,,∴,在和中,∴.∴,.又∵,∴.(3)補(bǔ)全圖形(如圖),∵△CDE是等邊三角形,∴∠DEC=60°,∵∠AEC=30°,∴∠AEC=∠AED,∴EQ⊥DQ,∴∠DQP=90°,根據(jù)(1)知,∠BDC=∠AEC=30°,∵PQ=2,∴DP=4.故答案為:4.【考點(diǎn)】本題是一道猜想證明題,以兩線段之間的大小關(guān)系為基礎(chǔ),考查了等邊三角形的性質(zhì),三角形的全等,直角三角形的性質(zhì),證明兩個(gè)手拉手模型三角形全等是解題的關(guān)鍵.3、見(jiàn)解析【解析】【分析】利用“邊角邊”證明△AOD和△BOC全等,根據(jù)全等三角形對(duì)應(yīng)角相等可得∠ADO=∠BCO,根據(jù)等邊對(duì)等角可得∠ODC=∠OCD,然后相減整理即可得證.【詳解】證明:在△AOD和△BOC中,,

∴△AOD≌△BOC(SAS),∴∠ADO=∠BCO,∵OC=OD,∴∠ODC=∠OCD,∴∠ADO﹣∠ODC=∠BCO﹣∠OCD,即∠ADC=∠BCD.【考點(diǎn)】本題考點(diǎn):全等三角形的判定與性質(zhì).4、見(jiàn)解析.【解析】【分析】首先由已知證明Rt△BAN≌Rt△CAM,得到∠ABN=∠ACM,BN=CM,再根據(jù)ASA證明△ABD≌△ACE,得到BD=CE,由此可得CE-CM=BD-BN,即EM=DN.【詳解】證明:在Rt△BAN和Rt△CAM中,,所以Rt△BAN≌Rt△CAM(HL),∴∠ABN=∠ACM,BN=CM,在△ABD和△ACE中,,∴△ABD≌△ACE(ASA),∴BD=CE,∴CE-CM=BD-BN,即EM=DN.【考點(diǎn)】本題主要考查了三角形全等的判定和性質(zhì),熟練掌握判定定理和性質(zhì)定理并能靈活運(yùn)用是解題關(guān)鍵.5、(1)見(jiàn)解析(2)①90°;②見(jiàn)解析【解析】【分析】(1)先推出∠CAD=∠BAE,∠C=∠ABC=45°,然后證明△CAD≌△BAE得到∠ABE=∠C=45°,則∠EBC=∠ABE+∠ABC=90°,即EB⊥CD;(2)①同理可證△BAE≌△CAD,得到∠ABE=∠ACD,再由∠EMC=∠EBC+∠BCD,得到∠EMC=∠ABE+∠ABC+∠ACD+∠BCD=90°;②如圖,過(guò)點(diǎn)A作AG⊥BE于G,AF⊥CD于F,由△BAE≌△CAD,得到AG=AF,證明Rt△AGM≌Rt△AFM得到∠AMG=∠AMF,即AM平分∠EMC.(1)解:∵△ABC與ΔADE均為等腰直角三角形,且∠BAC=∠DAE=90°,∴AB=AC,AE=AD,∠DAE+∠DAB=∠CAB+∠DAB,∴∠CAD=∠BAE,∠C=∠ABC=45°,∴△CAD

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論