難點解析-北師大版9年級數學上冊期中試卷及參考答案詳解【輕巧奪冠】_第1頁
難點解析-北師大版9年級數學上冊期中試卷及參考答案詳解【輕巧奪冠】_第2頁
難點解析-北師大版9年級數學上冊期中試卷及參考答案詳解【輕巧奪冠】_第3頁
難點解析-北師大版9年級數學上冊期中試卷及參考答案詳解【輕巧奪冠】_第4頁
難點解析-北師大版9年級數學上冊期中試卷及參考答案詳解【輕巧奪冠】_第5頁
已閱讀5頁,還剩23頁未讀, 繼續(xù)免費閱讀

付費下載

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

北師大版9年級數學上冊期中試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(7小題,每小題2分,共計14分)1、如圖,已知菱形ABCD的兩條對角線分別為6和8,M、N分別是邊BC、CD的中點,P是對角線BD上一點,則PM+PN的最小值是()A.5 B.10 C.6 D.82、一元二次方程的解是(

)A., B., C. D.,3、已知四邊形ABCD是平行四邊形,下列結論:①當AB=BC時,它是菱形;②當AC⊥BD時,它是菱形;③當∠ABC=90°時,它是矩形;④當AC=BD時,它是正方形,其中錯誤的有(

)A.1個 B.2個 C.3個 D.4個4、在某籃球邀請賽中,參賽的每兩個隊之間都要比賽一場,共比賽36場,設有x個隊參賽,根據題意,可列方程為()A. B.C. D.5、關于的一元二次方程的兩根應為(

)A. B., C. D.6、如圖,在平行四邊形中,,.連接AC,過點B作,交DC的延長線于點E,連接AE,交BC于點F.若,則四邊形ABEC的面積為(

)A. B. C.6 D.7、如圖,G是正方形ABCD內一點,以GC為邊長,作正方形GCEF,連接BG和DE,試用旋轉的思想說明線段BG與DE的關系()A.DE=BG B.DE>BG C.DE<BG D.DE≥BG二、多選題(3小題,每小題2分,共計6分)1、下列命題中的真命題是(

)A.矩形的對角線相等 B.對角線相等的四邊形是矩形C.菱形的對角線互相垂直平分 D.對角線互相垂直的四邊形是菱形2、用配方法解下列方程,配方錯誤的是(

)A.化為 B.化為C.化為 D.化為3、下列關于矩形的說法中錯誤的是()A.矩形的對角線互相垂直且平分 B.矩形的對角線相等且互相平分C.對角線相等的四邊形是矩形 D.對角線互相平分的四邊形是矩形第Ⅱ卷(非選擇題80分)三、填空題(10小題,每小題2分,共計20分)1、在解一元二次方程x2+bx+c=0時,小明看錯了一次項系數b,得到的解為x1=2,x2=3;小剛看錯了常數項c,得到的解為x1=1,x2=5.請你寫出正確的一元二次方程________.2、關于的方程有兩個不相等的實數根,則的取值范圍是________.3、一菱形的對角線長分別為24cm和10cm,則此菱形的周長為________,面積為________.4、已知關于的方程的一個根是1,則______.5、如果關于x的方程x2﹣3x+k=0(k為常數)有兩個相等的實數根,那么k的值是___.6、從2、6、9三個數字中任選兩個,用這兩個數字分別作為十位數和個位數組成一個兩位數,在所有得到的兩位數中隨機抽取一個兩位數,這個兩位數是4的倍數的概率是____.7、如圖,將矩形的四個角向內折起,恰好拼成一個無縫隙重疊的四邊形,若,,則邊的長是____.8、從分別標有A、B、C的3根紙簽中隨機抽取一根,然后放回,再隨機抽取一根,兩次抽簽的所有可能結果的樹形圖如下:那么抽出的兩根簽中,一根標有A,一根標有C的概率是__________.9、如圖,在矩形中,AD=6,將矩形折疊,使點B與點D重合,落在處,若,則折痕的長為__________.10、有一架豎直靠在直角墻面的梯子正在下滑,一只貓緊緊盯住位于梯子正中間的老鼠,等待與老鼠距離最小時撲捉.把墻面、梯子、貓和老鼠都理想化為同一平面內的線或點,模型如圖,,點,分別在射線,上,長度始終保持不變,,為的中點,點到,的距離分別為4和2.在此滑動過程中,貓與老鼠的距離的最小值為_________.四、解答題(6小題,每小題10分,共計60分)1、如圖,在四邊形ABCD中,AD∥BC,對角線BD的垂直平分線與邊AD,BC分別相交于點M,N.(1)求證:四邊形BNDM是菱形;(2)若BD=24,MN=10,求菱形BNDM的周長.2、已知關于x的一元二次方程有兩個實數根.(1)求k的取值范圍;(2)若,求k的值.3、已知關于x的一元二次方程x2+x=k.(1)若方程有兩個不相等的實數根,求實數k的取值范圍;(2)當k=6時,求方程的實數根.4、解下列方程.(1)x2+2x=0;(2)2x2-3x-1=0.5、今年忠縣柑橘喜獲豐收,某果園銷售的柑橘“忠橙”和“愛媛”很受消費者的歡迎,“忠橙”售價80元/箱,“愛媛”售價60元/箱.在11月第一周“忠橙”的銷量比“愛媛”的銷量多100箱,且這兩種柑橘的總銷售額為50000元.(1)在11月第一周,該果園“忠橙”和“愛媛”的銷量各為多少箱?(2)為了擴大銷售,11月第二周“忠橙”售價降價,銷量比第一周培加了,“愛媛”售價不變,銷量比第一周增加了,結果這兩種相橘第二周的總銷售額比第一周的總銷售額增加了,求的值6、如圖,矩形ABCD中,AB=2cm,BC=3cm,點E從點B沿BC以2cm/s的速度向點C移動,同時點F從點C沿CD以1cm/s的速度向點D移動,當E,F兩點中有一點到達終點時,另一點也停止運動.當△AEF是以AF為底邊的等腰三角形時,求點E運動的時間.-參考答案-一、單選題1、A【解析】【分析】作M關于BD的對稱點Q,連接NQ,交BD于P,連接MP,此時MP+NP的值最小,連接AC,求出CP、BP,根據勾股定理求出BC長,證出MP+NP=QN=BC,即可得出答案.【詳解】解:作M關于BD的對稱點Q,連接NQ,交BD于P,連接MP,此時MP+NP的值最小,連接AC,則P是AC中點,∵四邊形ABCD是菱形,∴AC⊥BD,∠QBP=∠MBP,即Q在AB上,∵MQ⊥BD,∴AC∥MQ,∵M為BC中點,∴Q為AB中點,∵N為CD中點,四邊形ABCD是菱形,∴BQ∥CD,BQ=CN,∴四邊形BQNC是平行四邊形,∴PQ∥AD,而點Q是AB的中點,故PQ是△ABD的中位線,即點P是BD的中點,同理可得,PM是△ABC的中位線,故點P是AC的中點,即點P是菱形ABCD對角線的交點,∵四邊形ABCD是菱形,則△BPC為直角三角形,,在Rt△BPC中,由勾股定理得:BC=5,即NQ=5,∴MP+NP=QP+NP=QN=5,故選:A.【考點】本題考查了軸對稱-最短路線問題,平行四邊形的性質和判定,菱形的性質,勾股定理的應用,解此題的關鍵是能根據軸對稱找出P的位置.2、B【解析】【分析】利用提公因式分進行因式分解,再解方程,即可得到答案.【詳解】解:x(5x-2)=0,x=0或5x-2=0,所以或.故選:B.【考點】本題考查了解一元二次方程-因式分解法:因式分解法就是利用因式分解求出方程的解的方法,這種方法簡便易用,是解一元二次方程最常用的方法.3、A【解析】【分析】根據矩形、菱形、正方形的判定可以判斷題目中的各個小題的結論是否正確,從而可以解答本題.【詳解】解:四邊形是平行四邊形,A、當時,它是菱形,選項不符合題意,B、當時,它是菱形,選項不符合題意,C、當時,它是矩形,選項不符合題意,D、當時,它是矩形,不一定是正方形,選項符合題意,故選:.【考點】本題考查正方形、菱形、矩形的判定,解答本題的關鍵是熟練掌握矩形、菱形、正方形的判定定理.4、A【解析】【分析】共有x個隊參加比賽,則每隊參加(x-1)場比賽,但2隊之間只有1場比賽,根據共安排36場比賽,列方程即可.【詳解】解:設有x個隊參賽,根據題意,可列方程為:x(x﹣1)=36,故選A.【考點】此題考查由實際問題抽象出一元二次方程,解題關鍵在于得到比賽總場數的等量關系.5、B【解析】【分析】先把方程化為一般式,再計算判別式的值,然后利用求根公式解方程即可.【詳解】x2?3ax+a2=0,△=(?3a)2?4××a2=a2,x=.所以x1=a,x2=a.故答案選B.【考點】本題考查了解一元二次方程,解題的關鍵是根據公式法解一元二次方程.6、B【解析】【分析】先證明四邊形ABEC為矩形,再求出AC,即可求出四邊形ABEC的面積.【詳解】解:∵四邊形ABCD是平行四邊形,∴AB∥CD,AB=CD=2,BC=AD=3,∠D=∠ABC,∵,∴四邊形ABEC為平行四邊形,∵,∴,∵∠AFC=∠ABF+∠BAF,∴∠ABF=∠BAF,∴AF=BF,∴2AF=2BF,即BC=AE,∴平行四邊形ABEC是矩形,∴∠BAC=90°,∴,∴矩形ABEC的面積為.故選:B【考點】本題考查了平行四邊形的性質,矩形的判定與性質,勾股定理等知識,熟知相關定理,證明四邊形ABEC為矩形是解題關鍵.7、A【解析】【分析】根據四邊形ABCD為正方形,得出BC=DC,∠BCD=90°,根據四邊形CEFG為正方形,得出GC=EC,∠GCE=90°,再證∠BCG=∠DCE,△BCG與△DCE具有可旋轉的特征即可【詳解】解:∵四邊形ABCD為正方形,∴BC=DC,∠BCD=90°,∵四邊形CEFG為正方形,∴GC=EC,∠GCE=90°,∵∠BCG+∠GCD=∠GCD+∠DCE=90°,∴∠BCG=∠DCE,∴△BCG繞點C順時針方向旋轉90°得到△DCE,∴BG=DE,故選項A.【考點】本題考查圖形旋轉特征,正方形性質,三角形全等條件,同角的余角性質,掌握圖形旋轉特征,正方形性質,三角形全等條件是解題關鍵.二、多選題1、AC【解析】【分析】根據菱形的判定與性質,矩形的判定和性質即可進行判斷.【詳解】解:A、矩形的對角線相等,是真命題,符合題意;B、對角線相等的平行四邊形是矩形,是假命題,不符合題意;C、菱形的對角線互相垂直平分,是真命題,符合題意;D、對角線互相垂直平分的四邊形是菱形,是假命題,不符合題意;故選AC.【考點】本題考查了,矩形的判定,菱形的判定與性質,解題的關鍵是掌握所學的定理.2、BD【解析】【分析】根據配方法的一般步驟:(1)把常數項移到等號的右邊;(2)把二次項的系數化為1,(3)等式兩邊同時加上一次項系數一半的平方即可得到結論.【詳解】A.化為,正確,不符合題意;B.化為,錯誤,符合題意;C.化為,正確,不符合題意;D.化為,錯誤,符合題意.故選:BD.【考點】此題考查了配方法解一元二次方程,屬于基礎題,熟練掌握配方法的一般步驟是解題關鍵.3、ACD【解析】【分析】根據矩形的性質得到:矩形的對角線相等且互相平分,根據矩形的判定:對角線相等且互相平分且相等的四邊形是矩形,進行逐一判斷即可.【詳解】A.矩形的對角線互相平分,且相等,但不一定互相垂直,說法錯誤,本選項符合題意;B.矩形的對角線相等且互相平分,說法正確,本選項不符合題意;C.對角線相等的四邊形不一定為矩形,例如等腰梯形對角線相等,但不是矩形,說法錯誤,本選項符合題意;D.對角線互相平分的四邊形為平行四邊形,不一定為矩形,說法錯誤,本選項符合題意;故選ACD.【考點】考查矩形的判定與性質,熟練掌握矩形的判定定理與性質定理是解決問題的關鍵.三、填空題1、x2﹣6x+6=0【解析】【分析】根據根與系數的關系分別求出b和c即可.【詳解】解:根據題意得2×3=c,1+5=﹣b,解得b=﹣6,c=6,所以正確的一元二次方程為x2﹣6x+6=0.故答案為:x2﹣6x+6=0.【考點】本題考查了一元二次方程ax2+bx+c=0(a≠0)根與系數的關系,若x1,x2為方程的兩個根,則x1,x2與系數的關系式:,.2、且【解析】【分析】若一元二次方程有兩個不相等的實數根,則△=b2-4ac>0,建立關于k的不等式,求得k的取值范圍,還要使二次項系數不為0.【詳解】∵方程有兩個不相等的實數根,∴解得:,又二次項系數故答案為且【考點】考查一元二次方程根的判別式,當時,方程有兩個不相等的實數根.當時,方程有兩個相等的實數根.當時,方程沒有實數根.3、

52cm

120cm2【解析】【分析】根據菱形對角線互相平分且垂直得到邊長,從而計算出周長,再根據面積公式計算出面積.【詳解】解:∵菱形的對角線長分別為24cm和10cm,∴對角線的一半長分別為12cm和5cm,∴菱形的邊長為:=13cm,∴菱形的周長為:13×4=52cm,面積為:×10×24=120cm2.故答案為:52cm,120cm2.【考點】此題主要考查學生對菱形的性質的理解及運用,屬于基礎題,關鍵是掌握菱形的面積等于對角線乘積的一半.4、【解析】【分析】根據題意可得出1+6+m2-2m+5=0,然后解出該方程的解即可.【詳解】解:∵方程的一個根是1,∴1+6+m2-2m+5=0,∴m2-2m=-12,∴2(m2-2m)=-24.∴故答案為:-24【考點】本題考查一元二次方程的解,解題的關鍵是明確題意,找出所求問題需要的條件.5、【解析】【分析】根據判別式的意義得到Δ=(-3)2-4k=0,然后解一元一次方程即可.【詳解】解:根據題意得Δ=(-3)2-4k=0,解得k=.故答案為.【考點】本題考查了一元二次方程ax2+bx+c=0(a≠0)的根的判別式Δ=b2-4ac:當Δ>0,方程有兩個不相等的實數根;當Δ=0,方程有兩個相等的實數根;當Δ<0,方程沒有實數根.6、【解析】【分析】畫樹狀圖,共有6種等可能的結果,在所有得到的兩位數中隨機抽取一個兩位數,這個兩位數是4的倍數的結果有2種,再由概率公式求解即可.【詳解】解:畫樹狀圖如圖:共有6種等可能的結果,在所有得到的兩位數中隨機抽取一個兩位數,這個兩位數是4的倍數的結果有2種,∴在所有得到的兩位數中隨機抽取一個兩位數,這個兩位數是4的倍數的概率為=,故答案為:.【考點】本題考查的是用列表法或畫樹狀圖法求概率.列表法或畫樹狀圖法可以不重復不遺漏的列出所有可能的結果,列表法適合于兩步完成的事件,樹狀圖法適合兩步或兩步以上完成的事件.用到的知識點為:概率=所求情況數與總情況數之比.7、【解析】【分析】由折疊的性質和矩形的性質可得∠HEF=90°,EA=EB=3,證明△HNG≌△FME,求出HF,設AH=x,在△AEH,△BEF和△EFH中,利用勾股定理列出方程,求出x,即可得到EH.【詳解】解:∵四邊形ABCD是矩形,∴∠A=∠B=∠D=90°,由折疊可知:△EAH≌△EMH,△HNG≌△HDG,△FBE≌△FME,∴EA=EM,AH=MH,HD=HN,EB=EM,FB=FM,∠AEH=∠MEH,∠BEF=∠MEF,∠BME=∠B=90°,∠HNG=∠D=90°,∴EA=EB=AB=3,∵∠AEH+∠MEH+∠BEF+∠MEF=180°,∴2∠MEH+2∠MEF=180°,∴∠HEF=90°,同理可知:∠EHG=∠EFG=∠HGF=90°,∴四邊形EHGF是矩形,∴HG∥FE,HG=FE,∴∠GHN=∠EFM,在△HNG和△FME中,,∴△HNG≌△FME(AAS),∴HN=FM,∴HD=FM,∴HF=HM+FM=AH+HD=AD=10,設AH=x,則HD=FM=FB=10-x,∵,,,∴,即,解得:x=1或x=9(舍),∴AH=1,∴,故答案為:.【考點】本題考查了翻折變換,矩形的性質,勾股定理,全等三角形的判定和性質,利用勾股定理列出方程是本題的關鍵.8、【解析】【分析】依據樹狀圖分析所有等可能的出現結果,然后根據概率公式求出該事件的概率.【詳解】解:由樹狀圖得:兩次抽簽的所有可能結果一共有9種情況,一根標有,一根標有的有,與,兩種情況,一根標有,一根標有的概率是.故答案為:.【考點】本題考查的是用畫樹狀圖法求概率.畫樹狀圖法可以不重復不遺漏的列出所有可能的結果,適合于兩步或兩步以上完成的事件.用到的知識點為:概率所求情況數與總情況數之比.9、4【解析】【分析】由,,可求,,由折疊可知,得出,為的直角三角形;由可知,,,由折疊的性質得,等量代換后判斷為等邊三角形,即可得出答案.【詳解】解:在中,∵∴,,∵,∴,由折疊的性質得,∴,∴為等邊三角形,由折疊可知:BE=DE,∵,∴,∵AD=6,∴DE=BE=4,故.故答案為:4.【考點】本題考查圖形的翻折變換,解題過程中應注意折疊是一種對稱變換,它屬于軸對稱,根據軸對稱的性質,折疊前后圖形的形狀和大小不變,如本題中折疊前后角相等.10、【解析】【分析】根據當、、三點共線,距離最小,求出BE和BD即可得出答案.【詳解】如圖當、、三點共線,距離最小,∵,為的中點,∴,,,故答案為:.【考點】本題考查了直角三角形斜邊的中線等于斜邊的一半,勾股定理,兩點間的距離線段最短,判斷出距離最短的情況是解題關鍵.四、解答題1、(1)見解析(2)菱形BNDM的周長為52【解析】【分析】(1)證△MOD≌△NOB(AAS),得出OM=ON,由OB=OD,證出四邊形BNDM是平行四邊形,進而得出結論;(2)由菱形的性質得出BM=BN=DM=DN,OB=BD=12,OM=MN=2,由勾股定理得BM的長,即可得出答案.(1)證明:∵AD∥BC,∴∠DMO=∠BNO,∵MN是對角線BD的垂直平分線,∴OB=OD,MN⊥BD,在△MOD和△NOB中,,∴△MOD≌△NOB(AAS),∴OM=ON,∵OB=OD,∴四邊形BNDM是平行四邊形,∵MN⊥BD,∴四邊形BNDM是菱形;(2)解:∵四邊形BNDM是菱形,BD=24,MN=10,∴BM=BN=DM=DN,OB=BD=12,OM=MN=5,在Rt△BOM中,∴在Rt△BOM中,由勾股定理得:,∴四邊形BNDM的周長為:4×13=52.【考點】本題考查了菱形的判定與性質、平行四邊形的判定與性質、全等三角形的判定與性質、勾股定理等知識;熟練掌握菱形的判定與性質,證明三角形全等是解題的關鍵.2、(1);(2)【解析】【分析】(1)根據建立不等式即可求解;(2)先提取公因式對等式變形為,再結合韋達定理求解即可.【詳解】解:(1)由題意可知,,整理得:,解得:,∴的取值范圍是:.故答案為:.(2)由題意得:,由韋達定理可知:,,故有:,整理得:,解得:,又由(1)中可知,∴的值為.故答案為:.【考點】本題考查了一元二次方程判別式、根與系數的關系、韋達定理、一元二次方程的解法等知識點,當>0時,方程有兩個不相等的實數根;當=0時,方程有兩個相等的實數根;當<0時,方程沒有實數根.3、(1)k>﹣;(2)x1=﹣3,x2=2.【解析】【分析】(1)根據判別式的意義得△=12-4×1(-k)=1+4k>0,然后解不等式即可;(2)利用因式分解法解一元二次方程即可.【詳解】(1)∵方程有兩個不相等的實數根,∴△=12﹣4×1(﹣k)=1+4k>0,解得:k>﹣;(2)把k=6代入原方程得:x2+x=6,整理得:x2+x﹣6=0,分解因式得:(x+3)(x﹣2)=0,解得:x1=﹣3,x2=2.【考點】本題考查了根的判別式:一元二次方程ax2+bx+c=0(a≠0)的根與Δ=b

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論