2023山東省新泰市中考數(shù)學常考點試卷帶答案詳解(黃金題型)_第1頁
2023山東省新泰市中考數(shù)學??键c試卷帶答案詳解(黃金題型)_第2頁
2023山東省新泰市中考數(shù)學??键c試卷帶答案詳解(黃金題型)_第3頁
2023山東省新泰市中考數(shù)學??键c試卷帶答案詳解(黃金題型)_第4頁
2023山東省新泰市中考數(shù)學常考點試卷帶答案詳解(黃金題型)_第5頁
已閱讀5頁,還剩24頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

山東省新泰市中考數(shù)學??键c試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題25分)一、單選題(5小題,每小題2分,共計10分)1、下列事件中,是必然事件的是()A.實心鐵球投入水中會沉入水底B.車輛隨機到達一個路口,遇到紅燈C.打開電視,正在播放《大國工匠》D.拋擲一枚硬幣,正面向上2、已知⊙O的半徑為4,,則點A在()A.⊙O內 B.⊙O上 C.⊙O外 D.無法確定3、下面的圖形中既是軸對稱圖形又是中心對稱圖形的是()A. B. C. D.4、記某商品銷售單價為x元,商家銷售此種商品每月獲得的銷售利潤為y元,且y是關于x的二次函數(shù).已知當商家將此種商品銷售單價分別定為55元或75元時,他每月均可獲得銷售利潤1800元;當商家將此種商品銷售單價定為80元時,他每月可獲得銷售利潤1550元,則y與x的函數(shù)關系式是(

)A.y=﹣(x﹣60)2+1825 B.y=﹣2(x﹣60)2+1850C.y=﹣(x﹣65)2+1900 D.y=﹣2(x﹣65)2+20005、在一幅長50cm,寬40cm的矩形風景畫的四周鑲一條外框,制成一幅矩形掛圖(如圖所示),如果要使整個掛圖的面積是3000cm2,設邊框的寬為xcm,那么x滿足的方程是()A.(50﹣2x)(40﹣2x)=3000 B.(50+2x)(40+2x)=3000C.(50﹣x)(40﹣x)=3000 D.(50+x)(40+x)=3000二、多選題(5小題,每小題3分,共計15分)1、若為圓內接四邊形,則下列哪個選項可能成立(

)A. B.C. D.2、已知,⊙的半徑為5,,某條經過點的弦的長度為整數(shù),則該弦的長度可能為(

)A.4 B.6 C.8 D.103、下列方程中,關于x的一元二次方程有(

)A.x2=0 B.ax2+bx+c=0 C.x2-3=x D.a2+a-x=0E.(m-1)x2+4x+=0 F. G.=2 H.(x+1)2=x2-94、下列條件中,不能確定一個圓的是(

)A.圓心與半徑 B.直徑C.平面上的三個已知點 D.三角形的三個頂點5、對于實數(shù)a,b,定義運算“※”:,例如:4※2,因為,所以,若函數(shù),則下列結論正確的是(

)A.方程的解為,;B.當時,y隨x的增大而增大;C.若關于x的方程有三個解,則;D.當時,函數(shù)的最大值為1.第Ⅱ卷(非選擇題75分)三、填空題(5小題,每小題3分,共計15分)1、邊長為2的正三角形的外接圓的半徑等于___.2、《九章算術》是我國古代的數(shù)學名著,書中有這樣的一個問題:“今有勾八步,股十五步,問勾中容圓徑幾何?”.其意思是:“如圖,現(xiàn)有直角三角形,勾(短直角邊)長為8步,股(長直角邊)長為15步,問該直角三角形所能容納的最大圓的直徑是多少?”答:該直角三角形所能容納的最大圓的直徑是______步.3、從﹣2,1兩個數(shù)中隨機選取一個數(shù)記為m,再從﹣1,0,2三個數(shù)中隨機選取一個數(shù)記為n,則m、n的取值使得一元二次方程x2﹣mx+n=0有兩個不相等的實數(shù)根的概率是_____.4、若m,n是關于x的方程x2-3x-3=0的兩根,則代數(shù)式m2+n2-2mn=_____.5、如圖是拋物線型拱橋,當拱頂離水面2m時,水面寬4m,水面下降2m,水面寬度增加______m.四、簡答題(2小題,每小題10分,共計20分)1、如圖,AB是⊙O的直徑,弦CD⊥AB于點E,點P⊙O上,∠1=∠C.(1)求證:CB∥PD;(2)若∠ABC=55°,求∠P的度數(shù).2、如圖,在正方形ABCD中,對角線AC與BD相交于點O,點E是BC上的一個動點,連接DE,交AC于點F.(1)如圖①,當時,求的值;(2)如圖②,當點E是BC的中點時,過點F作FG⊥BC于點G,求證:CG=BG.

五、解答題(4小題,每小題10分,共計40分)1、如圖1,在等腰直角三角形中,.點,分別為,的中點,為線段上一動點(不與點,重合),將線段繞點逆時針方向旋轉得到,連接,.(1)證明:;(2)如圖2,連接,,交于點.①證明:在點的運動過程中,總有;②若,當?shù)拈L度為多少時,為等腰三角形?2、如圖,是⊙的直徑,弦,垂足為E,弦與弦相交于點G,且,過點C作的垂線交的延長線于點H.(1)判斷與⊙的位置關系并說明理由;(2)若,求弧的長.3、頂點為D的拋物線y=﹣x2+bx+c交x軸于A、B(3,0),交y軸于點C,直線y=﹣x+m經過點C,交x軸于E(4,0).(1)求出拋物線的解析式;(2)如圖1,點M為線段BD上不與B、D重合的一個動點,過點M作x軸的垂線,垂足為N,設點M的橫坐標為x,四邊形OCMN的面積為S,求S與x之間的函數(shù)關系式,并求S的最大值;(3)點P為x軸的正半軸上一個動點,過P作x軸的垂線,交直線y=﹣x+m于G,交拋物線于H,連接CH,將△CGH沿CH翻折,若點G的對應點F恰好落在y軸上時,請直接寫出點P的坐標.4、陜西某景區(qū)吸引了大量中外游客前來參觀,如果游客過多,對進景區(qū)的游客健康檢查、擁堵等問題會產生不利影響,但也要保證一定的門票收入,因此景區(qū)采取了漲浮門票價格的方法來控制旅游人數(shù),在該方法實施過程中發(fā)現(xiàn):每周旅游人數(shù)與票價之間存在著如圖所示的一次函數(shù)關系.在這種情況下,如果要保證每周3000萬元的門票收入,那么每周應限定旅游人數(shù)是多少萬人?門票價格應是多少元?-參考答案-一、單選題1、A【分析】根據必然事件、不可能事件、隨機事件的概念進行判斷即可.【詳解】解:A、實心鐵球投入水中會沉入水底,是必然事件,該選項符合題意;B、車輛隨機到達一個路口,遇到紅燈,是隨機事件,該選項不合題意;C、打開電視,正在播放《大國工匠》,是隨機事件,該選項不合題意;D、拋擲一枚硬幣,正面向上,是隨機事件,該選項不合題意;故選:A.【點睛】本題考查的是必然事件、不可能事件、隨機事件的概念.必然事件指在一定條件下一定發(fā)生的事件.不可能事件是指在一定條件下,一定不發(fā)生的事件.不確定事件即隨機事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件.2、C【分析】根據⊙O的半徑r=4,且點A到圓心O的距離d=5知d>r,據此可得答案.【詳解】解:∵⊙O的半徑r=4,且點A到圓心O的距離d=5,∴d>r,∴點A在⊙O外,故選:C.【點睛】本題主要考查點與圓的位置關系,點與圓的位置關系有3種.設⊙O的半徑為r,點P到圓心的距離OP=d,則有:①點P在圓外?d>r;②點P在圓上?d=r;③點P在圓內?d<r.3、A【詳解】解:A、既是軸對稱圖形又是中心對稱圖形,此項符合題意;B、是中心對稱圖形,不是軸對稱圖形,此項不符題意;C、是軸對稱圖形,不是中心對稱圖形,此項不符題意;D、是軸對稱圖形,不是中心對稱圖形,此項不符題意;故選:A.【點睛】本題考查了中心對稱圖形和軸對稱圖形,熟記中心對稱圖形的定義(在平面內,把一個圖形繞某點旋轉,如果旋轉后的圖形與另一個圖形重合,那么這兩個圖形互為中心對稱圖形)和軸對稱圖形的定義(如果一個圖形沿一條直線折疊,直線兩旁的部分能夠完全重合,那么這個圖形叫做軸對稱圖形)是解題關鍵.4、D【解析】【分析】設二次函數(shù)的解析式為:y=ax2+bx+c,根據題意列方程組即可得到結論.【詳解】解:設二次函數(shù)的解析式為:y=ax2+bx+c,∵當x=55,y=1800,當x=75,y=1800,當x=80時,y=1550,∴,解得a=?2,b=260,c=?6450,∴y與x的函數(shù)關系式是y=﹣2x2+260x﹣6450=﹣2(x﹣65)2+2000,故選:D.【考點】本題考查了根據實際問題列二次函數(shù)關系式,正確的列方程組是解題的關鍵.5、B【解析】【分析】根據題意表示出矩形掛畫的長和寬,再根據長方形的面積公式可得方程.【詳解】解:設邊框的寬為xcm,所以整個掛畫的長為(50+2x)cm,寬為(40+2x)cm,根據題意,得:(50+2x)(40+2x)=3000,故選:B.【考點】本題主要考查由實際問題抽象出一元二次方程,在解決實際問題時,要全面、系統(tǒng)地申清問題的已知和未知,以及它們之間的數(shù)量關系,找出并全面表示問題的相等關系,設出未知數(shù),用方程表示出已知量與未知量之間的等量關系,即列出一元二次方程.二、多選題1、BD【解析】【分析】根據圓內接四邊形的性質得出∠A+∠C=∠B+∠D=180°,再逐個判斷即可.【詳解】解:∵四邊形ABCD是圓內接四邊形,∴∠A+∠C=180°,∠B+∠D=180°,∴∠A+∠C=∠B+∠D,A.∵,∴∠A+∠C≠∠B+∠D,故本選項不符合題意;B.∵,∴∠A+∠C=∠B+∠D,故本選項符合題意;C.∵,∴∠A+∠C≠∠B+∠D,故本選項不符合題意;D.∵,∴∠A+∠C=∠B+∠D,故本選項符合題意;故選:BD.【考點】本題考查了圓周角定理和圓內接四邊形的性質,注意:圓內接四邊形的對角互補.2、CD【解析】【分析】過P作弦AB⊥OP,連接OA,根據垂徑定理求出AP=BP,根據勾股定理求出AP,再求出AB,再得出答案即可.【詳解】解:過P作弦AB⊥OP,連接OA,如圖,∵OA=5,OP=3,∴,∵OP⊥AB,OP過圓心O,∴AP=BP=4,即AB=4+4=8,∴過P點長度為整數(shù)的弦有4條,①過P點最短的弦的長度是8,②過P點最長的弦的長度是10,③還有兩條弦,長度是9,故答案為:CD.【考點】本題考查了勾股定理和垂徑定理,能熟記垂徑定理是解此題的關鍵.3、AC【解析】【分析】根據一元二次方程的定義逐個判斷即可.【詳解】解:A.x2=0,C.x2-3=x符合一元二次方程的定義;B.ax2+bx+c=0中,當a=0時,不是一元二次方程;D.a2+a-x=0是關于x的一元一次方程;E.(m-1)x2+4x+=0,當m=1時為關于x的一元一次方程;F.+=分母中含有字母,是分式方程;G.=2是無理方程;H.(x+1)2=x2-9展開后為x2+2x+1=x2-9,即2x+1=-9是一元一次方程.故選AC.【考點】本題考查了一元二次方程的定義,一元二次方程具有以下三個特點:(1)只含有一個未知數(shù);(2)未知數(shù)的最高次數(shù)是2;(3)是整式方程.4、C【解析】【分析】根據不在同一條直線上的三個點確定一個圓,已知圓心和直徑所作的圓是唯一的進行判斷即可得出答案.【詳解】解:A、已知圓心與半徑能確定一個圓,不符合題意;B、已知直徑能確定一個圓,不符合題意;C、平面上的三個已知點,不能確定一個圓,符合題意;D、已知三角形的三個頂點,能確定一個圓,不符合題意;故選C.【考點】本題考查了確定圓的條件,解題的關鍵是分類討論.5、ABD【解析】【分析】根據題干定義求出y=(2x)※(x+1)的解析式,根據2x≥x+1及2x<x+1可得x≥1時y=2x2﹣2x,x<1時,y=﹣x2+1,進而求解.【詳解】解:根據題意得:當2x≥x+1,即x≥1時,y=(2x)2﹣2x(x+1)=2x2﹣2x,當2x<x+1,即x<1時,y=(x+1)2﹣2x(x+1)=﹣x2+1,∴當x≥1時,2x2﹣2x=0,解得x=0(舍去)或x=1,當x<1時,﹣x2+1=0,解得x=1(舍去)或x=﹣1,∴(2x)※(x+1)=0的解是x1=﹣1,x2=1;故A正確,B、當x>1時,y=2x2﹣2x,拋物線開口向上,對稱軸是直線x=,∴x>1時,y隨x的增大而增大,∴B選項正確.當x≥1時,y=2x2﹣2x=2(x﹣)2﹣,∴x=1時,y取最小值為y=0,當x<1時,y=﹣x2+1=0,當x=0時,y取最大值為y=1,如圖,當0<m<1時,方程(2x)※(x+1)=m有三個解,∴選項C錯誤,選項D正確.故答案為:ABD.【考點】本題考查二次函數(shù)的新定義問題,解題關鍵是掌握二次函數(shù)的性質,掌握二次函數(shù)與方程的關系.三、填空題1、【分析】過圓心作一邊的垂線,根據勾股定理可以計算出外接圓半徑.【詳解】如圖所示,是正三角形,故O是的中心,,∵正三角形的邊長為2,OE⊥AB∴,,∴,由勾股定理得:,∴,∴,∴(負值舍去).故答案為:.【點睛】本題考查了正多邊形和圓,解題的關鍵是根據題意畫出圖形,利用數(shù)形結合求解.2、6【分析】依題意,直角三角形性質,結合題意能夠容納的最大為內切圓,結合內切圓半徑,利用等積法求解即可;【詳解】設直角三角形中能容納最大圓的半徑為:;依據直角三角形的性質:可得斜邊長為:依據直角三角形面積公式:,即為;內切圓半徑面積公式:,即為;所以,可得:,所以直徑為:;故填:6;【點睛】本題主要考查直角三角形及其內切圓的性質,重點在理解題意和利用內切圓半徑求解面積;3、【分析】先畫樹狀圖列出所有等可能結果,從中找到使方程有兩個不相等的實數(shù)根,即m>n的結果數(shù),再根據概率公式求解可得.【詳解】解:畫樹狀圖如下:由樹狀圖知,共有12種等可能結果,其中能使方程x2-mx+n=0有兩個不相等的實數(shù)根,即m2-4n>0,m2>4n的結果有4種結果,∴關于x的一元二次方程x2-mx+n=0有兩個不相等的實數(shù)根的概率是,故答案為:.【點睛】本題是概率與一元二次方程的根的判別式相結合的題目.正確理解列舉法求概率的條件以及一元二次方程有根的條件是關鍵.4、21【解析】【分析】先根據根與系數(shù)的關系得到m+n=3,mn=﹣3,再根據完全平方公式變形得到m2+n2﹣2mn=(m+n)2﹣4mn,然后利用整體代入的方法計算.【詳解】解:∵m,n是關于x的方程x2-3x-3=0的兩根,∴m+n=3,mn=﹣3,∴m2+n2﹣2mn=(m+n)2﹣4mn=32﹣4×(﹣3)=21.故答案為:21.【考點】本題考查了根與系數(shù)的關系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的兩根時,x1+x2,x1x2.5、【解析】【分析】根據已知建立平面直角坐標系,進而求出二次函數(shù)解析式,再通過把代入拋物線解析式得出水面寬度,即可得出答案.【詳解】建立平面直角坐標系,設橫軸x通過AB,縱軸y通過AB中點O且通過C點,則通過畫圖可得知O為原點,拋物線以y軸為對稱軸,且經過A,B兩點,OA和OB可求出為AB的一半2米,拋物線頂點C坐標為通過以上條件可設頂點式,其中可通過代入A點坐標代入到拋物線解析式得出:所以拋物線解析式為當水面下降2米,通過拋物線在圖上的觀察可轉化為:當時,對應的拋物線上兩點之間的距離,也就是直線與拋物線相交的兩點之間的距離,可以通過把代入拋物線解析式得出:解得:

所以水面寬度增加到米,比原先的寬度當然是增加了故答案是:【考點】考查了二次函數(shù)的應用,根據已知建立坐標系從而得出二次函數(shù)解析式是解決問題的關鍵.四、簡答題1、(1)證明見解析;(2)35°【解析】【詳解】試題分析:(1)要證明CB∥PD,只要證明∠1=∠P;由∠1=∠C,∠P=∠C,可得∠1=∠P,即可解決問題;(2)在Rt△CEB中,求出∠C即可解決問題.試題解析:(1)如圖,∵∠1=∠C,∠P=∠C,∴∠1=∠P,∴CB∥PD;(2)∵CD⊥AB,∴∠CEB=90°,∵∠CBE=55°,∴∠C=90°﹣55°=35°,∴∠P=∠C=35°.【考點】主要考查了圓周角定理、垂徑定理、直角三角形的性質等知識,解題的關鍵是熟練掌握基本知識.2、(1)=;(2)證明見解析.【解析】【分析】(1)根據正方形的性質和相似三角形的判定定理,得△CEF∽△ADF,可得=,進而即可得到結論;(2)由AD∥CB,點E是BC的中點,得△EFC∽△DFA.CF:AF=EC:AD,由FG//AB,得CG:BG=CF:AF,進而即可得到結論.【詳解】(1)∵,∴=.∵四邊形ABCD是正方形,∴AD∥BC,AD=BC,∴△CEF∽△ADF,∴=,∴==,∴==;(2)∵AD∥CB,點E是BC的中點,∴△EFC∽△DFA.∴CF:AF=EC:AD=1:2,∵FG⊥BC,∴FG//AB,∴CG:BG=CF:AF=1:2,∴CG=BG.【考點】本題主要考查正方形的性質,相似三角形的判定和性質定理以及平行線分線段成比例定理,掌握相似三角形的對應邊成比例,是解題的關鍵.五、解答題1、(1)見詳解;(2)①見詳解;②當?shù)拈L度為2或時,為等腰三角形【解析】【分析】(1)由旋轉的性質得AH=AG,∠HAG=90°,從而得∠BAH=∠CAG,進而即可得到結論;(2)①由,得AH=AG,再證明,進而即可得到結論;②為等腰三角形,分3種情況:(a)當∠QAG=∠QGA=45°時,(b)當∠GAQ=∠GQA=67.5°時,(c)當∠AQG=∠AGQ=45°時,分別畫出圖形求解,即可.【詳解】解:(1)∵線段繞點A逆時針方向旋轉得到,∴AH=AG,∠HAG=90°,∵在等腰直角三角形中,,AB=AC,∴∠BAH=90°-∠CAH=∠CAG,∴;(2)①∵在等腰直角三角形中,AB=AC,點,分別為,的中點,∴AE=AF,是等腰直角三角形,∵AH=AG,∠BAH=∠CAG,∴,∴∠AEH=∠AFG=45°,∴∠HFG=∠AFG+∠AFE=45°+45°=90°,即:;②∵,點,分別為,的中點,∴AE=AF=2,∵∠AGH=45°,為等腰三角形,分3種情況:(a)當∠QAG=∠QGA=45°時,如圖,則∠HAF=90°-45°=45°,∴AH平分∠EAF,∴點H是EF的中點,∴EH=;(b)當∠GAQ=∠GQA=(180°-45°)÷2=67.5°時,如圖,則∠EAH=∠GAQ=67.5°,∴∠EHA=180°-45°-67.5°=67.5°,∴∠EHA=∠EAH,∴EH=EA=2;(c)當∠AQG=∠AGQ=45°時,點H與點F重合,不符合題意,舍去,綜上所述:當?shù)拈L度為2或時,為等腰三角形.【考點】本題主要考查等腰直角三角形的性質,旋轉的性質,全等三角形的判定和性質,勾股定理,熟練掌握全等三角形的判定定理,根據題意畫出圖形,進行分類討論,是解題的關鍵.2、(1)相切,見解析(2)【分析】(1)連接OC、OD、AC,OC交AF于點M,根據AG=CG,CD⊥AB,可得,從而OC⊥AF,再由∠AFB=90°,可得CH∥AF,即可求證;(2)先證明四邊形CMFH為矩形,可得OC⊥AF,CM=HF=2,從而得到AM=FM,進而得到OM=BF=2,可得到CM=OM,進而得到OC=4,AM垂直平分OC,可證得△AOC為等邊三角形,即可求解.(1)解:CH與⊙O相切.理由如下:如圖,連接OC、OD、AC,OC交AF于點M,∵AG=CG,∴∠ACG=∠CAG,∴,∵CD⊥AB,∴,∴,∴OC⊥AF,∵AB為直徑,∴∠AFB=90°,∵BH⊥CH,∴CH∥AF,∴OC⊥CH,∵OC為半徑,∴CH為⊙O的切線;(2)解:由(1)得:BH⊥CH,OC⊥CH,∴OC∥BH,∵CH∥AF,∴四邊形CMFH為平行四邊形,∵OC⊥CH,∴∠OCH=90°,∴四邊形CMFH為矩形,∴OC⊥AF,CM=HF=2,∴AM=FM,∵點O為AB的中點,∴OM=BF=2,∴CM=OM,∴OC=4,AM垂直平分OC,∴AC=AO,而AO=OC,∴AC=OC=OA,,∴△AOC為等邊三角形,∴∠AOC=60°,∵,∴∠AOD=∠AOC=60°,∴∠COD=120°,∴弧CD的長度為.【點睛】本題主要考查了圓的基本性質,垂徑定理,切線的判定,等邊三角形的判定和性質,熟練掌握相關知識點是解題的關鍵.3、(1)y=﹣x2+2x+3;(2)S=﹣(x﹣)2+;當x=時,S有最大值,最大值為;(3)存在,點P的坐標為(4,0)或(,0).【解析】【分析】(1)將點E代入直線解析式中,可求出點C的坐標,將點C、B代入拋物線解析式中,可求出拋物線解析式.(2)將拋物線解析式配成頂點式,可求出點D的坐標,設直線BD的解析式,代入點B、D,可求出直線BD的解析式,則MN可表示,則S可表示.(3)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論