版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
遼寧省凌海市中考數(shù)學(xué)必背100題考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題25分)一、單選題(5小題,每小題2分,共計(jì)10分)1、已知每個(gè)網(wǎng)格中小正方形的邊長都是1,如圖中的陰影圖案是由三段以格點(diǎn)為圓心,半徑分別為1和2的圓弧圍成,則陰影部分的面積是()A. B.π﹣2 C.1+ D.1﹣2、把拋物線向右平移2個(gè)單位,然后向下平移1個(gè)單位,則平移后得到的拋物線解析式是(
)A. B.C. D.3、已知⊙O的半徑為4,點(diǎn)O到直線m的距離為d,若直線m與⊙O公共點(diǎn)的個(gè)數(shù)為2個(gè),則d可?。ǎ〢.5 B.4.5 C.4 D.04、將一元二次方程化成(a,b為常數(shù))的形式,則a,b的值分別是(
)A.,21 B.,11 C.4,21 D.,695、二次函數(shù)的圖象如圖所示,對稱軸是直線.下列結(jié)論:①;②;③;④(為實(shí)數(shù)).其中結(jié)論正確的個(gè)數(shù)為(
)A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)二、多選題(5小題,每小題3分,共計(jì)15分)1、下列圖形中,是中心對稱圖形的是(
)A. B.C. D.2、若二次函數(shù)(a是不為0的常數(shù))的圖象與x軸交于A、B兩點(diǎn).則以下結(jié)論正確的有(
)A.B.當(dāng)時(shí),y隨x的增大而增大C.無論a取任何不為0的數(shù),該函數(shù)的圖象必經(jīng)過定點(diǎn)D.若線段AB上有且只有5個(gè)橫坐標(biāo)為整數(shù)的點(diǎn),則a的取值范圍是3、下列命題正確的是(
)A.垂直于弦的直徑平分弦所對的兩條弧 B.弦的垂直平分線經(jīng)過圓心C.平分弦的直徑垂直于弦 D.平分弦所對的兩條弧的直線垂直于弦4、如圖,如果AB為⊙O的直徑,弦CD⊥AE,垂足為E,那么下列結(jié)論中,正確的是(
)A. B.弧BC=弧BD C.∠BAC=∠BAD D.AC>AD5、下列方程中,關(guān)于x的一元二次方程有(
)A.x2=0 B.a(chǎn)x2+bx+c=0 C.x2-3=x D.a(chǎn)2+a-x=0E.(m-1)x2+4x+=0 F. G.=2 H.(x+1)2=x2-9第Ⅱ卷(非選擇題75分)三、填空題(5小題,每小題3分,共計(jì)15分)1、一元二次方程的解為__________.2、如圖,正方形ABCD的邊長為6,點(diǎn)E在邊CD上.以點(diǎn)A為中心,把△ADE順時(shí)針旋轉(zhuǎn)90°至△ABF的位置.若DE=2,則FE=___.3、將拋物線向上平移()個(gè)單位長度,<k<,平移后的拋物線與雙曲線y=(x>0)交于點(diǎn)P(p,q),M(1+,n),則下列結(jié)論正確的是__________.(寫出所有正確結(jié)論的序號)①0<p<1-;
②1-<p<1;
③q<n;
④q>2k-k.4、將拋物線沿直線方向移動個(gè)單位長度,若移動后拋物線的頂點(diǎn)在第一象限,則移動后拋物線的解析式是__________.5、已知二次函數(shù),當(dāng)x=_______時(shí),y取得最小值.四、解答題(6小題,每小題10分,共計(jì)60分)1、正方形ABCD的四個(gè)頂點(diǎn)都在⊙O上,E是⊙O上的一點(diǎn).(1)如圖①,若點(diǎn)E在上,F(xiàn)是DE上的一點(diǎn),DF=BE.求證:△ADF≌△ABE;(2)在(1)的條件下,小明還發(fā)現(xiàn)線段DE、BE、AE之間滿足等量關(guān)系:DE-BE=AE.請說明理由;(3)如圖②,若點(diǎn)E在上.連接DE,CE,已知BC=5,BE=1,求DE及CE的長.2、如圖,矩形ABCD中,AB=6cm,BC=12cm..點(diǎn)M從點(diǎn)A開始沿AB邊向點(diǎn)B以1cm/秒的速度向B點(diǎn)移動,點(diǎn)N從點(diǎn)B開始沿BC邊以2cm/秒的速度向點(diǎn)C移動.若M,N分別從A,B點(diǎn)同時(shí)出發(fā),設(shè)移動時(shí)間為t(0<t<6),△DMN的面積為S.(1)求S關(guān)于t的函數(shù)關(guān)系式,并求出S的最小值;(2)當(dāng)△DMN為直角三角形時(shí),求△DMN的面積.3、如圖,已知拋物線的頂點(diǎn)坐標(biāo)為M,與x軸相交于A,B兩點(diǎn)(點(diǎn)B在點(diǎn)A的右側(cè)),與y軸相交于點(diǎn)C.(1)用配方法將拋物線的解析式化為頂點(diǎn)式:(),并指出頂點(diǎn)M的坐標(biāo);(2)在拋物線的對稱軸上找點(diǎn)R,使得CR+AR的值最小,并求出其最小值和點(diǎn)R的坐標(biāo);(3)以AB為直徑作⊙N交拋物線于點(diǎn)P(點(diǎn)P在對稱軸的左側(cè)),求證:直線MP是⊙N的切線.4、已知關(guān)于的一元二次方程有實(shí)數(shù)根.(1)求的取值范圍.(2)若該方程的兩個(gè)實(shí)數(shù)根為、,且,求的值.5、如圖,在平面直角坐標(biāo)系中,△ABC的BC邊與x軸重合,頂點(diǎn)A在y軸的正半軸上,線段OB,OC()的長是關(guān)于x的方程的兩個(gè)根,且滿足CO=2AO.(1)求直線AC的解析式;(2)若P為直線AC上一個(gè)動點(diǎn),過點(diǎn)P作PD⊥x軸,垂足為D,PD與直線AB交于點(diǎn)Q,設(shè)△CPQ的面積為S(),點(diǎn)P的橫坐標(biāo)為a,求S與a的函數(shù)關(guān)系式;(3)點(diǎn)M的坐標(biāo)為,當(dāng)△MAB為直角三角形時(shí),直接寫出m的值.6、已知關(guān)于x的一元二次方程.(1)求證:不論m取何值,方程總有兩個(gè)不相等的實(shí)數(shù)根;(2)若方程有兩個(gè)實(shí)數(shù)根為,,且,求m的值.-參考答案-一、單選題1、B【解析】【分析】如圖,標(biāo)注頂點(diǎn),連接AB,由圖形的對稱性可得陰影部分面積=S扇形AOB-S△ABO,從而可得答案.【詳解】解:標(biāo)注頂點(diǎn),連接AB,由對稱性可得:陰影部分面積=S扇形AOB-S△ABO=.故選:B.【考點(diǎn)】本題考查的是陰影部分的面積的計(jì)算,扇形面積的計(jì)算,掌握“圖形的對稱性”是解本題的關(guān)鍵.2、D【解析】【分析】直接根據(jù)“左加右減,上加下減”的原則進(jìn)行解答即可.【詳解】由“左加右減”的原則可知,拋物線y=2x2向右平移2個(gè)單位所得拋物線是y=2(x?2)2;由“上加下減”的原則可知,拋物線y=2(x?2)2向下平移1個(gè)單位所得拋物線是y=2(x?2)2?1.故選D.【考點(diǎn)】本題考查了二次函數(shù)圖象與幾何變換,解題的關(guān)鍵是掌握二次函數(shù)圖象與幾何變換.3、D【解析】【分析】根據(jù)直線和圓的位置關(guān)系判斷方法,可得結(jié)論.【詳解】∵直線m與⊙O公共點(diǎn)的個(gè)數(shù)為2個(gè)∴直線與圓相交∴d<半徑=4故選D.【考點(diǎn)】本題考查了直線與圓的位置關(guān)系,掌握直線和圓的位置關(guān)系判斷方法:設(shè)⊙O的半徑為r,圓心O到直線l的距離為d.①直線l和⊙O相交?d<r②直線l和⊙O相切?d=r,③直線l和⊙O相離?d>r.4、A【解析】【分析】根據(jù)配方法步驟解題即可.【詳解】解:移項(xiàng)得,配方得,即,∴a=-4,b=21.故選:A【考點(diǎn)】本題考查了配方法解一元二次方程,解題關(guān)鍵是配方:在二次項(xiàng)系數(shù)為1時(shí),方程兩邊同時(shí)加上一次項(xiàng)系數(shù)一半的平方.5、C【解析】【分析】①由拋物線開口方向得到,對稱軸在軸右側(cè),得到與異號,又拋物線與軸正半軸相交,得到,可得出,選項(xiàng)①錯誤;②把代入中得,所以②正確;③由時(shí)對應(yīng)的函數(shù)值,可得出,得到,由,,,得到,選項(xiàng)③正確;④由對稱軸為直線,即時(shí),有最小值,可得結(jié)論,即可得到④正確.【詳解】解:①∵拋物線開口向上,∴,∵拋物線的對稱軸在軸右側(cè),∴,∵拋物線與軸交于負(fù)半軸,∴,∴,①錯誤;②當(dāng)時(shí),,∴,∵,∴,把代入中得,所以②正確;③當(dāng)時(shí),,∴,∴,∵,,,∴,即,所以③正確;④∵拋物線的對稱軸為直線,∴時(shí),函數(shù)的最小值為,∴,即,所以④正確.故選C.【考點(diǎn)】本題考查了二次函數(shù)圖象與系數(shù)的關(guān)系:二次項(xiàng)系數(shù)決定拋物線的開口方向和大?。?dāng)時(shí),拋物線向上開口;當(dāng)時(shí),拋物線向下開口;一次項(xiàng)系數(shù)和二次項(xiàng)系數(shù)共同決定對稱軸的位置:當(dāng)與同號時(shí),對稱軸在軸左;當(dāng)與異號時(shí),對稱軸在軸右.常數(shù)項(xiàng)決定拋物線與軸交點(diǎn):拋物線與軸交于.拋物線與軸交點(diǎn)個(gè)數(shù)由判別式確定:時(shí),拋物線與軸有2個(gè)交點(diǎn);時(shí),拋物線與軸有1個(gè)交點(diǎn);時(shí),拋物線與軸沒有交點(diǎn).二、多選題1、BD【解析】【分析】根據(jù)中心對稱圖形的定義旋轉(zhuǎn)180°后能夠與原圖形完全重合即是中心對稱圖形,進(jìn)而判斷得出答案.【詳解】解:A.∵此圖形旋轉(zhuǎn)180°后不能與原圖形重合,∴此圖形不是中心對稱圖形,故此選項(xiàng)不符合題意;B.∵此圖形旋轉(zhuǎn)180°后能與原圖形重合,∴此圖形是中心對稱圖形,故此選項(xiàng)符合題意;C.∵此圖形旋轉(zhuǎn)180°后不能與原圖形重合,∴此圖形不是中心對稱圖形,故此選項(xiàng)不合題意;D.∵此圖形旋轉(zhuǎn)180°后能與原圖形重合,∴此圖形是中心對稱圖形,故此選項(xiàng)符合題意.故選:BD.【考點(diǎn)】本題考查的是中心對稱圖形的概念,把一個(gè)圖形繞某一點(diǎn)旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠與原來的圖形重合,那么這個(gè)圖形就叫做中心對稱圖形.2、ACD【解析】【分析】求得頂點(diǎn)坐標(biāo),根據(jù)題意即可判斷①正確;根據(jù)二次函數(shù)的性質(zhì)即可判斷②錯誤;二次函數(shù)是不為0的常數(shù))的頂點(diǎn),即可判斷③錯誤;根據(jù)題意時(shí),時(shí),即可判斷④正確.【詳解】解:二次函數(shù),頂點(diǎn)為,在軸的下方,∵函數(shù)的圖象與軸交于、兩點(diǎn),拋物線開口向上,,故①正確;時(shí),隨的增大而增大,故②錯誤;由題意可知當(dāng),二次函數(shù)是不為0的常數(shù))的圖象一定經(jīng)過點(diǎn),故③正確;線段上有且只有5個(gè)橫坐標(biāo)為整數(shù)的點(diǎn),且對稱軸為直線,∴當(dāng)時(shí),,當(dāng)時(shí),,,解得,故④正確;故選:ACD.【考點(diǎn)】本題考查了二次函數(shù)的性質(zhì),二次函數(shù)圖象與系數(shù)的關(guān)系,二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征,能夠理解題意,利用二次函數(shù)的性質(zhì)解答是解題的關(guān)鍵.3、ABD【解析】【分析】根據(jù)垂徑定理及其推論進(jìn)行判斷即可.【詳解】A、垂直于弦的直徑平分弦所對的兩條弧,正確;B、弦的垂直平分線經(jīng)過圓心,正確;C、平分弦(不是直徑)的直徑垂直于弦,故錯誤;D、平分弦所對的兩條弧的直線垂直于弦,正確;故選ABD.【考點(diǎn)】本題考查了垂徑定理:熟練掌握垂徑定理及其推論是解決問題的關(guān)鍵.4、ABC【解析】【分析】根據(jù)垂徑定理逐個(gè)判斷即可.【詳解】解:AB為⊙O的直徑,弦CD⊥AB垂足為E,則AB是垂直于弦CD的直徑,就滿足垂徑定理,因而CE=DE,弧BC=弧BD,∠BAC=∠BAD都是正確的.根據(jù)條件可以得到AB是CD的垂直平分線,因而AC=AD.所以D是錯誤的.故選:ABC.【考點(diǎn)】本題主要考查的是對垂徑定理的記憶與理解,做題的關(guān)鍵是掌握垂徑定理的應(yīng)用.5、AC【解析】【分析】根據(jù)一元二次方程的定義逐個(gè)判斷即可.【詳解】解:A.x2=0,C.x2-3=x符合一元二次方程的定義;B.ax2+bx+c=0中,當(dāng)a=0時(shí),不是一元二次方程;D.a2+a-x=0是關(guān)于x的一元一次方程;E.(m-1)x2+4x+=0,當(dāng)m=1時(shí)為關(guān)于x的一元一次方程;F.+=分母中含有字母,是分式方程;G.=2是無理方程;H.(x+1)2=x2-9展開后為x2+2x+1=x2-9,即2x+1=-9是一元一次方程.故選AC.【考點(diǎn)】本題考查了一元二次方程的定義,一元二次方程具有以下三個(gè)特點(diǎn):(1)只含有一個(gè)未知數(shù);(2)未知數(shù)的最高次數(shù)是2;(3)是整式方程.三、填空題1、x=或x=2【解析】【分析】根據(jù)一元二次方程的解法解出答案即可.【詳解】當(dāng)x-2=0時(shí),x=2,當(dāng)x-2≠0時(shí),4x=1,x=,故答案為:x=或x=2.【考點(diǎn)】本題考查解一元二次方程,本題關(guān)鍵在于分情況討論.2、【解析】【分析】由旋轉(zhuǎn)的性質(zhì)可得BF=DE=2,∠D=∠ABF=90°,在直角△EFC中,由勾股定理可求解.【詳解】解:∵把△ADE順時(shí)針旋轉(zhuǎn)90°得△ABF,∴BF=DE=2,∠D=∠ABF=90°,∴∠ABC+∠ABF=180°,∴點(diǎn)F,點(diǎn)B,點(diǎn)C共線,在直角△EFC中,EC=6-2=4,CF=BC+BF=8.根據(jù)勾股定理得:EF=,故答案為:.【考點(diǎn)】本題考查了旋轉(zhuǎn)的性質(zhì),正方形的性質(zhì),勾股定理,靈活運(yùn)用這些性質(zhì)解決問題是本題的關(guān)鍵.3、②④##④②【解析】【分析】先畫出函數(shù)圖像,判斷出當(dāng)時(shí)拋物線和反比例函數(shù)圖象上的點(diǎn)的縱坐標(biāo)的關(guān)系,確定拋物線右支與反比例函數(shù)圖象的交點(diǎn)個(gè)數(shù),再利用拋物線的對稱性與反比例函數(shù)的圖象與性質(zhì)直接判斷即可.【詳解】解:∵拋物線,∴該拋物線對稱軸為,頂點(diǎn)坐標(biāo)為(1,),將該拋物線向上平移()個(gè)單位長度,則頂點(diǎn)坐標(biāo)為(1,),當(dāng)時(shí),反比例函數(shù)圖象上點(diǎn)的坐標(biāo)為(1,),如圖所示,拋物線平移后的頂點(diǎn)縱坐標(biāo)即為m,反比例函數(shù)上橫坐標(biāo)為1的點(diǎn)的縱坐標(biāo)即為s,∴m-s=,∵<k<,∴∴拋物線的右支與反比例函數(shù)圖象只有一個(gè)交點(diǎn),且該交點(diǎn)橫坐標(biāo)大于1;∵平移后的拋物線與雙曲線y=(x>0)交于點(diǎn)P(p,q),M(1+,n),∴點(diǎn)M為拋物線右支與反比例函數(shù)圖象的交點(diǎn),∴點(diǎn)P為拋物線左支與反比例函數(shù)圖象的交點(diǎn),由于反比例函數(shù)的圖像在第一象限內(nèi)y隨x的增大而減小,且拋物線關(guān)于直線對稱∴1-<p<1;q>2k-k.∴②④正確;故答案為:②④.【考點(diǎn)】本題考查了拋物線與反比例函數(shù)的圖像與性質(zhì),解題關(guān)鍵是弄清楚這兩個(gè)交點(diǎn)分別位于拋物線的左支和右支上,再利用拋物線的軸對稱性和反比例函數(shù)圖像的增減性進(jìn)行判斷.4、【解析】【分析】設(shè)拋物線沿直線方向移動個(gè)單位長度后頂點(diǎn)坐標(biāo)為(t,3t),再求出平移后的頂點(diǎn)坐標(biāo),最后求出平移后的函數(shù)關(guān)系式.【詳解】設(shè)拋物線沿直線方向移動個(gè)單位長度后頂點(diǎn)坐標(biāo)為(t,3t),∴,解得:t=1或t=-1(舍去),∴平移后的頂點(diǎn)坐標(biāo)為(1,3),∴移動后拋物線的解析式是.故答案為:.【考點(diǎn)】本題考查二次函數(shù)的圖象變換及一次函數(shù)的圖像,解題的關(guān)鍵是正確理解圖象變換的條件,本題屬于基礎(chǔ)題型.5、1【解析】【分析】根據(jù)拋物線的頂點(diǎn)坐標(biāo)和開口方向即可得出答案.【詳解】解:,該拋物線的頂點(diǎn)坐標(biāo)為,且開口方向向上,當(dāng)時(shí),取得最小值,故答案為:1.【考點(diǎn)】本題考查二次函數(shù)的最值,求二次函數(shù)最大值或最小值有三種方法:第一種可有圖象直接得出,第二種是配方法,第三種是公式法.四、解答題1、(1)證明見解析;(2)理由見解析;(3)DE=7,CE=【解析】【分析】(1)根據(jù)正方形的性質(zhì),得AB=AD;根據(jù)圓周角的性質(zhì),得,結(jié)合DF=BE,即可完成證明;(2)由(1)結(jié)論得AF=AE,;結(jié)合∠BAD=90°,得∠EAF=90°,從而得到△EAF是等腰直角三角形,即EF=AE;最后結(jié)合DE-DF=EF,從而得到答案;(3)連接BD,將△CBE繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°至△CDH;結(jié)合題意,得∠CBE+∠CDE=180°,從而得到E,D,H三點(diǎn)共線;根據(jù)BC=CD,得,從而推導(dǎo)得∠BEC=∠DEC=45°,即△CEH是等腰直角三角形;再根據(jù)勾股定理的性質(zhì)計(jì)算,即可得到答案.【詳解】(1)如圖,,,,在正方形ABCD中,AB=AD在△ADF和△ABE中∴△ADF≌△ABE(SAS);(2)由(1)結(jié)論得:△ADF≌△ABE∴AF=AE,∠3=∠4正方形ABCD中,∠BAD=90°∴∠BAF+∠3=90°∴∠BAF+∠4=90°∴∠EAF=90°∴△EAF是等腰直角三角形∴EF2=AE2+AF2∴EF2=2AE2∴EF=AE即DE-DF=AE∴DE-BE=AE;(3)連接BD,將△CBE繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°至△CDH∵四邊形BCDE內(nèi)接于圓∴∠CBE+∠CDE=180°∴E,D,H三點(diǎn)共線在正方形ABCD中,∠BAD=90°∴∠BED=∠BAD=90°∵BC=CD∴∴∠BEC=∠DEC=45°∴△CEH是等腰直角三角形在Rt△BCD中,由勾股定理得BD=BC=5在Rt△BDE中,由勾股定理得:DE=在Rt△CEH中,由勾股定理得:EH2=CE2+CH2∴(ED+DH)2=2CE2,即(ED+BE)2=2CE2∴64=2CE2∴CE=4.【考點(diǎn)】本題考查了正方形、圓、等腰三角形、勾股定理、全等三角形、旋轉(zhuǎn)的知識;解題的關(guān)鍵是熟練掌握正方形、圓周角、正多邊形與圓、等腰三角形、勾股定理、全等三角形、旋轉(zhuǎn)的性質(zhì),從而完成求解.2、(1)27(2)【解析】【分析】(1)根據(jù)t秒時(shí),M、N兩點(diǎn)的運(yùn)動路程,分別表示出AM、BM、BN、CN的長度,由S△DMN=S矩形ABCD-S△ADM-S△BMN-S△CDN進(jìn)行列式即可得到S關(guān)于t的函數(shù)關(guān)系式,通過配方即可求得最小值;(2)當(dāng)△DMN為直角三角形時(shí),由∠MDN<90°,分∠NMD或∠MND為90°兩種情況進(jìn)行求解即可得.【詳解】(1)由題意,得AM=tcm,BN=2tcm,則BM=(6-t)cm,CN=(12-2t)cm,∵S△DMN=S矩形ABCD-S△ADM-S△BMN-S△CDN,∴S=12×6-×12t-(6-t)·2t-×6(12-2t)=t2-6t+36=(t-3)2+27,∵t=3在范圍0<t<6內(nèi),∴S的最小值為27cm2;(2)當(dāng)△DMN為直角三角形時(shí),∵∠MDN<90°,∴可能∠NMD或∠MND為90°,當(dāng)∠NMD=90°時(shí),DN2=DM2+MN2,∴(12-2t)2+62=122+t2+(6-t)2+(2t)2,解得t=0或-18,不在范圍0<t<6內(nèi),∴不可能;當(dāng)∠MND=90°時(shí),DM2=DN2+MN2,∴122+t2=(12-2t)2+62+(6-t)2+(2t)2,解得t=或6,(6不在范圍0<t<6內(nèi)舍),∴S=(-3)2+27=cm2.【考點(diǎn)】本題考查了二次函數(shù)的應(yīng)用,涉及矩形的性質(zhì)、三角形面積、二次函數(shù)的性質(zhì)、勾股定理的應(yīng)用等知識,熟練掌握和靈活應(yīng)用相關(guān)知識是解題的關(guān)鍵.3、(1),M(,);(2),(,);(3)證明見試題解析.【解析】【詳解】試題分析:(1)利用配方法把一般式轉(zhuǎn)化為頂點(diǎn)式,然后根據(jù)二次函數(shù)的性質(zhì)求出拋物線的頂點(diǎn)坐標(biāo);(2)連接BC,則BC與對稱軸的交點(diǎn)為R,此時(shí)CR+AR的值最小;先求出點(diǎn)A、B、C的坐標(biāo),再利用待定系數(shù)法求出直線BC的解析式,進(jìn)而求出其最小值和點(diǎn)R的坐標(biāo);(3)設(shè)點(diǎn)P坐標(biāo)為(x,).根據(jù)NPAB=,列出方程,解方程得到點(diǎn)P坐標(biāo),再計(jì)算得出,由勾股定理的逆定理得出∠MPN=90°,然后利用切線的判定定理即可證明直線MP是⊙N的切線.試題解析:(1)∵=,∴拋物線的解析式化為頂點(diǎn)式為:,頂點(diǎn)M的坐標(biāo)是(,);(2)∵,∴當(dāng)y=0時(shí),,解得x=1或6,∴A(1,0),B(6,0),∵x=0時(shí),y=﹣3,∴C(0,﹣3).連接BC,則BC與對稱軸x=的交點(diǎn)為R,連接AR,則CR+AR=CR+BR=BC,根據(jù)兩點(diǎn)之間線段最短可知此時(shí)CR+AR的值最小,最小值為BC==.設(shè)直線BC的解析式為,∵B(6,0),C(0,﹣3),∴,解得:,∴直線BC的解析式為:,令x=,得y==,∴R點(diǎn)坐標(biāo)為(,);(3)設(shè)點(diǎn)P坐標(biāo)為(x,).∵A(1,0),B(6,0),∴N(,0),∴以AB為直徑的⊙N的半徑為AB=,∴NP=,即,移項(xiàng)得,,得:,整理得:,解得(與A重合,舍去),,(在對稱軸的右側(cè),舍去),(與B重合,舍去),∴點(diǎn)P坐標(biāo)為(2,2).∵M(jìn)(,),N(,0),∴==,==,==,∴,∴∠MPN=90°,∵點(diǎn)P在⊙N上,∴直線MP是⊙N的切線.考點(diǎn):1.二次函數(shù)綜合題;2.最值問題;3.切線的判定;4.壓軸題.4、(1).(2).【解析】【分析】(1)根據(jù)方程的系數(shù)結(jié)合根的判別式△≥0,即可得出關(guān)于m的一元一次不等式,解之即可得出m的取值范圍;(2)由根與系數(shù)的關(guān)系可得出x1+x2=6,x1x2=4m+1,結(jié)合|x1-x2|=4可得出關(guān)于m的一元一次方程,解之即可得出m的值.【詳解】(1)∵關(guān)于x的一元二次方程x2-6x+(4m+1)=0有實(shí)數(shù)根,∴△=(-6)2-4×1×(4m+1)≥0,解得:m≤2;(2)∵方程x2-6x+(4m+1)=0的兩個(gè)實(shí)數(shù)根為x1、x2,∴x1+x2=6,x1x2=4m+1,∴(x1-x2)2=(x1+x2)2-4x1x2=42,即32-16m=16,解得:m=1.【
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 年出欄商品肉豬10000頭環(huán)評報(bào)告
- 衛(wèi)生與消毒管理制度
- 衛(wèi)生院消毒滅菌管理制度
- 沒嚴(yán)格衛(wèi)生管理制度
- 水廠衛(wèi)生清掃制度
- 燒臘間衛(wèi)生管理制度
- 衛(wèi)生協(xié)管第一責(zé)任人制度
- 煤礦澡堂衛(wèi)生制度
- 口腔手衛(wèi)生管理制度
- 銅陵市衛(wèi)生管理制度
- 人機(jī)共智?創(chuàng)變未來:千夢引擎AI內(nèi)容營銷白皮書
- 2026年及未來5年市場數(shù)據(jù)中國帶電作業(yè)機(jī)器人行業(yè)市場需求預(yù)測及投資規(guī)劃建議報(bào)告
- 北京市豐臺區(qū)2026屆(年)高三年級(上)學(xué)期期末考試英語試題卷+答案
- 市政管網(wǎng)工程投標(biāo)方案(技術(shù)方案)
- JT∕T 1496-2024 公路隧道施工門禁系統(tǒng)技術(shù)要求
- 別克英朗說明書
- 地下管線測繪課件
- 珍稀植物移栽方案
- 新人教版數(shù)學(xué)三年級下冊預(yù)習(xí)學(xué)案(全冊)
- GB/T 34336-2017納米孔氣凝膠復(fù)合絕熱制品
- GB/T 20077-2006一次性托盤
評論
0/150
提交評論