2022湖北省廣水市中考數(shù)學(xué)試題附答案詳解(A卷)_第1頁
2022湖北省廣水市中考數(shù)學(xué)試題附答案詳解(A卷)_第2頁
2022湖北省廣水市中考數(shù)學(xué)試題附答案詳解(A卷)_第3頁
2022湖北省廣水市中考數(shù)學(xué)試題附答案詳解(A卷)_第4頁
2022湖北省廣水市中考數(shù)學(xué)試題附答案詳解(A卷)_第5頁
已閱讀5頁,還剩24頁未讀, 繼續(xù)免費閱讀

付費下載

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

湖北省廣水市中考數(shù)學(xué)試題考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題25分)一、單選題(5小題,每小題2分,共計10分)1、下列判斷正確的是()A.明天太陽從東方升起是隨機事件;B.購買一張彩票中獎是必然事件;C.?dāng)S一枚骰子,向上一面的點數(shù)是6是不可能事件;D.任意畫一個三角形,其內(nèi)角和是360°是不可能事件;2、如圖是一個含有3個正方形的相框,其中∠BCD=∠DEF=90°,AB=2,CD=3,EF=5,將它鑲嵌在一個圓形的金屬框上,使A,G,H三點剛好在金屬框上,則該金屬框的半徑是()A. B. C. D.3、已知學(xué)校航模組設(shè)計制作的火箭升空高度h(m)與飛行時間t(s)滿足函數(shù)表達式h=﹣t2+24t+1,則下列說法中正確的是(

)A.點火后1s和點火后3s的升空高度相同B.點火后24s火箭落于地面C.火箭升空的最大高度為145mD.點火后10s的升空高度為139m4、下列圖形中,既是中心對稱圖形也是軸對稱圖形的是()A. B. C. D.5、如圖,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2.將△ABC繞點C按順時針方向旋轉(zhuǎn)到點D落在AB邊上,此時得到△EDC,斜邊DE交AC邊于點F,則圖中陰影部分的面積為()A.3 B.1 C. D.二、多選題(5小題,每小題3分,共計15分)1、如圖,PA、PB是的切線,切點分別為A、B,BC是的直徑,PO交于E點,連接AB交PO于F,連接CE交AB于D點.下列結(jié)論正確的是(

)A.CE平分∠ACB B. C.E是△PAB的內(nèi)心 D.2、下列各數(shù)不是方程解的是(

)A.6 B.2 C.4 D.03、拋物線y=ax2+bx+c(a≠0)的頂點為D(﹣1,2),與x軸的一個交點A在點(﹣3,0)和(﹣2,0)之間,其部分圖象如圖,則以下結(jié)論中正確的是()A.b2﹣4ac<0B.當(dāng)x>﹣1時,y隨x增大而減小C.a(chǎn)+b+c<0D.若方程ax2+bx+c-m=0沒有實數(shù)根,則m>2E.3a+c<04、(多選)若數(shù)使關(guān)于的一元二次方程有兩個不相等的實數(shù)解,且使關(guān)于的分式方程的解為非負整數(shù),則滿足條件的的值為(

)A.1 B.3 C.5 D.75、對于二次函數(shù),下列說法不正確的是(

)A.圖像開口向下B.圖像的對稱軸是直線C.函數(shù)最大值為0D.隨的增大而增大第Ⅱ卷(非選擇題75分)三、填空題(5小題,每小題3分,共計15分)1、如圖,在平行四邊形中,,,,以點為圓心,為半徑的圓弧交于點,連接,則圖中黑色陰影部分的面積為________.(結(jié)果保留)2、寫出一個滿足“當(dāng)時,隨增大而減小”的二次函數(shù)解析式______.3、如圖,在ABC中,∠C=90°,AB=10,在同一平面內(nèi),點O到點A,B,C的距離均等于a(a為常數(shù)).那么常數(shù)a的值等于________.4、如圖,四邊形ABCD內(nèi)接于⊙O,∠A=125°,則∠C的度數(shù)為______.5、某射擊運動員在同一條件下的射擊成績記錄如下:射擊次數(shù)20401002004001000“射中9環(huán)以上”的次數(shù)153378158321801“射中9環(huán)以下”的頻率通過計算頻率,估計這名運動員射擊一次時“射中9環(huán)以上”的概率是______(結(jié)果保留小數(shù)點后一位).四、簡答題(2小題,每小題10分,共計20分)1、如圖,在的正三角形的網(wǎng)格中,的三個頂點都在格點上.請按要求畫圖和計算:①僅用無刻度直尺;②保留作圖痕跡.(1)在圖1中,畫出的邊上的中線.(2)在圖2中,求的值.2、已知,且,求x,y的值.五、解答題(4小題,每小題10分,共計40分)1、已知m是方程的一個根,試求的值.2、在中,,,過點A作BC的垂線AD,垂足為D,E為線段DC上一動點(不與點C重合),連接AE,以點A為中心,將線段AE逆時針旋轉(zhuǎn)90°得到線段AF,連接BF,與直線AD交于點G.(1)如圖,當(dāng)點E在線段CD上時,①依題意補全圖形,并直接寫出BC與CF的位置關(guān)系;②求證:點G為BF的中點.(2)直接寫出AE,BE,AG之間的數(shù)量關(guān)系.3、用適當(dāng)?shù)姆椒ń庀铝蟹匠蹋?1)x2-x-1=0;(2)3x(x-2)=x-2;(3)x2-2x+1=0;(4)(x+8)(x+1)=-12.4、如圖1,拋物線y=ax2+bx+3交x軸于點A(﹣1,0)和點B(3,0).(1)求該拋物線所對應(yīng)的函數(shù)解析式;(2)如圖2,該拋物線與y軸交于點C,頂點為F,點D(2,3)在該拋物線上.①求四邊形ACFD的面積;②點P是線段AB上的動點(點P不與點A、B重合),過點P作PQ⊥x軸交該拋物線于點Q,連接AQ、DQ,當(dāng)△AQD是直角三角形時,求出所有滿足條件的點Q的坐標(biāo).-參考答案-一、單選題1、D【詳解】解:A、明天太陽從東方升起是必然事件,故本選項錯誤,不符合題意;B、購買一張彩票中獎是隨機事件,故本選項錯誤,不符合題意;C、擲一枚骰子,向上一面的點數(shù)是6是隨機事件,故本選項錯誤,不符合題意;D、任意畫一個三角形,其內(nèi)角和是360°是不可能事件,故本選項正確,符合題意;故選:D【點睛】本題考查的是對必然事件的概念的理解,熟練掌握必然事件指在一定條件下一定發(fā)生的事件;不確定事件即隨機事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件是解題的關(guān)鍵.2、A【分析】如圖,記過A,G,H三點的圓為則是,的垂直平分線的交點,記的交點為的交點為延長交于為的垂直平分線,結(jié)合正方形的性質(zhì)可得:再設(shè)利用勾股定理建立方程,再解方程即可得到答案.【詳解】解:如圖,記過A,G,H三點的圓為則是,的垂直平分線的交點,記的交點為的交點為延長交于為的垂直平分線,結(jié)合正方形的性質(zhì)可得:四邊形為正方形,則設(shè)而AB=2,CD=3,EF=5,結(jié)合正方形的性質(zhì)可得:而又而解得:故選A【點睛】本題考查的是正方形的性質(zhì),三角形外接圓圓心的確定,圓的基本性質(zhì),勾股定理的應(yīng)用,二次根式的化簡,確定過A,G,H三點的圓的圓心是解本題的關(guān)鍵.3、C【解析】【分析】分別求出t=1、3、24、10時h的值可判斷A、B、D三個選項,將解析式配方成頂點式可判斷C選項.【詳解】解:A、當(dāng)t=1時,h=24;當(dāng)t=3時,h=64;所以點火后1s和點火后3s的升空高度不相同,此選項錯誤;B、當(dāng)t=24時,h=1≠0,所以點火后24s火箭離地面的高度為1m,此選項錯誤;C、由h=﹣t2+24t+1=﹣(t-12)2+145知火箭升空的最大高度為145m,此選項正確;D、當(dāng)t=10時,h=141m,此選項錯誤;故選:C.【考點】本題主要考查二次函數(shù)的應(yīng)用,解題的關(guān)鍵是熟練掌握二次函數(shù)的性質(zhì).4、A【分析】根據(jù)軸對稱圖形與中心對稱圖形的概念求解.【詳解】解:A、既是軸對稱圖形,也是中心對稱圖形,故此選項符合題意;B、是軸對稱圖形,不是中心對稱圖形,故此選項不符合題意;C、是中心對稱圖形,不是軸對稱圖形,故此選項不符合題意;D、是中心對稱圖形,不是軸對稱圖形,故此選項不符合題意.故選:A.【點睛】本題考查中心對稱圖形和軸對稱圖形的知識,關(guān)鍵是掌握好中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,圖形旋轉(zhuǎn)180°后與原圖重合.5、D【分析】根據(jù)題意及旋轉(zhuǎn)的性質(zhì)可得是等邊三角形,則,,根據(jù)含30度角的直角三角形的性質(zhì),即可求得,由勾股定理即可求得,進而求得陰影部分的面積.【詳解】解:如圖,設(shè)與相交于點,,,,旋轉(zhuǎn),,是等邊三角形,,,,,,,,陰影部分的面積為故選D【點睛】本題考查了等邊三角形的性質(zhì),勾股定理,含30度角的直角三角形的性質(zhì),旋轉(zhuǎn)的性質(zhì),利用含30度角的直角三角形的性質(zhì)是解題的關(guān)鍵.二、多選題1、ACD【解析】【分析】連接OA,BE,根據(jù)PA、PB是⊙O的切線,可得PA=PB,OA=OB,可得OP是AB的垂直平分線,根據(jù)垂徑定理,進而可以判斷A;根據(jù)OB=OC,AF=BF,可得OF是三角形BAC的中位線,進而即可判斷D;證明∠PBE=∠EBA,∠APE=∠BPE,即可判斷C;根據(jù)AC∥OE,可得△CDA∽△EDF,進而可以判斷B.【詳解】如圖,連接OA,BE,∵PA、PB是⊙O的切線,∴PA=PB,∵OA=OB,∴OP是AB的垂直平分線,∴OP⊥AB,∴,∴∠ACE=∠BCE,∴CE平分∠ACB;故A正確;∵BC是⊙O的直徑,∴∠BAC=90°,∵∠BFO=90°,∴OF∥AC,∵OB=OC,AF=BF,∴OF=AC;故D正確;∵PB是⊙O的切線,∴∠PBE+∠EBC=90°,∵BC是⊙O的直徑,∴∠EBC+∠ECB=90°,∴∠PBE=∠ECB,∵∠ECB=∠EBA,∴∠PBE=∠EBA,∵∠APE=∠BPE,∴E是△PAB的內(nèi)心;故C正確;∵AC∥OE,∴△CDA∽△EDF.故B錯誤;∴結(jié)論正確的是A,C,D.故選:ACD.【考點】此題考查了圓周角定理、切線的性質(zhì)、三角形中位線定理、及勾股定理的知識,解答本題的關(guān)鍵是熟練掌握切線的性質(zhì)及圓周角定理,注意各個知識點之間的融會貫通.2、ACD【解析】【分析】分別把四個選項中的數(shù)代入方程,看方程兩邊是否相等即可求解.【詳解】解:A、將6代入得:,故6不是方程解,符合題意;B、將2代入得:,故2是方程解,不符合題意;C、將4代入得:,故4不是方程解,符合題意;D、將0代入得:,故0不是方程解,符合題意;故選:ACD.【考點】此題考查了一元二次方程解得含義,解題的關(guān)鍵是熟練掌握一元二次方程解得含義.3、BCDE【解析】【分析】利用圖象信息,以及二次函數(shù)的性質(zhì)即可一一判斷.【詳解】∵二次函數(shù)與x軸有兩個交點,∴b2-4ac>0,故A錯誤,觀察圖象可知:當(dāng)x>-1時,y隨x增大而減小,故B正確,∵拋物線與x軸的另一個交點為在(0,0)和(1,0)之間,∴x=1時,y=a+b+c<0,故C正確,∵當(dāng)m>2時,拋物線與直線y=m沒有交點,∴方程ax2+bx+c-m=0沒有實數(shù)根,故D正確,∵對稱軸x=-1=,∴b=2a,∵a+b+c<0,∴3a+c<0,故E正確,故答案為BCDE.【考點】本題考查了二次函數(shù)圖象與系數(shù)的關(guān)系,根的判別式、拋物線與x軸的交點等知識,解題的關(guān)鍵是靈活運用所學(xué)知識解決問題,屬于中考??碱}型.4、AC【解析】【分析】根據(jù)一元二次方程根的判別式及分式有意義的條件和分式方程的解為非負整數(shù)分別求出a的取值范圍,即可得答案.【詳解】∵關(guān)于的一元二次方程有兩個不相等的實數(shù)解,∴,解得:,∵,∴,解得:,∵關(guān)于的分式方程的解為非負整數(shù),∴且,解得:且,∴且a≠3,∵是整數(shù),∴a=1或5,故選:AC.【考點】本題考查一元二次方程根的判別式、解分式方程及分式有意義的條件,正確得出兩個不等式的解集是解題關(guān)鍵,注意分式的分母不為0的隱含條件,避免漏解.5、ACD【解析】【分析】根據(jù)題目中的函數(shù)解析式,可以判斷各個選項中的說法是否正確.【詳解】解:二次函數(shù),a=2>0,∴該函數(shù)的圖象開口向上,故選項A錯誤,圖象的對稱軸是直線x=1,故選項B正確,函數(shù)的最小值是y=0,故選項C錯誤,當(dāng)x>1時隨的增大而增大,故選項D錯誤,故選:A,C,D.【考點】本題考查二次函數(shù)的性質(zhì)、二次函數(shù)的最值,解答本題的關(guān)鍵是明確題意,利用二次函數(shù)的性質(zhì)解答.三、填空題1、【分析】過點C作于點H,根據(jù)正弦定義解得CH的長,再由扇形面積公式、三角形的面積公式解題即可.【詳解】解:過點C作于點H,在平行四邊形中,平行四邊形的面積為:,圖中黑色陰影部分的面積為:,故答案為:.【點睛】本題考查平行四邊形的性質(zhì)、扇形面積等知識,是基礎(chǔ)考點,掌握相關(guān)知識是解題關(guān)鍵.2、(答案不唯一)【解析】【分析】先根據(jù)二次函數(shù)的圖象和性質(zhì)取對稱軸x=2,設(shè)拋物線的解析式為y=a(x-2)2,由于在拋物線對稱軸的右邊,y隨x增大而減小,得出a<0,于是去a=-1,即可解答.【詳解】解:設(shè)拋物線的解析式為y=a(x-2)2,∵在拋物線對稱軸的右邊,y隨x增大而減小,∴a<0,符合上述條件的二次函數(shù)均可,可取a=-1,則y=-(x-2)2.故答案為:y=-(x-2)2.【考點】本題考查了二次函數(shù)的圖象和性質(zhì),解題的關(guān)鍵是掌握二次函數(shù)的圖象和性質(zhì).3、5【分析】直接利用直角三角形斜邊上的中線等于斜邊的一半即可求解.【詳解】解:根據(jù)直角三角形斜邊上的中線等于斜邊的一半,即可知道點到點A,B,C的距離相等,如下圖:,,故答案是:5.【點睛】本題考查了直角三角形的外接圓的外心,解題的關(guān)鍵是掌握直角三角形斜邊上的中線等于斜邊的一半即可求解.4、55°##55度【解析】【分析】根據(jù)圓內(nèi)接四邊形的性質(zhì)得出∠A+∠C=180°,再求出答案即可.【詳解】解:∵四邊形ABCD內(nèi)接于⊙O,∴∠A+∠C=180°,∵∠A=125°,∴∠C=180°-125°=55°,故答案為:55°.【考點】本題考查了圓內(nèi)接四邊形的性質(zhì)和圓周角定理,能熟記圓內(nèi)接四邊形的對角互補是解此題的關(guān)鍵.5、0.8【分析】重復(fù)試驗次數(shù)越多,其頻率越能估計概率,求出射擊1000次時的頻率即可.【詳解】解:由題意可知射擊1000次時,運動員射擊一次時“射中9環(huán)以上”的頻率為∴用頻率估計概率為0.801,保留小數(shù)點后一位可知概率值為0.8故答案為:0.8.【點睛】本題考查了概率.解題的關(guān)鍵在于明確頻率估計概率時要在重復(fù)試驗次數(shù)盡可能多的情況下.四、簡答題1、(1)答案見解析;(2).【解析】【分析】(1)利用平行四邊形的性質(zhì)分別作出AB、AC的中點E、F,再利用三角形重心的性質(zhì)即可作出△ABC的BC邊上的中線AD;(2)利用平行線的性質(zhì)可得∠AEC=∠FDC,再利用菱形及等邊三角形的性質(zhì)可求得DH、CH的長,繼而求得CD的長,從而求得答案.【詳解】(1)如圖,線段AD就是所求作的中線;(2)如圖:在的正三角形的網(wǎng)格中,∵MN∥AB∥FD,∴∠AEC=∠FDC,∵四邊形CMGN為菱形,且邊長為5,∴CG⊥MN,∴CG⊥FD,,∴CG=2OG=5,∵△GFD為等邊三角形,且邊長為2,同理:HG=,∴在Rt△CDH中,∠CHD=90,DH=1,CH=CG-HG=4,∴,即,∴,∴.【考點】本題考查了作圖-應(yīng)用與設(shè)計作圖,菱形的性質(zhì)、等邊三角形的性質(zhì),平行線的性質(zhì),勾股定理的應(yīng)用.首先要理解題意,弄清問題中對所作圖形的要求,結(jié)合對應(yīng)幾何圖形的性質(zhì)和基本作圖的方法作圖.2、x=6,y=10【解析】【分析】設(shè),則x=3k,y=5k,z=6k,由可求得k的值,從而可求得x與y的值.【詳解】設(shè),則x=3k,y=5k,z=6k∵∴解得:k=2∴x=3×2=6,y=5×2=10即x、y的值分別為6、10【考點】本題考查了比例的性質(zhì),若幾個比相等,即,常常設(shè)其比值為k,則有a=kb,c=kd,e=kf,再根據(jù)題目條件解答則更簡便.五、解答題1、2015【解析】【分析】先根據(jù)一元二次方程的解的定義得到,變形有或,再利用整體思想進行計算.【詳解】解:∵m是方程的一個根,代入即得.∴或.∴.【考點】本題考查了一元二次方程的解的定義,解題的關(guān)鍵是適當(dāng)選擇整體代入法,使得解答變得簡單.2、(1)①BC⊥CF;證明見詳解;②見詳解;(2)2AE2=4AG2+BE2.證明見詳解.【分析】(1)①如圖所示,BC⊥CF.根據(jù)將線段AE逆時針旋轉(zhuǎn)90°得到線段AF,得出AE=AF,∠EAF=90°,可證△BAE≌△CAF(SAS),得出∠ABE=∠ACF=45°,可得∠ECF=∠ACB+∠ACF=45°+45°=90°即可;②根據(jù)AD⊥BC,BC⊥CF.可得AD∥CF,可證△BDG∽△BCF,可得,得出即可;(2)2AE2=4AG2+BE2,延長BA交CF延長線于H,根據(jù)等腰三角形性質(zhì)可得AD平分∠BAC,可得∠BAD=∠CAD=,可證△BAG∽△BHF,得出HF=2AG,再證△AEC≌△AFH(AAS),得出EC=FH=2AG,利用勾股定理得出,即即可.【詳解】解:(1)①如圖所示,BC⊥CF.∵將線段AE逆時針旋轉(zhuǎn)90°得到線段AF,∴AE=AF,∠EAF=90°,∴∠EAC+∠CAF=90°,∵,,∴∠BAE+∠EAC=90°,∠ABC=∠ACB=45°,∴∠BAE=∠CAF,在△BAE和△CAF中,,∴△BAE≌△CAF(SAS),∴∠ABE=∠ACF=45°,∴∠ECF=∠ACB+∠ACF=45°+45°=90°,∴BC⊥CF;②∵AD⊥BC,BC⊥CF.∴AD∥CF,∴∠BDG=∠BCF=90°,∠BGD=∠BFC,∴△BDG∽△BCF,∴,∵,AD⊥BC,∴BD=DC=,∴,∴,∴,∴BG=GF;(2)2AE2=4AG2+BE2.延長BA交CF延長線于H,∵AD⊥BC,AB=AC,∴AD平分∠BAC,∴∠BAD=∠CAD=,∵BG=GF,AG∥HF,∴∠BAG=∠H=45°,∠AGB=∠HFB,∴△BAG∽△BHF,∴,∴HF=2AG,∵∠ACE=45°,∴∠ACE=∠H,∵∠EAC+∠CAF=90°,∠CAF+∠FAH=90°,∴∠EAC=∠FAH,在△AEC和△AFH中,,∴△AEC≌△AFH(AAS),∴EC=FH=2AG,在Rt△AEF中,根據(jù)勾股定理,在Rt△ECF中,即.【點睛】本題考查圖形旋轉(zhuǎn)性質(zhì),三角形完全判定與性質(zhì),等腰直角三角形性質(zhì),三角形相似判定與性質(zhì),勾股定理,掌握圖形旋轉(zhuǎn)性質(zhì),三角形完全判定與性質(zhì),等腰直角三角形性質(zhì),三角形相似判定與性質(zhì),勾股定理是解題關(guān)鍵.3、(1),(2)x1=,x2=2(3)x1=,x2=(4)x1=-4,x2=-5【解析】【分析】(1)利用公式法解答,即可求解;(2)利用因式分解法解答,即可求解;(3)利用配方法解答,即可求解;(4)利用因式分解法解答,即可求解.(1)解:a=1,b=-1,c=-1∴b2-4ac=(-1)2-4×1×(-1)=5∴x==即原方程的根為x1=,x2=(2)解:移項,得3x(x-2)-(x-2)=0,即(3x-1)(x-2)=0,∴x1=,x2=2.(3)解:配方,得(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論