2024-2025學年度北師大版9年級數學上冊期中試卷含答案詳解(新)_第1頁
2024-2025學年度北師大版9年級數學上冊期中試卷含答案詳解(新)_第2頁
2024-2025學年度北師大版9年級數學上冊期中試卷含答案詳解(新)_第3頁
2024-2025學年度北師大版9年級數學上冊期中試卷含答案詳解(新)_第4頁
2024-2025學年度北師大版9年級數學上冊期中試卷含答案詳解(新)_第5頁
已閱讀5頁,還剩31頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

北師大版9年級數學上冊期中試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(7小題,每小題2分,共計14分)1、如果關于的一元二次方程有兩個實數根,那么的取值范圍是(

)A. B.且 C.且 D.2、如圖,將圖1中的菱形紙片沿對角線剪成4個直角三角形,拼成如圖2的四邊形(相鄰紙片之間不重疊,無縫隙).若四邊形的面積為13,中間空白處的四邊形的面積為1,直角三角形的兩條直角邊分別為和,則(

)A.12 B.13 C.24 D.253、如圖,點E、F、G、H分別是四邊形ABCD的邊AB、BC、CD、DA的中點.則下列說法:①若,則四邊形EFGH為矩形;②若,則四邊形EFGH為菱形;③若AC與BD互相垂直且相等,則四邊形EFGH是正方形;④若四邊形EFGH是平行四邊形,則AC與BD互相平分.其中正確的個數是(

)A.1 B.2 C.3 D.44、若對于任意實數a,b,c,d,定義

=ad-bc,按照定義,若=0,則x的值為(

)A. B. C.3 D.5、關于x的一元二次方程根的情況,下列說法正確的是(

)A.有兩個不相等的實數根 B.有兩個相等的實數根C.無實數根 D.無法確定6、如圖,已知△ABC,∠ACB=90°,BC=3,AC=4,小紅按如下步驟作圖:①分別以A、C為圓心,以大于AC的長為半徑在AC兩邊作弧,交于兩點M、N;②連接MN,分別交AB、AC于點D、O;③過C作CEAB交MN于點E,連接AE、CD.則四邊形ADCE的周長為()A.10 B.20 C.12 D.247、若菱形兩條對角線的長度是方程的兩根,則該菱形的邊長為(

)A. B.4 C. D.5二、多選題(3小題,每小題2分,共計6分)1、下列命題是真命題的是()A.過線段中點的直線是線段的垂直平分線B.對角線互相平分且相等的四邊形是矩形C.三角形的中位線將三角形的面積分成1:2兩部分D.對角線互相垂直的矩形是正方形2、下列方程一定不是一元二次方程的是(

)A. B.C. D.3、如圖,在矩形ABCD中,對角線AC、BD交于點O,以下說法正確的是()A.∠ABC=90° B.AC=BD C.OA=OB D.OA=AD第Ⅱ卷(非選擇題80分)三、填空題(10小題,每小題2分,共計20分)1、有4根細木棒,長度分別為2cm、3cm、4cm、5cm,從中任選3根,恰好能搭成一個三角形的概率是__________.2、若關于x的一元二次方程x2+mx+2n=0有一個根是2,則m+n=_____.3、如圖,在矩形ABCD中,AB=6,BC=8,點E、F分別是邊AB、BC上的動點,且EF=4,點G是EF的中點,AG、CG,則四邊形AGCD面積的最小值為_______.4、如圖,在菱形中,,,,分別是邊,上的動點,連接,,,分別為,的中點,連接,則的最小值為________.5、關于的一元二次方程有一個根是,則的值是_______.6、對任意實數a,b,定義一種運算:,若,則x的值為_________.7、某商場銷售一批名牌襯衫,平均每天可售出20件,每件盈利40元,由于疫情,為了擴大銷售量,盡快減少庫存,商場決定采取適當的降價措施,經調查發(fā)現,如果每件襯衫每降價1元,商場平均每天可多售出2件.若商場平均每天銷售這種襯衫的盈利要達到1200元,則每件襯衫應降價多少元?設每件襯衫降價x元,由題意列得方程______.8、如圖,在平面直角坐標系中,長方形OABC的邊OA在x軸上,OC在y軸上,OA=1,OC=2,對角線AC的垂直平分線交AB于點E,交AC于點D.若y軸上有一點P(不與點C重合),能使△AEP是以為AE為腰的等腰三角形,則點P的坐標為____.9、如圖,將邊長為4的正方形ABCD沿對角線AC剪開,再把△ABC沿著AD方向平移得到△A′B′C′,若兩個三角形重疊部分的面積為3,則它移動的距離AA′等于___;移動的距離AA′等于___時,兩個三角形重疊部分面積最大.10、一菱形的對角線長分別為24cm和10cm,則此菱形的周長為________,面積為________.四、解答題(6小題,每小題10分,共計60分)1、在菱形中,,點在的延長線上,點是直線上的動點,連接,將線段繞點逆時針得到線段,連接,.(1)如圖1,當點與點重合時,請直接寫出線段與的數量關系;(2)如圖2,當點在上時,線段,,之間有怎樣的數量關系?請寫出結論并給出證明;(3)當點在直線上時,若,,,請直接寫出線段的長.2、如圖,在?ABCD中,各內角的平分線相交于點E,F,G,H.(1)求證:四邊形EFGH是矩形;(2)若AB=6,BC=4,∠DAB=60°,求四邊形EFGH的面積.3、如圖,在矩形ABCD中,AB=15,E是BC上的一點,將△ABE沿著AE折疊,點B剛好落在CD邊上點G處;點F在DG上,將△ADF沿著AF折疊,點D剛好落在AG上點H處,且CE=,(1)求AD的長;(2)求FG的長4、定義:有一組對邊相等且這一組對邊所在直線互相垂直的凸四邊形叫做“等垂四邊形”.(1)如圖①,四邊形ABCD與四邊形AEFG都是正方形,135°<∠AEB<180°,求證:四邊形BEGD是“等垂四邊形”;(2)如圖②,四邊形ABCD是“等垂四邊形”,AD≠BC,連接BD,點E,F,G分別是AD,BD,BC的中點,連接EG,FG,EF.試判定△EFG的形狀,并證明你的結論;(3)如圖③,四邊形ABCD是“等垂四邊形”,AD=4,BC=8,請直接寫出邊AB長的最小值.

5、已知:如圖所示,在△ABC中,∠B=90°,AB=5cm,BC=7cm,點P從點A開始沿AB邊向點B以1cm/s的速度移動,點Q從點B開始沿BC邊向點C以2cm/s的速度移動,當其中一點到達終點后,另外一點也隨之停止運動.(1)如果P、Q分別從A、B同時出發(fā),那么幾秒后,△PBQ的面積等于4cm2?(2)在(1)中,△PQB的面積能否等于7cm2?請說明理由.6、已知:如圖,平行四邊形ABCD,對角線AC與BD相交于點E,點G為AD的中點,連接CG,CG的延長線交BA的延長線于點F,連接FD.(1)求證:AB=AF;(2)若AG=AB,∠BCD=120°,判斷四邊形ACDF的形狀,并證明你的結論.-參考答案-一、單選題1、C【解析】【分析】根據關于x的一元二次方程kx2-3x+1=0有兩個實數根,知△=(-3)2-4×k×1≥0且k≠0,解之可得.【詳解】解:∵關于x的一元二次方程kx2-3x+1=0有兩個實數根,∴△=(-3)2-4×k×1≥0且k≠0,解得k≤且k≠0,故選:C.【考點】本題主要考查根的判別式與一元二次方程的定義,一元二次方程ax2+bx+c=0(a≠0)的根與△=b2-4ac有如下關系:①當△>0時,方程有兩個不相等的兩個實數根;②當△=0時,方程有兩個相等的兩個實數根;③當△<0時,方程無實數根.上面的結論反過來也成立.2、D【解析】【分析】根據菱形的性質可得對角線互相垂直平分,進而可得4個直角三角形全等,結合已知條件和勾股定理求得,進而根據面積差以及三角形面積公式求得,最后根據完全平方公式即可求得.【詳解】菱形的對角線互相垂直平分,個直角三角形全等;,,,四邊形是正方形,又正方形的面積為13,正方形的邊長為,根據勾股定理,則,中間空白處的四邊形的面積為1,個直角三角形的面積為,,,,.故選D.【考點】本題考查了正方形的性質與判定,菱形的性質,勾股定理,完全平方公式,求得是解題的關鍵.3、A【解析】【分析】先根據三角形中位線定理證明四邊形EFGH是平行四邊形,然后根據菱形,矩形,正方形的判定進行逐一判斷即可.【詳解】解:∵點E、F、G、H分別是四邊形ABCD的邊AB、BC、CD、DA的中點,∴EH是△ABD的中位線,∴,,同理,∴EH=GF,GH=EF,∴四邊形EFGH是平行四邊形,①若AC=BD,則EH=GF=GH=EF,則四邊形EFGH是菱形,故①錯誤;②若AC⊥BD,則EF⊥EH,∴平行四邊形EFGH是矩形,故②錯誤;③若AC與BD互相垂直且相等,結合①②的判斷可知四邊形EFGH是正方形,故③正確;④若四邊形EFGH是平行四邊形,并不能推出AC與BD互相平分,故④錯誤,故選A.【考點】本題主要考查了中點四邊形,三角形中位線定理,熟知中點四邊形的知識是解題的關鍵.4、D【解析】【分析】根據新定義可得方程(x+1)(2x-3)=x(x-1),然后再整理可得x2=3,再利用直接開平方法解方程即可.【詳解】解:由題意得:(x+1)(2x-3)=x(x-1),整理得:x2=3,兩邊直接開平方得:x=±,故選:D.【考點】此題主要考查了新定義,一元二次方程的解法--直接開平方法,關鍵是正確理解題意,列出方程.5、A【解析】【分析】先計算判別式,再進行配方得到△=(k-1)2+4,然后根據非負數的性質得到△>0,再利用判別式的意義即可得到方程總有兩個不相等的實數根.【詳解】△=(k-3)2-4(1-k)=k2-6k+9-4+4k=k2-2k+5=(k-1)2+4,∴(k-1)2+4>0,即△>0,∴方程總有兩個不相等的實數根.故選:A.【考點】本題考查的是根的判別式,一元二次方程ax2+bx+c=0(a≠0)的根與△=b2-4ac有如下關系:①當△>0時,方程有兩個不相等的實數根;②當△=0時,方程有兩個相等的實數根;③當△<0時,方程無實數根.上面的結論反過來也成立.6、A【解析】【分析】根據題意得:MN是AC的垂直平分線,即可得AD=CD,AE=CE,然后由CEAB,可證得CD∥AE,繼而證得四邊形ADCE是菱形,再根據勾股定理求出AD,進而求出菱形ADCE的周長.【詳解】:∵分別以A、C為圓心,以大于AC的長為半徑在AC兩邊作弧,交于兩點M、N,∴MN是AC的垂直平分線,∴AD=CD,AE=CE,∴∠CAD=∠ACD,∠CAE=∠ACE,∵CEAB,∴∠CAD=∠ACE,∴∠ACD=∠CAE,∴CDAE,∴四邊形ADCE是平行四邊形,∴四邊形ADCE是菱形;∴OA=OC=AC=2,OD=OE,AC⊥DE,∵∠ACB=90°,∴DEBC,∴OD是△ABC的中位線,∴OD=BC=×3=1.5,∴AD==2.5,∴菱形ADCE的周長=4AD=10.故選A.【考點】本題考查了作圖-復雜作圖,線段垂直平分線的性質,菱形的判定與性質,三角形中位線的性質以及勾股定理.此題難度適中,注意掌握數形結合思想的應用.7、A【解析】【分析】先求出方程的解,即可得出AC=4,BD=2,根據菱形的性質求出AO和OD,根據勾股定理求出AD即可.【詳解】解:解方程x2?6x+8=0得:x=4或2,即AC=4,BD=2,∵四邊形ABCD是菱形,∴∠AOD=90°,AO=OC=2,BO=DO=1,由勾股定理得:AD==,故選:A.【考點】本題考查了解一元二次方程和菱形的性質,能求出方程的解是解此題的關鍵.二、多選題1、BD【解析】【分析】根據線段垂直平分線的定義,矩形的判定方法,三角形中位線的性質,以及正方形的判定方法逐項分析即可【詳解】解:A.過線段中點且與這條線段垂直的直線是線段的垂直平分線,故原說法錯誤;B.對角線互相平分且相等的四邊形是矩形,正確;C.如圖,DE是△ABC的中位線,作AM⊥BC于M,交DE于N,∵DE是△ABC的中位線,∴DE=BC,AN=AM,∵S△ADE==,S△ABC=,∴S△ADE=S△ABC,∴S△ADE=S四邊形BCED,∴三角形的中位線將三角形的面積分成1:3兩部分,故原說法錯誤;D.對角線互相垂直的矩形是正方形,正確;故選BD.【考點】此題主要考查命題的真假判斷,正確的命題叫真命題,錯誤的命題叫做假命題.判斷命題的真假關鍵是要熟悉課本中的定義、性質定理及判定定理.2、AB【解析】【分析】根據只含有一個未知數,并且未知數的最高次數是2的整式方程叫一元二次方程進行分析即可.【詳解】解:A、分母含有未知數,一定不是一元二次方程,故本選項符合題意;B、含有兩個未知數,一定不是一元二次方程,故本選項符合題意;C、當a=0時,不是一元二次方程,當a≠0時,是一元二次方程,故本選項不符合題意;D、是一元二次方程,故本選項不符合題意.故選:AB.【考點】本題考查的是一元二次方程的定義,熟知只含有一個未知數,并且未知數的最高次數是2的整式方程叫一元二次方程是解答此題的關鍵.3、ABC【解析】【分析】矩形的性質:矩形的四個角都是直角,對邊平行且相等,對角線相等且互相平分,根據矩形的性質逐一判斷即可.【詳解】解:四邊形ABCD為矩形,故符合題意,而不一定成立,故不符合題意;故選:.【考點】本題考查的是矩形的性質,熟悉矩形的性質是解題的關鍵.三、填空題1、【解析】【分析】根據題意,使用列舉法可得從有4根細木棒中任取3根的總共情況數目以及能搭成一個三角形的情況數目,根據概率的計算方法,計算可得答案.【詳解】根據題意,從有4根細木棒中任取3根,有2、3、4;3、4、5;2、3、5;2、4、5,共4種取法,而能搭成一個三角形的有2、3、4;3、4、5,2、4、5,三種,得P=.故其概率為:.【考點】本題考查概率的計算方法,使用列舉法解題時,注意按一定順序,做到不重不漏.用到的知識點為:概率=所求情況數與總情況數之比.2、﹣2【解析】【分析】根據一元二次方程的解的定義把x=2代入得到得然后利用整體代入的方法進行計算.【詳解】∵2是關于x的一元二次方程的一個根,∴,∴n+m=?2,故答案為?2.【考點】本題考查了一元二次方程的解,掌握方程的解的定義是解決本題的關鍵.3、38【解析】【分析】根據題目要求,要使四邊形AGCD的面積最小,因為的面積固定,只需使的面積最小即可,即的高最小即可,又在中,,則BG=2,高的最小值為點B到AC的距離減去BG的長度,則可求解.【詳解】依題意,在中,為EF的中點,,,點G在以B為圓心,2為半徑的圓與長方形重合的弧上運動,,要使四邊形AGCD的面積最小,則B所在直線垂直線段AC,又,點B到AC的距離為,此時點G到AC的距離為,故的最小面積為,,故答案為:38.【考點】本題考查了動點問題中四邊形的最小面積問題,利用勾股定理,直角三角形中線的性質,三角形等積法求高等性質定理進行求解,對于相關性質定理的熟練運用是解題的關鍵.4、【解析】【分析】連結AF,利用中位線的性質GH=AF,要使GH最小,只要AF最小,由點F在BC,當AF⊥BC時,AF最小,利用菱形性質求出,由確定△ABF為等腰直角三角形,得出AF=BF,由勾股定理得:求出AF即可.【詳解】連結AF,∵,分別為,的中點,∴GH∥AF,且GH=AF,要使GH最小,只要AF最小,由點F在BC,當AF⊥BC時,AF最小,在菱形中,,∴,在Rt△ABF中,,∴△ABF為等腰直角三角形,∴AF=BF,由勾股定理得:,∴,∴,GH最小=AF=.故答案為:.【考點】本題考查動點圖形中的中位線,菱形的性質,等腰直角三角形的性質,勾股定理應用問題,掌握中位線的性質,菱形性質,等腰直角三角形的性質,點F在BC上,AF最短,點A到BC直線的距離最短時由點A向直線BC作垂線,垂線段AF為最短是解題關鍵.5、1【解析】【分析】把方程的根代入原方程得到,解得k的值,再根據一元二次方程成立滿足的條件進行取舍即可.【詳解】∵方程是一元二次方程,∴k+2≠0,即k≠-2;又0是該方程的一個根,∴,解得,,,由于k≠-2,所以,k=1.故答案為:1.【考點】本題考查了一元二次方程的解.解此類題時,要擅于觀察已知的是哪些條件,從而有針對性的選擇解題方法.同時要注意一元二次方程成立必須滿足的條件,這是容易忽略的地方.6、2或-3##-3或2【解析】【分析】根據題意得到關于x的一元二次方程,解方程即可.【詳解】解:∵,∴,∴,解得或,故答案為:2或-3.【考點】本題主要考查了新定義下的實數運算,解一元二次方程,正確理解題意是解題的關鍵.7、【解析】【分析】設每件襯衫降價x元,根據每件襯衫每降價1元,商場平均每天可多售出2件可得銷售量為,則每件襯衫的利潤為,根據銷售量乘以每件襯衫的利潤等于1200元,列出一元二次方程即可【詳解】解:設每件襯衫降價x元,根據題意得,故答案為:【考點】本題考查了一元二次方程的應用,根據題意列出一元二次方程是解題的關鍵.8、,或【解析】【分析】設AE=m,根據勾股定理求出m的值,得到點E(1,),設點P坐標為(0,y),根據勾股定理列出方程,即可得到答案.【詳解】∵對角線AC的垂直平分線交AB于點E,∴AE=CE,∵OA=1,OC=2,∴AB=OC=2,BC=OA=1,∴設AE=m,則BE=2-m,CE=m,∴在Rt?BCE中,BE2+BC2=CE2,即:(2-m)2+12=m2,解得:m=,∴E(1,),設點P坐標為(0,y),∵△AEP是以為AE為腰的等腰三角形,當AP=AE,則(1-0)2+(0-y)2=(1-1)2+(0-)2,解得:y=,當EP=AE,則(1-0)2+(-y)2=(1-1)2+(0-)2,解得:y=,∴點P的坐標為,,,故答案是:,,.【考點】本題主要考查等腰三角形的定義,勾股定理,矩形的性質,垂直平分線的性質,掌握勾股定理,列出方程,是解題的關鍵.9、

1cm或3cm##3cm或1cm

2cm【解析】【分析】如圖,設交于交于證明四邊形是平行四邊形,證明是等腰直角三角形,也是等腰直角三角形,設cm,則再利用面積公式建立方程,解方程即可,同時利用配方法求解面積最大值時的平移距離.【詳解】解:如圖,設交于交于由平移的性質可得:四邊形是平行四邊形,由正方形可得:是等腰直角三角形,同理:也是等腰直角三角形,設cm,則解得:cm或cm重疊部分的面積為:當時,重疊部分的面積最大,最大面積為4cm2所以當cm時,重疊部分的面積最大.故答案為:1cm或3cm;2cm【考點】本題考查的是正方形的性質,平行四邊形的判定,等腰直角三角形的判定與性質,一元二次方程的解法,配方法的應用,平移的性質,熟悉以上基礎知識是解題的關鍵.10、

52cm

120cm2【解析】【分析】根據菱形對角線互相平分且垂直得到邊長,從而計算出周長,再根據面積公式計算出面積.【詳解】解:∵菱形的對角線長分別為24cm和10cm,∴對角線的一半長分別為12cm和5cm,∴菱形的邊長為:=13cm,∴菱形的周長為:13×4=52cm,面積為:×10×24=120cm2.故答案為:52cm,120cm2.【考點】此題主要考查學生對菱形的性質的理解及運用,屬于基礎題,關鍵是掌握菱形的面積等于對角線乘積的一半.四、解答題1、(1)AM=DF;(2),證明見解析;(3)1或5【解析】【分析】(1)可通過證明,即可利用全等三角形的性質得出結論;(2)通過作輔助線,構造等邊三角形DMN,再通過全等證明出DF=EN,利用等邊三角形得出DN=DM,DA=DB,求出AM=BN,即可證明題中三線段之間的關系;(3)分別討論當E點在線段BD和DB的延長線上兩種情況,利用全等以及等邊三角形的相關結論即可求出DF的長.【詳解】解:(1)AM=DF;理由:∵菱形ABCD中,∠ABC=120°,可得△BCD和△ABD都是等邊三角形;∴BD=BA,∠DBA=60°,又由旋轉可知ME=MF,∠EMF=60°,得△MEF也是等邊三角形,∴EF=EM,∠MEF=60°,∴∠MEA=∠FED,可證:;∴AM=DF.(2)結論:證明:過點作交延長線于.∵四邊形是菱形∴,∴∵∴∴是等邊三角形∴,∵∴,∴是等邊三角形∴∵,∴是等邊三角形∴,,∴∴∴即:∵,∴∴.(3)1或5當E點在線段BD上時,由(2)知,,∵AB=6,∴BD=AD=6,∵BD=2BE,AD=3AM,∴BE=3,AM=2,∴DF=5;當E點在線段DB的延長線上時,如圖所示:作MN∥AB與DE交于點N,∵∠MDN=∠DAB=60°,利用平行線的性質可得出∠DMN=60°,則△DMN是等邊三角形,∴MN=MD,又由∠DMN=∠EMF,∴∠EMN=∠FMD,∵ME=MF,∴,∴DF=EN∵EN=EB-BN=BD-AM=3-AD=3-2=1;綜上可得:DF的長為1或5.【考點】本題涉及到了幾何圖形的動點問題,綜合考查了等邊三角形的判定與性質、菱形的性質、全等三角形的判定與性質、旋轉的性質等內容,要求學生理解相關概念與性質,能利用相關知識進行邊角之間的轉化,本題難點在于作輔助線,考查了學生的綜合分析的能力,對學生推理分析能力有較高要求.2、(1)證明見解析;(2)矩形EFGH的面積=.【解析】【分析】(1)根據角平分線的定義以及平行四邊形的性質,即可得出∠AGB=90°,∠DEC=90°,∠AHD=90°=∠EHG,進而判定四邊形EFGH是矩形;(2)根據含30°角的直角三角形的性質,得到BGAB=3,AG=3CE,BFBC=2,CF=2,進而得出EF和GF的長,可得四邊形EFGH的面積.【詳解】(1)∵GA平分∠BAD,GB平分∠ABC,∴∠GAB∠BAD,∠GBA∠ABC.∵?ABCD中,∠DAB+∠ABC=180°,∴∠GAB+∠GBA(∠DAB+∠ABC)=90°,即∠AGB=90°,同理可得:∠DEC=90°,∠AHD=90°=∠EHG,∴四邊形EFGH是矩形;(2)依題意得:∠BAG∠BAD=30°.∵AB=6,∴BGAB=3,AG=3CE.∵BC=4,∠BCF∠BCD=30°,∴BFBC=2,CF=2,∴EF=3,GF=3﹣2=1,∴矩形EFGH的面積=EF×GF.【考點】本題考查了平行四邊形的性質,矩形的判定以及全等三角形的判定與性質的運用,解題時注意:有三個角是直角的四邊形是矩形.在判定三角形全等時,關鍵是選擇恰當的判定條件.3、(1)AD=9;(2)FG=7.5【解析】【分析】(1)設CE,則BE,在Rt△CEG和Rt△AGD中,分別求得CG,GD=,再利用CG+GD=CD=15,構造方程求得的值,即可求解;(1)設,利用,構造方程求得的值,即可求解.【詳解】(1)∵CE=,∴設CE,則BE,∴BC=AD=CE+BE,∵△AGE是由△ABE翻折得到的,∴GE=BE,AG=AB=15,在Rt△CEG中,由勾股定理可知:CG=,在Rt△AGD中,由勾股定理可知:GD=,∵CG+GD=CD=15,∴,解得:,AD;(2)由(1)知:CG=3,GD=12,設,∵△AHF是由△ADF翻折得到的,∴,∵,即,∴,解得:,即DF,∴.【考點】本題考查了矩形的性質,翻折變換,勾股定理等知識,解題的關鍵是學會利用參數構建方程解決問題.4、(1)證明見解析;(2)△EFG是等腰直角三角形;證明見解析;(3)AB最小值為.【解析】【分析】延長BE,DG交于點H,先證△ABE≌△ADG,得BE=DG,∠ABE=∠ADG.結合∠ABD+∠ADB=90°,知∠ABE+∠EBD+∠ADB=∠DBE+∠ADB+∠ADG=90°,即可得∠BHD=90°.從而得證;(2)延長BA,CD交于點H,由四邊形ABCD是“等垂四邊形”,AD≠BC知AB⊥CD,AB=CD,從而得∠HBC+∠HCB=90°,根據三個中點知EF=AB,GF=CD,EF∥AB,GF∥DC,據此得∠BGF=∠C,EFD=∠HBD,EF=GF.由∠EFG=∠EFD+∠DFG=∠ABD+∠DBC+∠FGB=∠ABD+∠DBC+∠C=∠HBC+∠HCB=90°可得答案;(3)延長BA,CD交于點H,分別取AD,BC的中點E,F.連接HE,EF,HF,由EF≥HF?HE=BC?AD=4?2=2然后結合(2)可知AB=EF≥2可得答案.【詳解】解:(1)如圖①,延長BE,DG交于點H,∵四邊形ABCD與四邊形AEFG都為正方形,∴AB=AD,AE=AG,∠BAD=∠EAG=90°.∴∠BAE=∠DAG.∴△ABE≌△ADG(SAS).∴BE=DG,∠ABE=∠ADG.∵∠ABD+∠ADB=90°,∴∠ABE+∠EBD+∠ADB=∠DBE+∠ADB+∠ADG=90°,即∠EBD+∠BDG=90°,∴∠BHD=90°.∴BE⊥DG.又∵BE=DG,∴四邊形BEGD是“等垂四邊形”;(2)△EFG是等腰直角三角形.理由如下:如圖②,延長BA,CD交于點H,∵四邊形ABCD是“等垂四邊形”,AD≠BC,∴AB⊥CD,AB=CD,∴∠HBC+∠HCB=90°∵點E,F,G分別是AD,BC,B

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論