版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
浙江省諸暨市中考數學模擬試題考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題25分)一、單選題(5小題,每小題2分,共計10分)1、下面的圖形中既是軸對稱圖形又是中心對稱圖形的是()A. B. C. D.2、一元二次方程(m+1)x2-2mx+m2-1=0有兩個異號根,則m的取值范圍是(
)A.m<1 B.m<1且m≠-1C.m>1 D.-1<m<13、如圖,DC是⊙O的直徑,弦AB⊥CD于M,則下列結論不一定成立的是()A.AM=BM B.CM=DM C. D.4、已知菱形ABCD的對角線交于原點O,點A的坐標為,點B的坐標為,則點D的坐標是()A. B. C. D.5、若的圓心角所對的弧長是,則此弧所在圓的半徑為()A.1 B.2 C.3 D.4二、多選題(5小題,每小題3分,共計15分)1、已知拋物線上部分點的橫坐標x與縱坐標y的對應值如表所示,對于下列結論:x…-10123…y…30-1m3…①拋物線開口向下;②拋物線的對稱軸為直線;③方程的兩根為0和2;④當時,x的取值范圍是或.正確的是(
)A.① B.② C.③ D.④2、若關于的一元二次方程的兩個實數根分別是,且滿足,則的值不可能為(
)A.或 B. C. D.不存在3、下列條件中,不能確定一個圓的是(
)A.圓心與半徑 B.直徑C.平面上的三個已知點 D.三角形的三個頂點4、如圖,的內切圓(圓心為點O)與各邊分別相切于點D,E,F,連接.以點B為圓心,以適當長為半徑作弧分別交于G,H兩點;分別以點G,H為圓心,以大于的長為半徑作弧,兩條弧交于點P;作射線.下列說法正確的是(
)A.射線一定過點O B.點O是三條中線的交點C.若是等邊三角形,則 D.點O不是三條邊的垂直平分線的交點5、下表時二次函數y=ax2+bx+c的x,y的部分對應值:…………則對于該函數的性質的判斷中正確的是()A.該二次函數有最大值B.不等式y(tǒng)>﹣1的解集是x<0或x>2C.方程y=ax2+bx+c的兩個實數根分別位于﹣<x<0和2<x<之間D.當x>0時,函數值y隨x的增大而增大第Ⅱ卷(非選擇題75分)三、填空題(5小題,每小題3分,共計15分)1、把一副普通撲克牌中的13張黑桃牌洗勻后正面朝下放在桌子上,從中隨機抽取一張,則抽出的牌上的數小于5的概率為_____.2、如圖,將半徑為的圓形紙片沿一條弦折疊,折疊后弧的中點與圓心重疊,則弦的長度為________.3、邊長為2的正三角形的外接圓的半徑等于___.4、如圖,在ABC中,∠C=90°,AB=10,在同一平面內,點O到點A,B,C的距離均等于a(a為常數).那么常數a的值等于________.5、如圖,把分成相等的六段弧,依次連接各分點得到正六邊形ABCDEF,如果的周長為,那么該正六邊形的邊長是______.四、簡答題(2小題,每小題10分,共計20分)1、(1)證明推斷:如圖(1),在正方形中,點,分別在邊,上,于點,點,分別在邊,上,.求證:;(2)類比探究:如圖(2),在矩形中,將矩形沿折疊,使點落在邊上的點處,得到四邊形,交于點,連接交于點.試探究與之間的數量關系,并說明理由;(3)拓展應用:在(2)的條件下,連接,若,,求的長.2、如圖,矩形在平面直角坐標系中,交軸于點,動點從原點出發(fā),以每秒1個單位長度的速度沿軸正方向移動,移動時間為秒,過點P作垂直于軸的直線,交于點M,交或于點N,直線掃過矩形的面積為.(1)求點的坐標;(2)求直線移動過程中到點之前的關于的函數關系式;(3)在直線移動過程中,第一象限的直線上是否存在一點,使是等腰直角三角形?若存在,直接寫出點的坐標;若不存在,說明理由五、解答題(4小題,每小題10分,共計40分)1、解題與遐想.如圖,Rt△ABC的內切圓與斜邊AB相切于點D,AD=4,BD=5.求Rt△ABC的面積.王小明:這道題算出來面積剛好是20,太湊巧了吧.剛好是4×5=20,有種白算的感覺…趙麗華:我把4和5換成m、n再算一遍,△ABC的面積總是m?n!確實非常神奇了…數學劉老師:大家想一想,既然結果如此簡單到極致,不計算能不能得到呢?比如,拼圖?霍佳:劉老師,我在想另一個東西,這個圖能不能尺規(guī)畫出來啊感覺圖都定了.我怎么想不出來呢?計算驗證(1)通過計算求出Rt△ABC的面積.拼圖演繹(2)將Rt△ABC分割放入矩形中(左圖),通過拼圖能直接“看”出“20”請在圖中畫出拼圖后的4個直角三角形甲、乙、丙、丁的位置,作必要標注并簡要說明.尺規(guī)作圖(3)尺規(guī)作圖:如圖,點D在線段AB上,以AB為斜邊求作一個Rt△ABC,使它的內切圓與斜邊AB相切于點D.(保留作圖的痕跡,寫出必要的文字說明)2、如圖,在直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=12cm,AD=8cm,BC=22cm,AB為⊙O的直徑,動點P從點A開始沿AD邊向點D以1cm/s的速度運動,動點Q從點C開始沿CB邊向點B以2cm/s的速度運動.P、Q分別從點A、C同時出發(fā),當其中一個動點到達端點時,另一個動點也隨之停止運動,設運動時間為t(s).(1)當t為何值時,四邊形PQCD為平行四邊形?(2)當t為何值時,PQ與⊙O相切?3、如圖,已知AB是的直徑,點D為弦BC中點,過點C作切線,交OD延長線于點E,連結BE,OC.(1)求證:.(2)求證:BE是的切線.4、已知關于x的一元二次方程有兩個實數根.(1)求k的取值范圍;(2)若,求k的值.-參考答案-一、單選題1、A【詳解】解:A、既是軸對稱圖形又是中心對稱圖形,此項符合題意;B、是中心對稱圖形,不是軸對稱圖形,此項不符題意;C、是軸對稱圖形,不是中心對稱圖形,此項不符題意;D、是軸對稱圖形,不是中心對稱圖形,此項不符題意;故選:A.【點睛】本題考查了中心對稱圖形和軸對稱圖形,熟記中心對稱圖形的定義(在平面內,把一個圖形繞某點旋轉,如果旋轉后的圖形與另一個圖形重合,那么這兩個圖形互為中心對稱圖形)和軸對稱圖形的定義(如果一個圖形沿一條直線折疊,直線兩旁的部分能夠完全重合,那么這個圖形叫做軸對稱圖形)是解題關鍵.2、B【解析】【分析】設方程兩根為x1,x2,根據一元二次方程的定義和根與系數的關系求解即可.【詳解】解:設方程兩根為x1,x2,根據題意得m+1≠0,,解得m<1且m≠-1,∵x1?x2<0,∴Δ>0,∴m的取值范圍為m<1且m≠-1.故選:B.【考點】本題考查了一元二次方程ax2+bx+c=0(a≠0)的根的判別式Δ=b2-4ac:當Δ>0,方程有兩個不相等的實數根;當Δ=0,方程有兩個相等的實數根;當Δ<0,方程沒有實數根.也考查了一元二次方程根與系數的關系.3、B【分析】根據垂徑定理“垂直于弦的直徑平分這條弦,并且平分弦所對的兩條弧”進行判斷即可得.【詳解】解:∵弦AB⊥CD,CD過圓心O,∴AM=BM,,,即選項A、C、D選項說法正確,不符合題意,當根據已知條件得CM和DM不一定相等,故選B.【點睛】本題考查了垂徑定理,解題的關鍵是掌握垂徑定理.4、A【分析】根據菱形是中心對稱圖形,菱形ABCD的對角線交于原點O,則點與點關于原點中心對稱,根據中心對稱的點的坐標特征進行求解即可【詳解】解:∵菱形是中心對稱圖形,菱形ABCD的對角線交于原點O,∴與點關于原點中心對稱,點B的坐標為,點D的坐標是故選A【點睛】本題考查了菱形的性質,求關于原點中心對稱的點的坐標,掌握菱形的性質是解題的關鍵.5、C【分析】先設半徑為r,再根據弧長公式建立方程,解出r即可【詳解】設半徑為r,則周長為2πr,120°所對應的弧長為解得r=3故選C【點睛】本題考查弧長計算,牢記弧長公式是本題關鍵.二、多選題1、CD【解析】【分析】根據表格可知直線x=1是拋物線對稱軸,此時有最小值,與x軸交點坐標為(0,0)(2,0)據此可判斷①②③,根據與x軸交點坐標結合開口方向可判斷④.【詳解】解:從表格可以看出,函數的對稱軸是直線x=1,頂點坐標為(1,﹣1),此時有最小值∴函數與x軸的交點為(0,0)、(2,0),∴拋物線y=ax2+bx+c的開口向上故①錯誤;拋物線y=ax2+bx+c的對稱軸為直線x=1故②錯誤;方程ax2+bx+c=0的根為0和2故③正確;當y>0時,x的取值范圍是x<0或x>2故④正確;故選CD.【考點】本題考查了二次函數的圖象和性質.解題的關鍵在于根據表格獲取正確的信息.2、ABD【解析】【分析】利用可得,從而得到,解出k結合根的判別式即可求解.【詳解】解:∵于的一元二次方程的兩個實數根分別是,,∴,∵,∴,即,解得:,當時,,∴此時方程無實數根,不合題意,舍去,當時,,∴此時方程有兩個不相等實數根,∴的值為.故選:ABD.【考點】本題主要考查了一元二次方程根與系數的關系,熟練掌握若一元二次方程的兩個實數根分別是,,則是解題的關鍵.3、C【解析】【分析】根據不在同一條直線上的三個點確定一個圓,已知圓心和直徑所作的圓是唯一的進行判斷即可得出答案.【詳解】解:A、已知圓心與半徑能確定一個圓,不符合題意;B、已知直徑能確定一個圓,不符合題意;C、平面上的三個已知點,不能確定一個圓,符合題意;D、已知三角形的三個頂點,能確定一個圓,不符合題意;故選C.【考點】本題考查了確定圓的條件,解題的關鍵是分類討論.4、AC【解析】【分析】根據三角形內切圓的性質逐個判斷可得出答案.【詳解】A、以點B為圓心,以適當長為半徑作弧分別交于G,H兩點;分別以點G,H為圓心,以大于的長為半徑作弧,兩條弧交于點P;作射線,由此可得BP是角平分線,所以射線一定過點O,說法正確,選項符合題意;B、邊DE、EF、DF分別是圓的弦長,所以點O是△DEF三條邊的垂直平分線的交點,選項不符合題意;C、當是等邊三角形時,可以證得D、F、E分別是邊的中點,根據中位線概念可得,選項符合題意;D、邊DE、EF、DF分別是圓的弦長,所以點O是△DEF三條邊的垂直平分線的交點,選項不符合題意;故選:AC.【考點】本題考查了三角形內切圓的特點和性質,解題的關鍵是能與其它知識聯系起來,加以證明選項的正確.5、BC【解析】【分析】由圖表可得二次函數y=ax2+bx+c的對稱軸為直線x=1,a>0,即可判斷A,D不正確,由圖表可直接判斷B,C正確.【詳解】解:∵當x=0時,y=-1;當x=2時,y=-1;當x=,y=;當x=,y=;∴二次函數y=ax2+bx+c的對稱軸為直線x=1,x>1時,y隨x的增大而增大,x<1時,y隨x的增大而減小.∴a>0即二次函數有最小值則A,D錯誤由圖表可得:不等式y(tǒng)>-1的解集是x<0或x>2;由圖表可得:方程ax2+bx+c=0的兩個實數根分別位于-<x<0和2<x<之間;所以選項B,C正確,故選:BC.【考點】本題考查了拋物線與x軸的交點,二次函數的性質,二次函數的最值,理解圖表中信息是本題的關鍵.三、填空題1、【分析】抽出的牌的點數小于5有1,2,3,4共4個,總的樣本數目為13,由此可以容易知道事件抽出的牌的點數小于5的概率.【詳解】解:∵抽出的牌的點數小于5有1,2,3,4共4個,總的樣本數目為13,∴從中任意抽取一張,抽出的牌點數小于5的概率是:.故答案為:.【點睛】此題主要考查了概率的求法.用到的知識點為:概率=所求情況數與總情況數之比.2、【分析】連接OC交AB于點D,再連接OA.根據軸對稱的性質確定,OD=CD;再根據垂徑定理確定AD=BD;再根據勾股定理求出AD的長度,進而即可求出AB的長度.【詳解】解:如下圖所示,連接OC交AB于點D,再連接OA.∵折疊后弧的中點與圓心重疊,∴,OD=CD.∴AD=BD.∵圓形紙片的半徑為10cm,∴OA=OC=10cm.∴OD=5cm.∴cm.∴BD=cm.∴cm.故答案為:.【點睛】本題考查軸對稱的性質,垂徑定理,勾股定理,綜合應用這些知識點是解題關鍵.3、【分析】過圓心作一邊的垂線,根據勾股定理可以計算出外接圓半徑.【詳解】如圖所示,是正三角形,故O是的中心,,∵正三角形的邊長為2,OE⊥AB∴,,∴,由勾股定理得:,∴,∴,∴(負值舍去).故答案為:.【點睛】本題考查了正多邊形和圓,解題的關鍵是根據題意畫出圖形,利用數形結合求解.4、5【分析】直接利用直角三角形斜邊上的中線等于斜邊的一半即可求解.【詳解】解:根據直角三角形斜邊上的中線等于斜邊的一半,即可知道點到點A,B,C的距離相等,如下圖:,,故答案是:5.【點睛】本題考查了直角三角形的外接圓的外心,解題的關鍵是掌握直角三角形斜邊上的中線等于斜邊的一半即可求解.5、6【分析】如圖,連接OA、OB、OC、OD、OE、OF,證明△AOB、△BOC、△DOC、△EOD、△EOF、△AOF都是等邊三角形,再求出圓的半徑即可.【詳解】解:如圖,連接OA、OB、OC、OD、OE、OF.∵正六邊形ABCDEF,∴AB=BC=CD=DE=EF=FA,∠AOB=∠BOC=∠COD=∠DOE=∠EOF=∠FOA=60°,∴△AOB、△BOC、△DOC、△EOD、△EOF、△AOF都是等邊三角形,∵的周長為,∴的半徑為,正六邊形的邊長是6;【點睛】本題考查正多邊形與圓的關系、等邊三角形的判定和性質等知識,明確正六邊形的邊長和半徑相等是解題的關鍵.四、簡答題1、(1)見解析;(2);見解析;(3)【解析】【分析】(1)先△ABE≌△DAQ,可得AE=DQ;再證明四邊形DQFG是平行四邊形即可解決問題;(2)如圖2中,作GM⊥AB于M.然后證明△ABE∽△GMF即可解決問題;(3)如圖3中,作PM⊥BC交BC的延長線于M.利用相似三角形的性質求出PM,CM即可解決問題.【詳解】(1)如圖(1),∵四邊形ABCD是正方形,∴AB=DA,∠ABE=90°=∠DAQ.∴∠QAO+∠OAD=90°.∵AE⊥DQ,∴∠ADO+∠OAD=90°.∴∠QAO=∠ADO.∴△ABE≌△DAQ(ASA),∴AE=DQ.∵四邊形ABCD是正方形,AE⊥DQ,AE⊥GF,∴DG∥QF,DQ∥GF,∴四邊形DQFG是平行四邊形,∴DQ=GF,∴FG=AE;(2).理由:如圖(2)中,作GM⊥AB于M.∵AE⊥GF,∴∠AOF=∠GMF=∠ABE=90°,∴∠BAE+∠AFO=90°,∠AFO+∠FGM=90°,∴∠BAE=∠FGM,∴△ABE∽△GMF,∴GF:AE=GM:AB,∵∠AMG=∠D=∠DAM=90°,∴四邊形AMGD是矩形,∴GM=AD,∴GF:AE=AD:AB,∵四邊形ABCD是矩形,∴BC=AD,∴GF:AE=BC:AB,∵,∴.(3)解:如圖(3)中,作PM⊥BC交BC的延長線于M.由BE:BF=3:4,設BE=3k,BF=4k,則EF=AF=5k,∵,,∴AE=,在直角三角形ABE中,根據勾股定理,得,∴∴k=1或﹣1(舍去),∴BE=3,AB=9,∵BC:AB=2:3,∴BC=6,∴BE=CE=3,AD=PE=BC=6,∵∠EBF=∠FEP=∠PME=90°,∴∠FEB+∠PEM=90°,∠PEM+∠EPM=90°,∴∠FEB=∠EPM,∴△FBE∽△EMP,∴,∴,∴EM=,PM=,∴CM=EM﹣EC=﹣3=,∴PC==.【考點】本題考查了正方形、矩形的性質,全等三角形的判定和性質,相似三角形的判定和性質,解直角三角形,正確尋找全等三角形或相似三角形解決問題,學會利用參數構建方程解決問題,是解題的關鍵.2、(1);(2);(3)存在.【解析】【分析】(1)由,且AB=6即可求出AO的長,再由勾股定理即可求出BO的長,即可求出A和B點坐標.(2)P點從原點出發(fā),在到達終點前,直線l掃過的面積始終為平行四邊形BMNE,故求該平行四邊的底BE和高OP,相乘即得到面積S;由,且AB=6,可求出AC=10,過D點作DF⊥x軸,易證,求出CF=AO,進而求出OF的長;由,故,求出OE的長,進而求出OB+OE=BE.(3)分類討論,當B為直角頂角時,過Q1點作QH⊥y軸,此時△Q1HB≌△BOC,即可求出Q1的坐標;當Q2為直角頂角時,過Q2點作QM⊥y軸,QN⊥x軸,此時Q2MB≌Q2NC,即可求出Q2的坐標.【詳解】解:(1)由題意可得故答案為:(2)過點作軸,垂足為F,則
∴∵∴,故,求得.當時,直線掃過的圖形是平行四邊形,故答案為:.存在,.如下圖所示:情況一:當B為直角頂角時,此時BQ1=BC,過Q1點作Q1H1⊥y軸于H1,∴∠Q1H1B=∠BOC=90°,且BQ1=BC,∵∠Q1BC=90°∴∠H1BQ1+∠OBC=90°又∠BCO+∠OBC=90°∴∠H1BO1=∠BCO在△Q1H1B和△BOC中:,∴△△Q1H1B≌△BOC(AAS)∴Q1H1=BO=,BH1=OC=,∴OH1=∴情況二:當Q2為直角頂角時,此時有Q2B=Q2C,過Q2點分別作Q2M⊥y軸,Q2N⊥x軸∴∠MQ2B+∠BQ2N=90°又∴∠NQ2C+∠BQ2N=90°∴∠MQ2B=∠NQ2C在△MQ2B和△NQ2C中,∴△MQ2B≌△NQ2C(AAS)∴MQ2=NQ2=OM=ON,且∠MON=90°∴四邊形Q2MON為正方形,設MB=NC=a則OC-a=ON=OB=,且OC=∴求得a=,∴ON=OM=OB+a=∴故答案為:和【考點】本題考查了三角函數求值、平行四邊形的面積公式、三角形全等、等腰直角三角形等相關知識,利用銳角相等,其對應的三角函數值相同,可列出比例求解未知線段長.五、解答題1、(1)S△ABC=20;(2)見解析;(3)見解析.【分析】(1)設⊙O的半徑為r,由切線長定理得,AE=AD=4,BF=BD=5,CE=CF=r,由勾股定理得,(r+4)2+(r+5)2=92,進而求得結果;(2)根據切線長定理可證明甲和乙兩個三角形全等,丙丁兩個三角形全等,故將甲乙圖形放在OE為邊的上方,將丙丁以OP為邊放在右側,圍成矩形的邊長是4和5;(3)可先計算∠AFB=135°,根據“定弦對定角”作F點的軌跡,根據切線性質,過點F作AB的垂線,再根據直徑所對的圓周角是90°,確定點C.【詳解】解:(1)如圖1,設⊙O的半徑為r,連接OE,OF,∵⊙O內切于△ABC,∴OE⊥AC,OF⊥BC,AE=AD=4,BF=BD=5,∴∠OEC=∠OFC=∠C=90°,∴四邊形ECFO是矩形,∴CF=OE=r,CE=OF=r,∴AC=4+r,BC=5+r,在Rt△ABC中,由勾股定理得,(r+4)2+(r+5)2=92,∴r2+9r=20,∴S△ABC=====20;(2)如圖2,(3)設△ABC的內切圓記作⊙F,∴AF和BF平分∠BAC和∠ABC,FD⊥AB,∴∠BAF=∠CAB,∠ABF=,∴∠BAF+∠ABF=(∠BAC+∠ABC)==45°,∴∠AFB=135°,可以按以下步驟作圖(如圖3):①以BA為直徑作圓,作AB的垂直平分線交圓于點E,②以E為圓心,AE為半徑作圓,③過點D作AB的垂線,交圓于F,④連接EF并延長交圓于C,連接AC,BC,則△ABC就是求作的三角形.【點睛】本題考查三角形的內切圓性質、切線長定理、勾股定理、矩形的判定與性質、尺規(guī)作圖-作垂線,熟練掌握相關知識的聯系與運用是解答的關鍵.2、(1)當時,四邊形PQCD為平行四邊形;(2)當t=2秒時,PQ與⊙O相切.【解析】【分析】(1)由題意得:,,則,再由四邊形PQCD是平行四邊形,得到DP=CQ,由此建立方程求解即可;(2)設PQ與⊙O相切于點H過點P作PE⊥BC,垂足為E.先證明四邊形ABEP是矩形,得到PE=AB=12cm.由AP=BE=tcm,CQ=2tcm,得到BQ=(22﹣2t)cm,EQ=22﹣3t)cm;再由切線長定理得到AP=PH,HQ=BQ,則PQ=PH+HQ=AP+BQ=t+22﹣2t=(22﹣t)cm;在Rt△PEQ中,PE2+EQ2=PQ2,則122+(22﹣3t)2=(22﹣t)2,即:8t2﹣88t+144=0,由此求解即可.【詳解】解:(1)由題意得:,,∴,∵四邊形PQCD是平行四邊形,∴DP=CQ,∴,解得,∴當時,四邊形PQCD為平行四邊形;(2)設PQ與⊙O相切于點H過點P作PE⊥BC,垂足為E.∴∠PEB=90°∵在直角梯形ABCD,AD∥BC,∠ABC=90°,∴∠BAD=90°,∴四邊形ABEP是矩形,∴PE=AB=12cm.∵AP=BE=tcm,CQ=2tcm,∴BQ=BC﹣CQ=(22﹣2t)cm,EQ=BQ﹣BE=22﹣
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 公司無人機生產管理制度
- 供電所安全生產例會制度
- 電池托盤生產包裝制度
- 小學新課標試題及答案
- 安全生產應知應會知識習題庫(含答案解析)
- 電路板維修試題及答案
- 醫(yī)院應聘筆試題及答案大全
- 國家能源集團招聘考試題庫考試試題及答案完整題庫
- 電工考試題及答案初級
- 復旦大學醫(yī)學院2024年臨床醫(yī)學(眼科學)試題及答案
- 初中寒假前心理健康教育主題班會課件
- 事業(yè)編退休報告申請書
- 原發(fā)性骨髓纖維化2026
- 半導體廠務項目工程管理 課件 項目6 凈化室系統(tǒng)的設計與維護
- 河南省洛陽強基聯盟2025-2026學年高二上學期1月月考英語試題含答案
- 2026年中考數學模擬試卷試題匯編-尺規(guī)作圖
- 玻璃鋼水箱安裝詳細技術方案
- 山東省煙臺市開發(fā)區(qū)2024-2025學年上學期期末八年級數學檢測題(含答案)
- 桂花香包制作課件
- 社會工作本科畢業(yè)論文
- (2025年)架子工考試模擬題(帶答案)
評論
0/150
提交評論