2023江西省德興市中考數學考試彩蛋押題及答案詳解【易錯題】_第1頁
2023江西省德興市中考數學考試彩蛋押題及答案詳解【易錯題】_第2頁
2023江西省德興市中考數學考試彩蛋押題及答案詳解【易錯題】_第3頁
2023江西省德興市中考數學考試彩蛋押題及答案詳解【易錯題】_第4頁
2023江西省德興市中考數學考試彩蛋押題及答案詳解【易錯題】_第5頁
已閱讀5頁,還剩22頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

江西省德興市中考數學考試彩蛋押題考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題25分)一、單選題(5小題,每小題2分,共計10分)1、在平面直角坐標系中,將二次函數的圖像向左平移2個單位長度,再向上平移1個單位長度,所得拋物線對應的函數表達式為(

)A. B. C. D.2、在中,AB,CD為兩條弦,下列說法:①若,則;②若,則;③若,則弧AB=2弧CD;④若,則.其中正確的有(

)A.1個 B.2個 C.3個 D.4個3、三孔橋橫截面的三個孔都呈拋物線形,兩小孔形狀、大小完全相同.當水面剛好淹沒小孔時,大孔水面寬度為10米,孔頂離水面1.5米;當水位下降,大孔水面寬度為14米時,單個小孔的水面寬度為4米,若大孔水面寬度為20米,則單個小孔的水面寬度為()A.4米 B.5米 C.2米 D.7米4、為了解某地區(qū)九年級男生的身高情況,隨機抽取了該地區(qū)1000名九年級男生的身高數據,統計結果如下.身高人數60260550130根據以上統計結果,隨機抽取該地區(qū)一名九年級男生,估計他的身高不低于的概率是(

)A.0.32 B.0.55 C.0.68 D.0.875、直線不經過第二象限,則關于的方程實數解的個數是(

).A.0個 B.1個 C.2個 D.1個或2個二、多選題(5小題,每小題3分,共計15分)1、二次函數y=ax2+bx+c(a≠0)的頂點坐標為(-1,n),其部分圖象如圖所示.下列結論正確的是(

)A.B.C.若,是拋物線上的兩點,則D.關于x的方程無實數根2、若關于的一元二次方程的兩個實數根分別是,且滿足,則的值不可能為(

)A.或 B. C. D.不存在3、下列說法中,正確的有()A.等弧所對的圓心角相等B.經過三點可以作一個圓C.平分弦的直徑垂直于這條弦D.圓的內接平行四邊形是矩形4、(多選)若數使關于的一元二次方程有兩個不相等的實數解,且使關于的分式方程的解為非負整數,則滿足條件的的值為(

)A.1 B.3 C.5 D.75、等腰三角形三邊長分別為a,b,3,且a,b是關于x的一元二次方程x2﹣8x﹣1+m=0的兩根,則m的值為()A.15 B.16 C.17 D.18第Ⅱ卷(非選擇題75分)三、填空題(5小題,每小題3分,共計15分)1、不透明袋子中裝有5個球,其中有2個紅球、3個黑球,這些球除顏色外無其他差別.從袋子中隨機取出1個球,則它是黑球的概率是________.2、某班共有36名同學,其中男生16人,喜歡數學的同學有12人,喜歡體育的同學有24人.從該班同學的學號中隨意抽取1名同學,設這名同學是女生的可能性為a,這名同學喜歡數學的可能性為b,這名同學喜歡體育的可能性為c,則a,b,c的大小關系是___________.3、一個直角三角形的兩條直角邊相差5cm,面積是7cm2,則其斜邊的長是___.4、拋物線的開口方向向______.5、若某二次函數圖象的形狀與拋物線y=3x2相同,且頂點坐標為(0,-2),則它的表達式為________.四、簡答題(2小題,每小題10分,共計20分)1、某商品的進價為每件40元,如果售價為每件50元,每個月可賣出210件;如果售價超過50元但不超過80元,每件商品的售價每上漲1元,則每個月少賣1件,如果售價超過80元后,若再漲價,則每漲1元每月少賣3件.設每件商品的售價x元(x為整數),每個月的銷售量為y件.(1)求y與x的函數關系式并直接寫出自變量x的取值范圍;(2)設每月的銷售利潤為W,請直接寫出W與x的函數關系式.2、如圖,A,B兩點被池塘隔開,在AB外取一點C,連接AC,BC,在AC上取點M,使AM=3MC,作MN∥AB交BC于點N,量得MN=38m,求AB的長.五、解答題(4小題,每小題10分,共計40分)1、某賓館共有80間客房.賓館負責人根據經驗作出預測:今年5月份,每天的房間空閑數y(間)與定價x(元/間)之間滿足y=x﹣42(x≥168).若賓館每天的日常運營成本為4000元,有客人入住的房間,賓館每天每間另外還需支出36元的各種費用,賓館想要獲得最大利潤,同時也想讓客人得到實惠.(1)求入住房間z(間)與定價x(元/間)之間關系式;(2)應將房間定價確定為多少元時,獲得利潤最大?求出最大利潤?2、在平面直角坐標系xOy中,的半徑為2.點P,Q為外兩點,給出如下定義:若上存在點M,N,使得P,Q,M,N為頂點的四邊形為矩形,則稱點P,Q是的“成對關聯點”.(1)如圖,點A,B,C,D橫、縱坐標都是整數.在點B,C,D中,與點A組成的“成對關聯點”的點是______;(2)點在第一象限,點F與點E關于x軸對稱.若點E,F是的“成對關聯點”,直接寫出t的取值范圍;(3)點G在y軸上.若直線上存在點H,使得點G,H是的“成對關聯點”,直接寫出點G的縱坐標的取值范圍.3、如圖,二次函數的圖象交軸于、兩點,交軸于點,點的坐標為,頂點的坐標為.求二次函數的解析式和直線的解析式;點是直線上的一個動點,過點作軸的垂線,交拋物線于點,當點在第一象限時,求線段長度的最大值;在拋物線上是否存在異于、的點,使中邊上的高為?若存在求出點的坐標;若不存在請說明理由.4、4張相同的卡片上分別寫有數字0、1、、3,將卡片的背面朝上,洗后從中任意抽取1張,將卡片上的數字記錄下來;再從余下的3張卡片中任意抽取1張,同樣將卡片上的數字記錄下來.(1)第一次抽取的卡片上數字是非負數的概率為______;(2)小敏設計了如下游戲規(guī)則:當第一次記錄下來的數字減去第二次記錄下來的數字所得結果為非負數時,甲獲勝;否則,乙獲勝.小敏設計的游戲規(guī)則公平嗎?為什么?(請用樹狀圖或列表等方法說明理由)-參考答案-一、單選題1、B【解析】【分析】先求出平移后拋物線的頂點坐標,進而即可得到答案.【詳解】解:∵的頂點坐標為(0,0)∴將二次函數的圖像向左平移2個單位長度,再向上平移1個單位長度,所得拋物線的頂點坐標為(-2,1),∴所得拋物線對應的函數表達式為,故選B【考點】本題主要考查二次函數的平移規(guī)律,找出平移后二次函數圖像的頂點坐標或掌握“左加右減,上加下減”,是解題的關鍵.2、A【解析】【分析】根據圓心角、弧、弦之間的關系解答即可.【詳解】①若,則,正確;②若,則,故不正確;③由不能得到弧AB=2弧CD,故不正確;④若,則,錯誤.故選A.【考點】本題考查了圓心角、弧、弦之間的關系,在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦中有一組量相等,那么它們所對的其余各組量都分別相等.也考查了等腰三角形的性質.3、B【解析】【分析】根據題意,可以畫出相應的拋物線,然后即可得到大孔所在拋物線解析式,再求出頂點為A的小孔所在拋物線的解析式,將x=﹣10代入可求解.【詳解】解:如圖,建立如圖所示的平面直角坐標系,由題意可得MN=4,EF=14,BC=10,DO=,設大孔所在拋物線解析式為y=ax2+,∵BC=10,∴點B(﹣5,0),∴0=a×(﹣5)2+,∴a=-,∴大孔所在拋物線解析式為y=-x2+,設點A(b,0),則設頂點為A的小孔所在拋物線的解析式為y=m(x﹣b)2,∵EF=14,∴點E的橫坐標為-7,∴點E坐標為(-7,-),

∴-=m(x﹣b)2,∴x1=+b,x2=-+b,∴MN=4,∴|+b-(-+b)|=4∴m=-,∴頂點為A的小孔所在拋物線的解析式為y=-(x﹣b)2,∵大孔水面寬度為20米,∴當x=-10時,y=-,∴-=-(x﹣b)2,∴x1=+b,x2=-+b,∴單個小孔的水面寬度=|(+b)-(-+b)|=5(米),故選:B.【考點】本題考查二次函數的應用,解答本題的關鍵是明確題意,利用二次函數的性質和數形結合的思想解答.4、C【解析】【分析】先計算出樣本中身高不低于170cm的頻率,然后根據利用頻率估計概率求解.【詳解】解:樣本中身高不低于170cm的頻率,所以估計抽查該地區(qū)一名九年級男生的身高不低于170cm的概率是0.68.故選:C.【考點】本題考查了利用頻率估計概率:大量重復實驗時,事件發(fā)生的頻率在某個固定位置左右擺動,并且擺動的幅度越來越小,根據這個頻率穩(wěn)定性定理,可以用頻率的集中趨勢來估計概率,這個固定的近似值就是這個事件的概率.用頻率估計概率得到的是近似值,隨實驗次數的增多,值越來越精確.5、D【解析】【分析】根據直線不經過第二象限,得到,再分兩種情況判斷方程的解的情況.【詳解】∵直線不經過第二象限,∴,∵方程,當a=0時,方程為一元一次方程,故有一個解,當a<0時,方程為一元二次方程,∵?=,∴4-4a>0,∴方程有兩個不相等的實數根,故選:D.【考點】此題考查一次函數的性質:利用函數圖象經過的象限判斷字母的符號,方程的解的情況,注意易錯點是a的取值范圍,再分類討論.二、多選題1、CD【解析】【分析】根據二次函數的性質及與x軸另一交點的位置,即可判定A;當x=2時,即可判定B;根據對稱性及二次函數的性質,可判定C;根據平移后與x軸有無交點,可判定D.【詳解】解:由圖象可知:該二次函數圖象的對稱軸為直線,∴b=2a,由圖象可知:該二次函數圖象與x軸的左側交點在-3與-2之間,故與x軸的另一個交點在0與1之間,∴當x=1時,y<0,即a+b+c<0,3a+c<0,故A錯誤;當x=-2時,y>0,即4a-2b+c>0,故B錯誤;點關于對稱軸對稱的點的坐標為,即,在對稱軸的左側y隨x的增大而增大,故,故C正確;該二次函數的頂點坐標為(?1,n),將函數向下平移n+1個單位,函數圖象與x軸無交點,∴方程無實數根,故D正確,故選:CD.【考點】本題考查了二次函數圖象與性質,根據二次函數的圖象判定式子是否成立,解題的關鍵是從圖象中找到相關信息.2、ABD【解析】【分析】利用可得,從而得到,解出k結合根的判別式即可求解.【詳解】解:∵于的一元二次方程的兩個實數根分別是,,∴,∵,∴,即,解得:,當時,,∴此時方程無實數根,不合題意,舍去,當時,,∴此時方程有兩個不相等實數根,∴的值為.故選:ABD.【考點】本題主要考查了一元二次方程根與系數的關系,熟練掌握若一元二次方程的兩個實數根分別是,,則是解題的關鍵.3、AD【解析】【分析】根據圓的有關概念及性質,對選項逐個判斷即可.【詳解】解:A.等弧是能夠完全重合的弧,因此等弧所對的圓心角相等,正確,符合題意;B.經過不在同一直線上的三點可以作一個圓,故原命題錯誤,不符合題意;C.平分弦(不是直徑)的直徑垂直于這條弦,故原命題錯誤,不符合題意;D.圓的內接平行四邊形是矩形,正確,符合題意,正確的有A、D,故答案為:A、D.【考點】此題考查了圓的有關概念及性質,解題的關鍵是熟練掌握圓的相關概念以及性質.4、AC【解析】【分析】根據一元二次方程根的判別式及分式有意義的條件和分式方程的解為非負整數分別求出a的取值范圍,即可得答案.【詳解】∵關于的一元二次方程有兩個不相等的實數解,∴,解得:,∵,∴,解得:,∵關于的分式方程的解為非負整數,∴且,解得:且,∴且a≠3,∵是整數,∴a=1或5,故選:AC.【考點】本題考查一元二次方程根的判別式、解分式方程及分式有意義的條件,正確得出兩個不等式的解集是解題關鍵,注意分式的分母不為0的隱含條件,避免漏解.5、BC【解析】【分析】分3為底邊長或腰長兩種情況考慮:當3為底時,由a=b及a+b=8即可求出a、b的值,利用三角形的三邊關系確定此種情況存在,再利用根與系數的關系即可求得的值;當3為腰時,則a、b中有一個為3,a+b=8即可求出b,再利用根與系數的關系即可求得的值.【詳解】解:當3為腰時,此時a=3或b=3,把x=3代入方程x2﹣8x﹣1+m=0得9﹣24﹣1+m=0,解得m=16,此時方程為x2﹣8x+15=0,解得x1=3,x2=5;當3為底時,此時a=b,Δ=82﹣4(﹣1+m)=0,解得m=17,此時方程為x2﹣8x+16=0,解得x1=x2=4;綜上所述,m的值為16或17.故答案為:BC.【考點】本題考查了一元二次方程根與系數的關系,等腰三角形的定義,分3為底邊長或腰長兩種情況討論是解題的關鍵.三、填空題1、【分析】根據概率公式計算即可【詳解】共有個球,其中黑色球3個從中任意摸出一球,摸出白色球的概率是.故答案為:【點睛】本題考查了簡單概率公式的計算,熟悉概率公式是解題的關鍵.2、c>a>b【解析】【分析】根據概率公式分別求出各事件的概率,故可求解.【詳解】依題意可得從該班同學的學號中隨意抽取1名同學,設這名同學是女生的可能性為,這名同學喜歡數學的可能性為,這名同學喜歡體育的可能性為,∵>>∴a,b,c的大小關系是c>a>b故答案為:c>a>b.【考點】本題考查概率公式的基本計算,用到的知識點為:概率等于所求情況數與總情況數之比.3、cm【解析】【分析】設較短的直角邊長是xcm,較長的就是(x+5)cm,根據面積是7cm,求出直角邊長,根據勾股定理求出斜邊長.【詳解】解:設這個直角三角形的較短直角邊長為xcm,則較長直角邊長為(x+5)cm,根據題意,得,所以,解得,,因為直角三角形的邊長為正數,所以不符合題意,舍去,所以x=2,當x=2時,x+5=7,由勾股定理,得直角三角形的斜邊長為==cm.故答案為:cm.【考點】本題考查了勾股定理,一元二次方程的應用,關鍵是知道三角形面積公式以及直角三角形中勾股定理的應用.4、下【解析】【分析】根據二次函數二次項系數的大小判斷即可;【詳解】∵,∴拋物線開口向下;故答案是下.【考點】本題主要考查了判斷拋物線的開口方向,準確分析判斷是解題的關鍵.5、y=3x2-2或y=-3x2-2【解析】【分析】根據二次函數的圖象特點即可分類求解.【詳解】二次函數的圖象與拋物線y=3x2的形狀相同,說明它們的二次項系數的絕對值相等,故本題有兩種可能,即y=3x2-2或y=-3x2-2.故答案為y=3x2-2或y=-3x2-2.【考點】此題主要考查二次函數的圖象,解題的關鍵是熟知二次函數形狀相同,二次項系數的絕對值相等.四、簡答題1、(1);(2)【解析】【分析】(1)根據題意先分類討論,當售價超過50元但不超過80元時,上漲的價格是元,就少賣件,用原來的210件去減得到銷售量;當售價超過80元,超過80的部分是元,就少賣件,用原來的210件先減去售價從50漲到80之間少賣的30件再減去得到最終的銷售量.(2)根據利潤=(售價-成本)銷量,現在的單件利潤是元,再去乘以(1)中兩種情況下的銷售量,得到銷售利潤關于售價的式子.【詳解】(1)當時,,即.當時,,即,則(2)由利潤=(售價-成本)×銷售量可以列出函數關系式為【考點】本題考查二次函數實際應用中的利潤問題,關鍵在于根據題意列出銷量與售價之間的一次函數關系式以及熟悉求利潤的公式,需要注意本題要根據售價的不同范圍進行分類討論,結果要寫成分段函數的形式,還要標上的取值范圍.2、.【解析】【分析】先根據可判斷出,再根據相似三角形的對應邊成比例列出方程解答即可.【詳解】解:,,,,,即,.的長為.【考點】本題考查相似三角形性質的應用.解題時關鍵是找出相似的三角形,然后根據對應邊成比例列出方程,建立適當的數學模型來解決問題.五、解答題1、(1)z=﹣x+122(x≥168);(2)應將房間定價確定為260元時,獲得利潤最大,最大利潤為8767元【解析】【分析】(1)入住房間z(間)等于80減去每天的房間空閑數,列式并化簡即可;(2)設利潤為w元,由題意得w關于x的二次函數關系式,根據二次函數的對稱性及問題實際可得答案.【詳解】解:(1)由題意得:z=80﹣(x﹣42)=﹣x+122,∴入住房間z(間)與定價x(元/間)之間關系式為z=﹣x+122(x≥168);(2)設利潤為w元,由題意得:w=(﹣x+122)x﹣36(﹣x+122)﹣4000=﹣x2+131x﹣8392,當x=﹣=262時,w最大,此時z=56.5非整數,不合題意,∴x=260或264時,w最大,∵讓客人得到實惠,∴x=260,∴w最大==﹣×2602+131×260﹣8392=8767,∴應將房間定價確定為260元時,獲得利潤最大,最大利潤為8767元.【考點】本題考查了二次函數在實際問題中的應用,理清題中的數量關系、熟練掌握二次函數的性質是解題的關鍵.2、(1)B和C;(2);(3)【分析】(1)根據圖形可確定與點A組成的“成對關聯點”的點;(2)如圖,點E在直線上,點F在直線上,當點E在線段上,點F在線段上時,有的“成對關聯點”,求出即可得出的取值范圍;(3)分類討論:點G在上,點G在的下方和點G在的上方,構造的“成對關聯點”,即可求出的取值范圍.【詳解】(1)如圖所示:在點B,C,D中,與點A組成的“成對關聯點”的點是B和C,故答案為:B和C;(2)∵∴在直線上,∵點F與點E關于x軸對稱,∴在直線,如下圖所示:直線和與分別交于點,,與直線分別交于,,由題可得:,當點E在線段上時,有的“成對關聯點”∴;(3)如圖,當點G在上時,軸,在上不存在這樣的矩形;如圖,當點G在下方時,也不存在這樣的矩形;如圖,當點G在上方時,存在這樣的矩形GMNH,當恰好只能構成一個矩形時,設,直線與y軸相交于點K,則,,,,,∴,即,∴,解得:或(舍),綜上:當時,點G,H是的“成對關聯點”.【點睛】本題考查幾何圖形綜合問題,屬于中考壓軸題,掌握“成對關聯點”的定義是解題的關鍵.3、1

y=?

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論