版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
Unit7AutomaticSpeechRecognition7.1Text7.2ReadingMaterials
7.1Text
Basicspeechrecognitionchallenge
Speechrecognitionistheprocessofconvertinganacousticsignal,capturedbyamicrophoneoratelephone,toasetofwords.FlowdiagramofspeechrecognitionisshowninFig7.1.Therecognizedwordscanbethefinalresults,asforapplicationssuchascommandscontrol,dataentryanddocumentpreparation.Fig7.1Flowdiagramofspeechrecognition
In1992,theU.S.NationalScienceFoundationsponsoredaworkshoptoidentifythekeyresearchchallengesintheareaofhumanlanguagetechnology,andtheinfrastructureneededtosupportthework.
Researchinthefollowingareasforspeechrecognitionwereidentified:
Robustness:Inarobustsystem,performancedegradesgracefully(ratherthancatastrophically)asconditionsbecomemoredifferentfromthoseunderwhichitwastrained.Differencesinchannelcharacteristicsandacousticenvironmentshouldreceiveparticularattention.
Portability:Portabilityreferstothegoalofrapidlydesigning,developinganddeployingsystemsfornewapplications.Atpresent,systemstendtosuffersignificantdegradationwhenmovedtoanewtask.Inordertopeakperformance,theymustbetrainedonexamplesspecifictothenewtask,whichistimeconsumingandexpensive.
Adaptation:Howcansystemscontinuouslyadapttochangingconditionsandimprovethroughuse?Suchadaptationcanoccuratmanylevelsinsystems,subwordmodels,wordpronunciations,languagemodels,etc.
LanguageModeling:Currentsystemsusestatisticallanguagemodelstohelpreducethespaceandresolveacousticambiguity.Asvocabularysizegrowsandotherconstraintsarerelaxedtocreatemorehabitablesystems,itwillbeincreasinglyimportanttogetasmuchconstraintaspossiblefromlanguagemodels;perhapsincorporatingsyntacticandsemanticconstraintsthatcannotbecapturedbypurelystatisticalmodels.
ConfidenceMeasures:Mostspeechrecognitionsystemsassignscorestohypothesesforthepurposeofrankorderingthem.Thesescoresdonotprovideagoodindicationofwhetherahypothesisiscorrectornot,justthatitisbetterthantheotherhypotheses.Aswemovetotasksthatrequireactions,weneedbettermethodstoevaluatetheabsolutecorrectnessofhypotheses.
Out-of–VocabularyWords:Systemsaredesignedforusewithaparticularsetofwords,butsystemusersmaynotknowexactlywhichwordsareinthesystemvocabulary.Thisleadstoacertainpercentageofout-of-vocabularywordsinnaturalconditions.Systemsmusthavesomemethodofdetectingsuchout-of-vocabularywords,ortheywillendupmappingawordfromthevocabularyontotheknownword,causinganerror.
SpontaneousSpeech:Systemsthataredeployedforrealusemustdealwithavarietyofspontaneousspeechphenomena,suchasfilledpauses,falsestarts,hesitations,ungrammaticalconstructionsandothercommonbehaviorsnotfoundinredspeech.DevelopmentontheATIStaskhasresultedinprogressinthisarea,butmuchwordremainstobedone.
Prosody:Prosodyreferstoacousticstructurethatextendsoverseveralsegmentsorwords.Stress,intonationandrhythmconveyimportantinformationforwordrecognitionandtheuser’sintentions.Currentsystemsdonotcaptureprosodicstructure.Howtointegrateprosodicinformationintotherecognitionarchitectureisacriticalquestionthathasnotyetbeenanswered.
ModelingDynamics:Systemsassumeasequenceofinputframeswhicharetreaterasiftheywereindependent.Butitisknownthatperceptualcuesforwordsandphonemesrequiretheintegrationoffeaturesthatreflectthemovementsofthearticulators,whicharedynamicinnature.Howtomodeldynamicsandincorporatethisinformationintorecognitionsystemsisanunsolvedproblem.
Technicalwordsandphrases
acoustic adj.聲學(xué)的;音響的;聽覺的
sponsored vt.贊助;發(fā)起n.贊助者;主辦者;保證人
infrastructure n.基礎(chǔ)設(shè)施;公共建設(shè)
robustness n.穩(wěn)定性;穩(wěn)健性;健壯性
gracefully adv.優(yōu)雅地;溫文地
catastrophically adv.突變(catastrophe的變形),災(zāi)難性地
portability n.可移植性;輕便
ambiguity n.含糊;不明確
incorporate
vt.包含,吸收
syntactic adj.句法的;語法的
semantic
adj.語義的;語義學(xué)的
hypotheses
n.假定;臆測(hypothesis的復(fù)數(shù))
spontaneous adj.無意識(shí)的;自發(fā)的;自然的
prosody n.韻律學(xué)
intonation n.聲調(diào),語調(diào)
articulators n.發(fā)音之人或物;發(fā)音糾正器
speechrecognition 語音識(shí)別
refersto 指的是
languagemodels 語言模型
filledpauses 停頓
ungrammaticalconstructions 非法結(jié)構(gòu)
integrateinto 合并
modelingdynamics 動(dòng)力學(xué)建模
perceptualcues 知覺線索
ATS(AutomaticTerminalInformationSystem)自動(dòng)終端情報(bào)服務(wù)
7.1.1Exercises
1.PutthePhrasesintoEnglish
(1)指令控制; (2)資料輸入;
(3)關(guān)鍵挑戰(zhàn); (4)聲學(xué)環(huán)境;
(5)絕對正確性。
2.PutthePhrasesintoChinese
(1)anacousticsignal;
(2)documentpreparation;
(3)subwordmodels;
(4)prosodicstructure;
(5)modelingdynamics;
(6)perceptualcues.
3.Translation
(1)Inarobustsystem,performancedegradesgracefully(ratherthancatastrophically)asconditionsbecomemoredifferentfromthoseunderwhichitwastrained.
(2)Inordertopeakperformance,theymustbetrainedonexamplesspecifictothenewtask,whichistimeconsumingandexpensive.
(3)Thesescoresdonotprovideagoodindicationofwhetherahypothesisiscorrectornot,justthatitisbetterthantheotherhypotheses.
(4)Systemsaredesignedforusewithaparticularsetofwords,butsystemusersmaynotknowexactlywhichwordsareinthesystemvocabulary.
7.1.2參考譯文
語音識(shí)別是把從麥克風(fēng)或者電話中捕捉到的聽覺信號(hào)轉(zhuǎn)變?yōu)橐幌盗袉卧~的過程。語音識(shí)別流程圖如圖7.1所示。識(shí)別的單詞可以作為最終的結(jié)果如指令控制、資料輸入和文件準(zhǔn)備的應(yīng)用。
1992年,美國國家科學(xué)基金會(huì)主辦一場研討會(huì)來鑒定人類語言領(lǐng)域研究的關(guān)鍵挑戰(zhàn),并為這項(xiàng)工作提供基礎(chǔ)設(shè)施。
研究語音識(shí)別從以下幾個(gè)方面來鑒定:
魯棒性:在一個(gè)堅(jiān)固的系統(tǒng)中,當(dāng)環(huán)境與系統(tǒng)所匹配的環(huán)境不同時(shí),系統(tǒng)性能緩慢地降低了(而不是變形)。信道特征和聲學(xué)環(huán)境的差異應(yīng)受到特別的注意。
可移植性:可移植性指的是為新的應(yīng)用迅速地設(shè)計(jì)、發(fā)展和開發(fā)系統(tǒng)。目前,當(dāng)系統(tǒng)移植到一個(gè)新任務(wù)時(shí)系統(tǒng)性能顯著退化。為了達(dá)到最佳性能,必須致力于研究特定新任務(wù)的例子,這項(xiàng)工作很耗時(shí)而且花費(fèi)巨大。
適應(yīng)性:如何讓系統(tǒng)不斷適應(yīng)環(huán)境的改變并提高使用性能?這樣的適應(yīng)性存在于系統(tǒng)的很多層面中,如子字模、單詞發(fā)音、語言模型等。
語言建模:目前的系統(tǒng)用統(tǒng)計(jì)語言模型來減少空間,解決聲學(xué)的模糊問題。隨著單詞尺寸的增長,同時(shí)放寬了其他方面約束去創(chuàng)造更加實(shí)用的系統(tǒng),從語言模型中獲得盡可能多的約束條件將會(huì)變得越來越重要;可能單純的統(tǒng)計(jì)模型不能獲取合語法和語義的限制。
信心對策:大部分的語音識(shí)別系統(tǒng)由假設(shè)分配分?jǐn)?shù)來排序。這些分?jǐn)?shù)并不是說明這個(gè)假設(shè)是對是錯(cuò),而是說明這個(gè)假設(shè)比其他的更合適。當(dāng)我們接受需要操作的任務(wù)時(shí),我們需要更好的辦法來評(píng)估假設(shè)的絕對正確性。
詞匯以外的單詞:系統(tǒng)為使用者設(shè)計(jì)了一系列詳細(xì)的單詞,但是使用者可能不會(huì)確切地知道哪些單詞在系統(tǒng)的詞匯表中。這會(huì)導(dǎo)致一定比例詞匯表以外的單詞出現(xiàn)。系統(tǒng)必須采用一些方法來檢測出這些詞匯的出現(xiàn),或者直接在已知的詞匯中停止尋找,否則會(huì)導(dǎo)致錯(cuò)誤。
無意識(shí)語音:系統(tǒng)在實(shí)際使用中必須解決多種多樣的無意識(shí)語音現(xiàn)象,比如充滿了停頓、錯(cuò)誤的開始、猶豫、不合語法結(jié)構(gòu)和其他容易被語音誤解的行為。ATIS的發(fā)展促進(jìn)了這個(gè)領(lǐng)域的發(fā)展,但是還有很多問題需要解決。
韻律:韻律指的是遍布幾個(gè)片段和單詞的聲學(xué)結(jié)構(gòu)。重讀、聲調(diào)和節(jié)奏傳遞著詞匯識(shí)別和用戶意圖的重要信息?,F(xiàn)在的系統(tǒng)沒有捕捉到韻律學(xué)的結(jié)構(gòu)。怎樣把韻律學(xué)的信息和識(shí)別體系結(jié)合起來,這個(gè)問題尚未得到解答。
動(dòng)力學(xué)建模:系統(tǒng)假設(shè)一系列的輸入幀,這些輸入幀就像獨(dú)立的處理器。但是詞匯和音素的知覺線索要求特征的集合反映出發(fā)音器官的運(yùn)轉(zhuǎn),這個(gè)運(yùn)轉(zhuǎn)在實(shí)際中是動(dòng)態(tài)的。怎樣建立動(dòng)態(tài)模型和將這些信息合并到認(rèn)知系統(tǒng)中還是一個(gè)尚待解決的問題。
7.2ReadingMaterials
7.2.1MajorComponentsinaSpeechRecognitionSystem
TheSpeechCommunicationsGroupatSPERRYUNIVACDefenseSystemsisdevelopingalinguistically-orientedprocedureforrecognizingwords,phrases,andnaturalsentencesbycomputer.Themajorcomponentsofthecurrentspeechrecognitionsystemperformacousticandphoneticanalysis,phoneticsegmentation,andlexicalmatchingandscoring.
Theacousticprocessingisbasedonalinear-predictivespectralanalysisofthespeechsignal.Soundsareclassifiedbymanner,place,andvoicingusingformantfrequenciesandotherspectralfunctions,aswellasinformationaboutsyllableboundariesandnuclei.Alinearsequenceofanalysissegmentsiscreated,andmatchedagainstthelexiconusingascoringmatrixthatranksanalysis-lexicalsegmentpairsbytheirexpectedconfusions.Wordsequencesareprogressivelyformedandrankedagainsttheentireinputtodeterminethemostlikelyphrasesspoken.
Whentherecognitionsystemwastestedona31-wordvocabularyfromtwomalespeakers,singlewordrecognitionscoresof95%correctwereobtainedwhenthetasksyntaxwasused.Preliminaryresultsforrecognizingconnectedwordsequencesfromthreemalespeakersrangefrom54to74%forataskwithconstrainedwordorder.Currentplansforenhancingtherecognitionsystemincludetheincorporationofcomponentsforphonologicalrules,speakernormalization,andprosodicguidelines.Byaddingmorepowerfulproceduresforsyntacticandsemanticanalysis,thesystemwillbeextendedfromtherecognitionofseveral-wordnounphrasestotheunderstandingofmorenaturalsentences.
Duringthepastsevenyears,theSpeechCommunicationsGroupatSPERRYUNIVAChasbeendevelopingeffective,proceduresforverbalcommunicationwithcomputers.Thelinguistically-orientedtechniquesbeingdevelopedforthecomputerrecognitionofspeecharedesignedtoaccommodateavarietyofvocabularieswithoutextensiveadjustmentandanumberofsimilarspeakerswithoutextensivetraining.Inaddition,theseprocedurescanbeappliedtobothisolatedwordsandconnectedwordsequences,andtheycangracefullyevolvetounderstandmorenaturalsentenceswiththeadditionofsyntacticandsemanticanalysiscapabilities.
Theprinciplecomponentscomprisingthesysteminclude:(1)acousticparameterextraction—arepresentationofthespeechsignalintermsoftimevaryingsource,resonance,andenergyfunctions,(2)linguisticfeatureextraction—aderivationoftheinformation-carryingattributesfromtheparameters,includingprosodicandphoneticcontent,(3)segmentalstructuring—aphonologicaltransformationandorganizationofthelinguisticfeaturesinaformatconsistentwithlexicalmatching,(4)lexicalcreation—aprocessforprovidingdescriptionsofthewordsinthevocabularyintermsoflikelyphonologicalalternativesofthelinguisticfeaturestobedeterminedduringtheanalysis,
(5)matchingofanalysisandlexicalrepresentations—alignmentandscoringoffeaturerepresentationsandimpositionoftaskrelatedconstraints.Currently,theprocessoflexicalcreationandupdatingaremanual,althoughsomeworkisinprogresstoautomateaspectsofthisoperation.Thefewanalyticphonologicalrulesthathavebeenimplementedarepartofthesegmentalstructuringprocess,andnotyetpartofaseparatecomponent.Atthefeaturelevel,syllablestressandphraseboundariesareavailable,butnotcurrentlyusedbythesystemaspartoftherecognitionprocess.Spectralanalysisisnowusedtocalculateenergyfunctionswhilethehardwareenergyfiltersarebeingimplemented.
7.2.2PatternRecognition
Thedisciplineofpatternrecognitionisusuallydividedintothestatisticalandthestructuralapproach.Instatisticalpatternrecognition,objectsorpatternsaregivenbyfeaturevectors.Hence,apatternisformallyrepresentedasavectorconsistingofnmeasurements,orfeaturevalues,andcanbeunderstoodasapointinthen-dimensionalrealspace,i.e.x=x1;…;xn∈Rn.Representingpatternsbyfeaturevectorsx∈Rnoffersanumberofusefulproperties,inparticular,themathematicalwealthofoperationsavailableinavectorspace.
Forexample,quantitiessuchasthesum,theproduct,themean,orthedistanceoftwoentitiesarewelldefinedinavectorspaceand,moreover,canbeefficientlycomputed.Theconvenienceandlowcomputationalcomplexityofalgorithmsthatusefeaturevectorsastheirinputhaveeventuallyresultedinarichrepositoryofalgorithmictoolsforstatisticalpatternrecognition.However,theuseoffeaturevectorsimplicatestwolimitations.
First,asvectorsalwaysrepresentapredefinedsetoffeatures,allvectorsinagivenapplicationhavetopreservethesamelengthregardlessofthesizeorcomplexityofthecorrespondingobjects.Second,thereisnodirectpossibilitytodescribebinaryorhigher-orderrelationshipsthatmightexistamongdifferentpartsofapattern.Thesetwodrawbacksaresevere,particularlywhenthepatternsunderconsiderationarecharacterizedbycomplexstructuralrelationshipsratherthanthestatisticaldistributionofafixedsetoffeatures.
Structuralpatternrecognition,bycontrast,isbasedonsymbolicdatastructures,suchasstrings,trees,orgraphsforpatternrepresentation.Graphs,whichconsistofafinitesetofnodesconnectedbyedges,isthemostgeneralrepresentationformalism,andtheotherdatatypescommonlyusedinstructuralpatternrecognitionarespecialcasesofgraphs.Inparticular,stringsandtreesaresimpleinstancesofgraphs.Intheremainderofthepresentpaperwewillfocusongraphs.Butthereadershouldkeepinmindthatstringsandtreesarealwaysincludedasspecialcases.
Theabovementioneddrawbacksoffeaturevectors,namelythesizeconstraintandthelackingabilitytorepresentstructuralrelationships,canbeovercomebygraphbasedrepresentations.Infact,graphsarenotonlyabletodescribepropertiesofanobject,butalsobinaryrelationshipsamongdifferentpartsoftheunderlyingobject,bymeansofedges.Notethattheserelationshipscanbeofvariousnature,viz.spatial,temporal,orconceptual.Moreover,graphsarenotconstrainedtoafixedsize,i.e.thenumberofnodesandedgesisnotlimitedaprioriandcanbeadaptedtothesizeorthecomplexityofeachindividualobjectunderconsideration.
Onedrawbackofgraphsarisesfromthefactthatthereislittlemathematicalstructureinthedomainofgraphs.Forexample,computingthe(weighted)sumortheproductofapairofentities,whichareelementaryoperationsrequiredinmanyclassificationandclusteringalgorithms,isnotpossibleinthedomainofgraphs,orisatleastnotdefinedinastandardizedway.
7.2.3HiddenMarkovModeling
ThebasictheoryofMarkovchainshasbeenknowntomathematiciansandengineersforcloseto80
years,butitisonlyinthepastdecadethatithasbeenappliedexplicitlytoproblemsinspeechprocessing.Oneof
themajorreasonswhyspeechmodels,basedonMarkovchains,havenotbeendevelopeduntilrecentlywasthelackof
amethodforoptimizingtheparametersoftheMarkovmodeltomatchobservedsignalpatterns.
Suchamethodwasproposedinthelate1960’s
andwasimmediatelyappliedtospeechprocessinginseveralresearchinstitutions.ContinuedrefinementsinthetheoryandimplementationofMarkovmodelingtechniqueshavegreatlyenhancedthemethod,leadingtoawiderangeofapplicationsofthesemodels.
Assumeyouaregiventhefollowingproblem.Arealwordprocessproducesasequenceofobservablesymbols.Thesymbolscouldbediscrete(outcomesofcointossingexperiments,charactersfromafinitealphabet,quantizedvectorsfromacodebook,etc.)orcontinuous(speechcoefficients,etc.).Yourjobistobuildasignalmodelthatexplainsandcharacterizestheoccurrenceoftheobservedsymbols.Ifsuchasignalmodelisobtainable,itthencanbeusedlatertoidentifyorrecognizeothersequencesofobservations.
Inattackingsuchaproblem,somefundamentaldecisions,guidedbysignalandsystemtheory,mustbemade.Forexample,onemustdecideontheformofthemodel,linearornon-linear,time-varyingortime-invariant,deterministicorstochastic.Dependingonthesedecisions,aswellasothersignalprocessingconsiderations,severalpossiblesignalmodelscanbeconstructed.
Tofixideas,considermodelingapuresinewave.Ifwehavereasontobelievethattheobservedsymbolsarefromapuresinewave,thenallthatwouldneedtobemeasuredistheamplitude,frequencyandperhapsphaseofthesinewaveandanexactmodel,whichexplainstheobservedsymbols,wouldresult.
Considernextasomewhatmorecomplicatedsignal-namelyasinewaveimbeddedinnoise.Thenoisecomponentsofthesignalmakethemodelingproblemmorecomplicatedbecauseinordertoproperlyestimatethesinewaveparameters(amplitude,frequency,phase)onehastotakeintoaccountthecharacteristicsofthenoisecomponent.
Linearsystemmodels
Theconceptsbehindtheaboveexampleshavebeenwellstudiedinclassicalcommunicationtheory.Thevarietyandtypesofrealwordprocesses,however,doesnotstophere.Linearsystemmodels,whichmodeltheobservedsymbolsastheoutputofalinearsystemexcitedbyanappropriatesource,formanotherimportantclassofprocessesforsignalmodelingandhaveprovenusefulforawidevarietyofapplications.
Forexamples,“shorttime”segmentsofspeechsignalscanbeeffectivelymodeledastheoutputofanall-polefilterexcitedbyappropriatesourceswithessentiallyaflatspectralenvelope.Thesignalmodelingtechnique,inthiscase,thusinvolvesdeterminationofthelinearfiltercoefficientsand,insomecases,theexcitationparameters.Obviously,spectralanalysesofotherkindsalsofallwithinthiscategory.
Onecanfurtherincorporatetemporalvariationsofthesignalintothelinearsystemmodelbyallowingthefiltercoefficients,ortheexcitationparameters,tochangewithtime.Infact,manyrealworldprocessescannotbemeaningfullymodeledwithoutconsideringsuchtemporalvariation.Speechsignalsareoneexamplesofsuchprocesses.Thereareseveralwaystoaddresstheproblemofmodelingtemporalvariationofasignal.
Asmentionedabove,withina“shorttime”period,somephysicalsignals,suchasspeech,canbeeffectivelymodeledbyasimplelineartime-invariantsystemwiththeappropriateexcitation.Theeasiestwaythentoaddressthetime-varyingnatureoftheprocessistoviewitasadirectconcatenationofthesesmaller“shorttime”segments,eachsuchsegmentbeingindividuallyrepresentedbyalinearsystemmodel.
Inotherwords,theoverallmodelisasynchronoussequenceofsymbolswhereeachofthesymbolsisalinearsystemmodelrepresentingashortsegmentoftheprocess.Inasensethistypeofapproachmodelstheobservedsignalusingrepresentativetokensofthesignalitself(orsomesuitablyaveragedsetofsuch,signalsifwehavemultipleobservations).
Time-varyingprocesses
Modelingtime-varyingprocesseswiththeaboveapproachassumesthateverysuchshort-timesegmentofobservationisaunitwithapre-chosenduration.Ingeneral,however,theredoesn’texistapreciseproceduretodecidewhattheunitdurationshouldbeso
thatboththetime-invariantassumptionholds,andtheshort-timelinearsystemmodels(aswellasconcatenationof
themodels)aremeaningful.Inmostphysicalsystems,thedurationofashort-timesegmentisdeterminedempirically.
Inmanypro
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 城中村新型農(nóng)村合作社方案
- 舊房翻新后評(píng)價(jià)反饋方案
- 新型保溫材料研發(fā)與應(yīng)用方案
- 降噪隔音材料應(yīng)用方案
- 風(fēng)力發(fā)電基礎(chǔ)設(shè)施建設(shè)方案
- 道路施工環(huán)保監(jiān)測實(shí)施方案
- 2026年酒店管理師酒店運(yùn)營方向?qū)I(yè)能力筆試預(yù)測模擬卷
- 2026年法語水平測試閱讀理解與寫作題集
- 2026年經(jīng)濟(jì)數(shù)據(jù)解讀與分析能力測試題
- 2026年網(wǎng)絡(luò)安全工程師網(wǎng)絡(luò)安全防御方向模擬測試題
- 二手手機(jī)計(jì)劃書項(xiàng)目方案
- 十年(2016-2025年)高考數(shù)學(xué)真題分類匯編:專題10 數(shù)列解答題綜合一(原卷版)
- 醫(yī)院保潔人員安全管理與保障制度
- 工業(yè)園區(qū)規(guī)劃(環(huán)境影響評(píng)價(jià)、水資源論證、安全風(fēng)險(xiǎn)評(píng)估等)方案咨詢服務(wù)投標(biāo)文件(技術(shù)標(biāo))
- 《房屋市政工程生產(chǎn)安全重大事故隱患判定標(biāo)準(zhǔn)(2024版)》解讀
- DB50T 1839-2025 合川米粉生產(chǎn)技術(shù)規(guī)程
- 2025年?duì)I養(yǎng)指導(dǎo)員專業(yè)技能考試試題及答案
- 企業(yè)履約能力說明
- 2023年FIDIC業(yè)主咨詢工程師標(biāo)準(zhǔn)服務(wù)協(xié)議書
- 曲阜師范大學(xué)介紹
- 學(xué)堂在線 雨課堂 學(xué)堂云 積極心理學(xué)(上)厚德載物篇 章節(jié)測試答案
評(píng)論
0/150
提交評(píng)論