2022年浙江省海寧市中考數學試卷及答案詳解【網校專用】_第1頁
2022年浙江省海寧市中考數學試卷及答案詳解【網校專用】_第2頁
2022年浙江省海寧市中考數學試卷及答案詳解【網校專用】_第3頁
2022年浙江省海寧市中考數學試卷及答案詳解【網校專用】_第4頁
2022年浙江省海寧市中考數學試卷及答案詳解【網校專用】_第5頁
已閱讀5頁,還剩19頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

浙江省海寧市中考數學試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題25分)一、單選題(5小題,每小題2分,共計10分)1、小張同學去展覽館看展覽,該展覽館有A、B兩個驗票口(可進可出),另外還有C、D兩個出口(只出不進).則小張從不同的出入口進出的概率是()A. B. C. D.2、二次函數y=x2+px+q,當0≤x≤1時,此函數最大值與最小值的差(

)A.與p、q的值都有關 B.與p無關,但與q有關C.與p、q的值都無關 D.與p有關,但與q無關3、如圖,幾何體的左視圖是()A. B. C. D.4、在一幅長50cm,寬40cm的矩形風景畫的四周鑲一條外框,制成一幅矩形掛圖(如圖所示),如果要使整個掛圖的面積是3000cm2,設邊框的寬為xcm,那么x滿足的方程是()A.(50﹣2x)(40﹣2x)=3000 B.(50+2x)(40+2x)=3000C.(50﹣x)(40﹣x)=3000 D.(50+x)(40+x)=30005、下列各式中表示二次函數的是()A.y=x2+ B.y=2﹣x2C.y= D.y=(x﹣1)2﹣x2二、多選題(5小題,每小題3分,共計15分)1、如圖,AB是⊙O的直徑,CD是⊙O的切線,切點為D,CD與AB的延長線交于點C,∠A=30°,則下列結論中正確的是()A.AD=CD B.BD=BC C.AB=2BC D.∠ABD=60°2、已知關于的方程,下列說法不正確的是(

)A.當時,方程無解 B.當時,方程有兩個相等的實數根C.當時,方程有兩個相等的實數根 D.當時,方程有兩個不相等的實數根3、下列各數不是方程解的是(

)A.6 B.2 C.4 D.04、下列關于x的方程沒有實數根的是(

)A.x2-x+1=0 B.x2+x+1=0C.(x-1)(x+2)=0 D.(x-1)2+1=05、關于x的一元二次方程(k-1)x2+4x+k-1=0有兩個相等的實數根,則k的值為(

)A.1 B.0 C.3 D.-3第Ⅱ卷(非選擇題75分)三、填空題(5小題,每小題3分,共計15分)1、如圖,半圓O中,直徑AB=30,弦CD∥AB,長為6π,則由與AC,AD圍成的陰影部分面積為_______.2、若扇形的圓心角為60°,半徑為2,則該扇形的弧長是_____(結果保留)3、將點繞x軸上的點G順時針旋轉90°后得到點,當點恰好落在以坐標原點O為圓心,2為半徑的圓上時,點G的坐標為________.4、五張背面完全相同的卡片上分別寫有、、-31、、0.101001001…(相鄰兩個1間依次多1個0)五個實數,如果將卡片字面朝下隨意放在桌子上,任意取一張,抽到有理數的概率是______.5、小亮同學在探究一元二次方程的近似解時,填好了下面的表格:根據以上信息請你確定方程的一個解的范圍是________.四、簡答題(2小題,每小題10分,共計20分)1、某種商品每件的進價為10元,若每件按20元的價格銷售,則每月能賣出360件;若每件按30元的價格銷售,則每月能賣出60件.假定每月的銷售件數y是銷售價格x(單位:元)的一次函數.(1)求y關于x的一次函數解析式;(2)當銷售價格定為多少元時,每月獲得的利潤最大?并求此最大利潤.2、如圖,在△ABC和△ADB中,∠ABC=∠ADB=90°,AC=5,AB=4,當BD的長是多少時,圖中的兩個直角三角形相似?五、解答題(4小題,每小題10分,共計40分)1、受“新冠”疫情的影響,某銷售商在網上銷售A、B兩種型號的“手寫板”,獲利頗豐.已知A型,B型手寫板進價、售價和每日銷量如表格所示:進價(元/個)售價(元/個)銷量(個/日)A型600900200B型8001200400根據市場行情,該銷售商對A手寫板降價銷售,同時對B手寫板提高售價,此時發(fā)現A手寫板每降低5就可多賣1,B手寫板每提高5就少賣1,要保持每天銷售總量不變,設其中A手寫板每天多銷售x,每天總獲利的利潤為y(1)求y、x間的函數關系式并寫出x取值范圍;(2)要使每天的利潤不低于234000元,直接寫出x的取值范圍;(3)該銷售商決定每銷售一個B手寫板,就捐a元給因“新冠疫情”影響的困難家庭,當時,每天的最大利潤為229200元,求a的值.2、已知x1,x2是關于x的一元二次方程x2-4mx+4m2-9=0的兩實數根.(1)若這個方程有一個根為-1,求m的值;(2)若這個方程的一個根大于-1,另一個根小于-1,求m的取值范圍;(3)已知Rt△ABC的一邊長為7,x1,x2恰好是此三角形的另外兩邊的邊長,求m的值.3、小明每天騎自行車.上學,都要通過安裝有紅、綠燈的4個十字路口.假設每個路口紅燈和綠燈亮的時間相同.(1)小明從家到學校,求通過前2個十字路口時都是綠燈的概率.(請用“畫樹狀圖”或“列表”或“列舉”等方法給出分析過程)(2)小明從家到學校,通過這4個十字路口時至少有2個綠燈的概率為.(請直接寫出答案)4、小明和小麗先后從A地出發(fā)同一直道去B地,設小麗出發(fā)第時,小麗、小明離B地的距離分別為、,與x之間的數表達式,與x之間的函數表達式是.(1)小麗出發(fā)時,小明離A地的距離為.(2)小麗發(fā)至小明到達B地這段時間內,兩人何時相距最近?最近距離是多少?-參考答案-一、單選題1、D【分析】先畫樹狀圖得到所有的等可能性的結果數,然后找到小張從不同的出入口進出的結果數,最后根據概率公式求解即可.【詳解】解:列樹狀圖如下所示:由樹狀圖可知一共有8種等可能性的結果數,其中小張從不同的出入口進出的結果數有6種,∴P小張從不同的出入口進出的結果數,故選D.【點睛】本題主要考查了用列表法或樹狀圖法求解概率,解題的關鍵在于能夠熟練掌握用列表法或樹狀圖法求解概率.2、D【解析】【分析】分別求出函數解析式的最小值、當0≤x≤1時端點值即:當x=0和x=1時的函數值.由二次函數性質可知此函數最大值與最小值必是其中的兩個,通過比較可知差值與p有關,但與q無關【詳解】解:依題意得:當時,端點值,當時,端點值,當時,函數最小值,由二次函數的最值性質可知,當0≤x≤1時,此函數最大值和最小值是、、其中的兩個,所以最大值與最小值的差可能是或或,故其差只含p不含q,故與p有關,但與q無關故選:.【考點】本題考查了二次函數的最值問題,掌握二次函數的性質、靈活運用配方法是解題的關鍵.3、D【分析】根據從左邊看得到的圖形是左視圖,可得答案.【詳解】根據左視圖的定義可知,這個幾何體的左視圖是選項D,故選:D.【點睛】本題考查簡單組合體的三視圖,解題的關鍵是理解三視圖的定義.4、B【解析】【分析】根據題意表示出矩形掛畫的長和寬,再根據長方形的面積公式可得方程.【詳解】解:設邊框的寬為xcm,所以整個掛畫的長為(50+2x)cm,寬為(40+2x)cm,根據題意,得:(50+2x)(40+2x)=3000,故選:B.【考點】本題主要考查由實際問題抽象出一元二次方程,在解決實際問題時,要全面、系統地申清問題的已知和未知,以及它們之間的數量關系,找出并全面表示問題的相等關系,設出未知數,用方程表示出已知量與未知量之間的等量關系,即列出一元二次方程.5、B【解析】【分析】利用二次函數的定義逐項判斷即可.【詳解】解:A、y=x2+,含有分式,不是二次函數,故此選項錯誤;B、y=2﹣x2,是二次函數,故此選項正確;C、y=,含有分式,不是二次函數,故此選項錯誤;D、y=(x﹣1)2﹣x2=﹣2x+1,是一次函數,故此選項錯誤.故選:B.【考點】本題考查了二次函數的概念,屬于應知應會題型,熟知二次函數的定義是解題關鍵.二、多選題1、ABCD【解析】【分析】連接OD,CD是⊙O的切線,可得CD⊥OD,由∠A=30°,可以得出∠ABD=60°,△ODB是等邊三角形,∠C=∠BDC=30°,再結合在直角三角形中300所對的直角邊等于斜邊的一半,繼而得到結論.【詳解】解:如圖,連接OD,∵CD是⊙O的切線,∴CD⊥OD,∴∠ODC=90°,又∵∠A=30°,∴∠ABD=60°,故選項D成立;∴△OBD是等邊三角形,∴∠DOB=∠ABD=60°,AB=2OB=2OD=2BD.∴∠C=∠BDC=30°,∴BD=BC,故選項B成立;∴AB=2BC,故選項C成立;∴∠A=∠C,∴DA=DC,故選項A成立;綜上所述,故選項ABCD均成立,故選:ABCD.【考點】本題考查了圓的有關性質的綜合應用,在本題中借用切線的性質,求得相應角的度數是解題的關鍵.2、ABD【解析】【分析】利用k的值,分別代入求出方程的根的情況即可.【詳解】關于的方程,A當k=0時,x-1=0,則x=1,故此選項錯誤,符合題意;B當k=1時,-1=0,x=±1,方程有兩個不相等的實數解,故此選項錯誤,符合題意;C當k=-1時,,則,,此時方程有兩個相等的實數根,故此選項正確,不符合題意;D當時,根據A選項,若k=0,此時方程有一個實數根,故此選項錯誤,符合題意,故選:ABD.【考點】此題主要考查了一元二次方程的解,代入k的值判斷方程根的情況是解題關鍵.3、ACD【解析】【分析】分別把四個選項中的數代入方程,看方程兩邊是否相等即可求解.【詳解】解:A、將6代入得:,故6不是方程解,符合題意;B、將2代入得:,故2是方程解,不符合題意;C、將4代入得:,故4不是方程解,符合題意;D、將0代入得:,故0不是方程解,符合題意;故選:ACD.【考點】此題考查了一元二次方程解得含義,解題的關鍵是熟練掌握一元二次方程解得含義.4、ABD【解析】【分析】將選項中的式子轉換為一元二次方程一般式,根據根的判別式可得結果.【詳解】解:A、x2-x+1=0,,方程沒有實數根,此選項符合題意;B、x2+x+1=0,,方程沒有實數根,此選項符合題意;C、(x-1)(x+2)=0,,方程有實數根,此選項不符合題意;D、原式整理為:,,方程沒有實數根,此選項符合題意;故選:ABD.【考點】本題考查了根的判別式:一元二次方程的根與有如下關系:當時,方程有兩個不相等的實數根;當時,方程有兩個相等的實數根;當時,方程無實數根.5、C【解析】【分析】由方程有兩個相等的實數根,根據根的判別式可得到關于k的方程,則可求得k的值.【詳解】解:∵關于x的一元二次方程(k﹣1)x2+4x+k﹣1=0有兩個相等的實數根,∴Δ=0,即42﹣4(k﹣1)2=0,且k﹣1≠0,解得k=3或k=-1.故選C.【考點】本題考查了一元二次方程ax2+bx+c=0(a≠0)的根的判別式?=b2﹣4ac與根的關系,熟練掌握根的判別式與根的關系式解答本題的關鍵.當?>0時,一元二次方程有兩個不相等的實數根;當?=0時,一元二次方程有兩個相等的實數根;當?<0時,一元二次方程沒有實數根.三、填空題1、45【分析】連接OC,OD,根據同底等高可知S△ACD=S△OCD,把陰影部分的面積轉化為扇形OCD的面積,利用扇形的面積公式S=來求解.【詳解】解:連接OC,OD,∵直徑AB=30,∴OC=OD=,∴CD∥AB,∴S△ACD=S△OCD,∵長為6π,∴陰影部分的面積為S陰影=S扇形OCD=,故答案為:45π.【點睛】本題主要考查了扇形的面積公式,正確理解陰影部分的面積=扇形COD的面積是解題的關鍵.2、【分析】已知扇形的圓心角為,半徑為2,代入弧長公式計算.【詳解】解:依題意,n=,r=2,∴扇形的弧長=.故答案為:.【點睛】本題考查了弧長公式的運用.關鍵是熟悉公式:扇形的弧長=.3、或【分析】設點G的坐標為,過點A作軸交于點M,過點作軸交于點N,由全等三角形求出點坐標,由點在2為半徑的圓上,根據勾股定理即可求出點G的坐標.【詳解】設點G的坐標為,過點A作軸交于點M,過點作軸交于點N,如圖所示:∵,∴,,∵點A繞點G順時針旋轉90°后得到點,∴,,∴,∵軸,軸,∴,∴,∴,在與中,,∴,∴,,∴,∴,在中,由勾股定理得:,解得:或,∴或.故答案為:,.【點睛】本題考查旋轉的性質、全等三角形的判定與性質以及勾股定理,掌握相關知識之間的應用是解題的關鍵.4、##0.4【解析】【分析】根據題意可知有理數有-31、,共2個,根據概率公式即可求解【詳解】解:在、、-31、、0.101001001…(相鄰兩個1間依次多1個0)五個實數中,-31、是有理數,∴任意取一張,抽到有理數的概率是故答案為:【考點】本題考查了實數的分類,根據概率公式求概率,理解題意是解題的關鍵.5、【解析】【分析】觀察表格可知,隨x的值逐漸增大,ax2+bx+c的值在3.24~3.25之間由負到正,故可判斷ax2+bx+c=0時,對應的x的值在3.24<x<3.25之間.【詳解】根據表格可知,ax2+bx+c=0時,對應的x的值在3.24<x<3.25之間.故答案為3.24<x<3.25.【考點】本題考查了一元二次方程的知識點,解題的關鍵是根據表格求出一元二次方程的近似根.四、簡答題1、(1)(2)價格為21元時,才能使每月獲得最大利潤,最大利潤為3630元【解析】【分析】(1)設,把,和,代入求出k、b的值,從而得出答案;(2)根據總利潤=每件利潤×每月銷售量列出函數解析式,配方成頂點式,利用二次函數的性質求解可得答案.(1)解:設,把,和,代入可得,解得,則;(2)解:每月獲得利潤.∵,∴當時,P有最大值,最大值為3630.答:當價格為21元時,才能使每月獲得最大利潤,最大利潤為3630元.【考點】本題主要考查了一次函數解析式的求法和二次函數的應用,解題的關鍵是理解題意找到其中蘊含的相等關系,并據此得出函數解析式及二次函數的性質,然后再利用二次函數求最值.2、當BD的長是或時,圖中的兩個直角三角形相似【解析】【分析】先利用勾股定理計算出BC=3,再根據相似三角形的判定方法進行討論:當時,Rt△DBA∽Rt△BCA,即,當時,Rt△DBA∽Rt△BAC,即,然后利用比例性質求出對應的BD的長即可.【詳解】在Rt△ABC中,BC3.∵∠ABC=∠ADB=90°,∴分兩種情況討論:①當時,Rt△DBA∽Rt△BCA,即,解得:BD;②當時,Rt△DBA∽Rt△BAC,即,解得:BD.綜上所述:當BD的長是或時,圖中的兩個直角三角形相似.【考點】本題考查了相似三角形的判定:兩組對應邊的比相等且夾角對應相等的兩個三角形相似.五、解答題1、(1)(),且x為整數;(2),且x為整數;(3)a=30【解析】【分析】(1)根據題意列函數關系式和不等式組,于是得到結論;(2)根據題意列方程和不等式,于是得到結論;(3)根據題意列函數關系式,然后根據二次函數的性質即可得到結論.【詳解】解:(1)由題意得,,解得,故的取值范圍為且為整數;(2)的取值范圍為.理由如下:,當時,,,,解得:或.要使,得;,;(3)設捐款后每天的利潤為元,則,對稱軸為,,,拋物線開口向下,當時,隨的增大而增大,當時,最大,,解得.【考點】本題考查了二次函數的應用,一元一次不等式的應用,列函數關系式等等,最大銷售利潤的問題常利用函數的增減性來解答.2、(1)m的值為1或-2(2)-2<m<1(3)m=或m=【解析】【分析】(1)把x=-1代入方程,列出m的一元二次方程,求出m的值;(2)首先用m表示出方程的兩根,然后列出m的不等式組,求出m的取值范圍;(3)首先用m表示出方程的兩根,分直角△ABC的斜邊長為7或2m+3,根據勾股定理求出m的值.(1)解:∵x1,x2是一元二次方程x2-4mx+4m2-9=0的兩實數根,這個方程有一個根為-1,∴將x=-1代入方程x2-4mx+4m2-9=0,得1+4m+4m2-9=0.解得m=1或m=-2

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論