2022年吉林省臨江市中考數(shù)學預測復習含完整答案詳解【名校卷】_第1頁
2022年吉林省臨江市中考數(shù)學預測復習含完整答案詳解【名校卷】_第2頁
2022年吉林省臨江市中考數(shù)學預測復習含完整答案詳解【名校卷】_第3頁
2022年吉林省臨江市中考數(shù)學預測復習含完整答案詳解【名校卷】_第4頁
2022年吉林省臨江市中考數(shù)學預測復習含完整答案詳解【名校卷】_第5頁
已閱讀5頁,還剩24頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

吉林省臨江市中考數(shù)學預測復習考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題25分)一、單選題(5小題,每小題2分,共計10分)1、下列說法正確的是()A.擲一枚質地均勻的骰子,擲得的點數(shù)為3的概率是.B.若AC、BD為菱形ABCD的對角線,則的概率為1.C.概率很小的事件不可能發(fā)生.D.通過少量重復試驗,可以用頻率估計概率.2、如圖,AB是的直徑,弦CD交AB于點P,,,,則CD的長為()A. B. C. D.83、在一幅長50cm,寬40cm的矩形風景畫的四周鑲一條外框,制成一幅矩形掛圖(如圖所示),如果要使整個掛圖的面積是3000cm2,設邊框的寬為xcm,那么x滿足的方程是()A.(50﹣2x)(40﹣2x)=3000 B.(50+2x)(40+2x)=3000C.(50﹣x)(40﹣x)=3000 D.(50+x)(40+x)=30004、如圖,圓形螺帽的內接正六邊形的面積為24cm2,則圓形螺帽的半徑是()A.1cm B.2cm C.2cm D.4cm5、如圖,該幾何體的左視圖是()A. B. C. D.二、多選題(5小題,每小題3分,共計15分)1、如圖,PA、PB是的切線,切點分別為A、B,BC是的直徑,PO交于E點,連接AB交PO于F,連接CE交AB于D點.下列結論正確的是(

)A.CE平分∠ACB B. C.E是△PAB的內心 D.2、觀察如圖推理過程,錯誤的是(

)A.因為的度數(shù)為,所以B.因為,所以C.因為垂直平分,所以D.因為,所以3、對于實數(shù)a,b,定義運算“※”:,例如:4※2,因為,所以,若函數(shù),則下列結論正確的是(

)A.方程的解為,;B.當時,y隨x的增大而增大;C.若關于x的方程有三個解,則;D.當時,函數(shù)的最大值為1.4、下列命題正確的是(

)A.垂直于弦的直徑平分弦所對的兩條弧 B.弦的垂直平分線經過圓心C.平分弦的直徑垂直于弦 D.平分弦所對的兩條弧的直線垂直于弦5、對于二次函數(shù),下列說法不正確的是(

)A.圖像開口向下B.圖像的對稱軸是直線C.函數(shù)最大值為0D.隨的增大而增大第Ⅱ卷(非選擇題75分)三、填空題(5小題,每小題3分,共計15分)1、如圖,在⊙O中,∠BOC=80°,則∠A=___________°.2、半徑為6cm的扇形的圓心角所對的弧長為cm,這個圓心角______度.3、把拋物線向左平移1個單位長度,再向下平移3個單位長度,得到的拋物線的解析式為___.4、如圖,在Rt△ABC,∠B=90°,AB=BC=1,將△ABC繞著點C逆時針旋轉60°,得到△MNC,那么BM=______________.5、關于的一元二次方程的一個根是2,則另一個根是__________.四、簡答題(2小題,每小題10分,共計20分)1、如圖①已知拋物線的圖象與軸交于、兩點(在的左側),與的正半軸交于點,連結;二次函數(shù)的對稱軸與軸的交點.(1)拋物線的對稱軸與軸的交點坐標為,點的坐標為_____(2)若以為圓心的圓與軸和直線都相切,試求出拋物線的解析式:(3)在(2)的條件下,如圖②是的正半軸上一點,過點作軸的平行線,與直線交于點與拋物線交于點,連結,將沿翻折,的對應點為’,在圖②中探究:是否存在點,使得’恰好落在軸上?若存在,請求出的坐標:若不存在,請說明理由.2、如圖,AB是⊙O的直徑,弦CD⊥AB于點E,點P⊙O上,∠1=∠C.(1)求證:CB∥PD;(2)若∠ABC=55°,求∠P的度數(shù).五、解答題(4小題,每小題10分,共計40分)1、如圖,在方格紙中,已知頂點在格點處的△ABC,請畫出將△ABC繞點C旋轉180°得到的△A'B'C'.(需寫出△A'B'C'各頂點的坐標).2、如圖1,拋物線y=ax2+bx+3交x軸于點A(﹣1,0)和點B(3,0).(1)求該拋物線所對應的函數(shù)解析式;(2)如圖2,該拋物線與y軸交于點C,頂點為F,點D(2,3)在該拋物線上.①求四邊形ACFD的面積;②點P是線段AB上的動點(點P不與點A、B重合),過點P作PQ⊥x軸交該拋物線于點Q,連接AQ、DQ,當△AQD是直角三角形時,求出所有滿足條件的點Q的坐標.3、如圖,是由若干個完全相同的小正方體組成的一個幾何體.(1)請畫出這個幾何體的從左面看和從上面看的形狀圖;(用陰影表示)(2)已知每個小正方體的邊長是2cm,求出這個幾何體的表面積是多少?4、如圖,是的弦,是上的一點,且,于點,交于點.若的半徑為6,求弦的長.-參考答案-一、單選題1、B【分析】概率是指事情發(fā)生的可能性,等可能發(fā)生的事件的概率相同,小概率事件是指發(fā)生的概率比較小,不代表不會發(fā)生,通過大量重復試驗才能用頻率估計概率,利用這些對四個選項一次判斷即可.【詳解】A項:擲一枚質地均勻的骰子,每個面朝上的概率都是一樣的都是,故A錯誤,不符合題意;B項:若AC、BD為菱形ABCD的對角線,由菱形的性質:對角線相互垂直平分得知兩條線段一定垂直,則AC⊥BD的概率為1是正確的,故B正確,符合題意;C項:概率很小的事件只是發(fā)生的概率很小,不代表不會發(fā)生,故C錯誤,不符合題意;D項:通過大量重復試驗才能用頻率估計概率,故D錯誤,不符合題意.故選B【點睛】本題考查概率的命題真假,準確理解事務發(fā)生的概率是本題關鍵.2、A【分析】過點作于點,連接,根據已知條件即可求得,根據含30度角的直角三角形的性質即可求得,根據勾股定理即可求得,根據垂徑定理即可求得的長.【詳解】解:如圖,過點作于點,連接,AB是的直徑,,,,在中,故選A【點睛】本題考查了勾股定理,含30度角的直角三角形的性質,垂徑定理,掌握以上定理是解題的關鍵.3、B【解析】【分析】根據題意表示出矩形掛畫的長和寬,再根據長方形的面積公式可得方程.【詳解】解:設邊框的寬為xcm,所以整個掛畫的長為(50+2x)cm,寬為(40+2x)cm,根據題意,得:(50+2x)(40+2x)=3000,故選:B.【考點】本題主要考查由實際問題抽象出一元二次方程,在解決實際問題時,要全面、系統(tǒng)地申清問題的已知和未知,以及它們之間的數(shù)量關系,找出并全面表示問題的相等關系,設出未知數(shù),用方程表示出已知量與未知量之間的等量關系,即列出一元二次方程.4、D【分析】根據圓內接正六邊形的性質可得△AOB是正三角形,由面積公式可求出半徑.【詳解】解:如圖,由圓內接正六邊形的性質可得△AOB是正三角形,過作于設半徑為r,即OA=OB=AB=r,OM=OA?sin∠OAB=,∵圓O的內接正六邊形的面積為(cm2),∴△AOB的面積為(cm2),即,,解得r=4,故選:D.【點睛】本題考查正多邊形和圓,作邊心距轉化為直角三角形的問題是解決問題的關鍵.5、C【分析】根據從左邊看得到的圖形是左視圖解答即可.【詳解】解:從左邊看是一個正方形被水平的分成3部分,中間的兩條分線是虛線,故C正確.故選C.【點睛】本題主要考查了簡單組合體的三視圖,掌握三視圖的定義成為解答本題的關鍵.二、多選題1、ACD【解析】【分析】連接OA,BE,根據PA、PB是⊙O的切線,可得PA=PB,OA=OB,可得OP是AB的垂直平分線,根據垂徑定理,進而可以判斷A;根據OB=OC,AF=BF,可得OF是三角形BAC的中位線,進而即可判斷D;證明∠PBE=∠EBA,∠APE=∠BPE,即可判斷C;根據AC∥OE,可得△CDA∽△EDF,進而可以判斷B.【詳解】如圖,連接OA,BE,∵PA、PB是⊙O的切線,∴PA=PB,∵OA=OB,∴OP是AB的垂直平分線,∴OP⊥AB,∴,∴∠ACE=∠BCE,∴CE平分∠ACB;故A正確;∵BC是⊙O的直徑,∴∠BAC=90°,∵∠BFO=90°,∴OF∥AC,∵OB=OC,AF=BF,∴OF=AC;故D正確;∵PB是⊙O的切線,∴∠PBE+∠EBC=90°,∵BC是⊙O的直徑,∴∠EBC+∠ECB=90°,∴∠PBE=∠ECB,∵∠ECB=∠EBA,∴∠PBE=∠EBA,∵∠APE=∠BPE,∴E是△PAB的內心;故C正確;∵AC∥OE,∴△CDA∽△EDF.故B錯誤;∴結論正確的是A,C,D.故選:ACD.【考點】此題考查了圓周角定理、切線的性質、三角形中位線定理、及勾股定理的知識,解答本題的關鍵是熟練掌握切線的性質及圓周角定理,注意各個知識點之間的融會貫通.2、ABC【解析】【分析】A.

根據定理“圓心角的度數(shù)等于它所對的弧的度數(shù)?!笨傻?B.

根據定理“同圓或等圓中,相等的圓心角所對的弧相等?!笨傻?C.

根據“垂徑定理”及弦的定義可得.D.

根據“在同圓或等圓中,若兩個圓心角、兩條弧、兩條弦、兩條弦的弦心距中得到的四組量中有一組量相等,則對應的其余各組量也相等?!笨傻?【詳解】由定理“圓心角的度數(shù)等于它所對的弧的度數(shù)?!盇.∵的度數(shù)是∴,故選項A錯誤.B.

由定理“同圓中相等的圓心角所對的弧相等?!保珺選項題干中不是同一個圓,故選項B錯誤.C.

由“垂徑定理:垂直于弦(非直徑)的直徑平分這條弦,并且平分弦所對的兩條弧。沒有過圓心,不是直徑,并且,根據弦的定義,不是圓O的弦,因此無法判斷,故選項C錯誤.D.

∵∴即由定理“在同圓或等圓中,若兩個圓心角、兩條弧、兩條弦、兩條弦的弦心距中有一組量相等,則對應的其余各組量也相等?!彼?,故選項D正確.【考點】本題旨在考查圓,圓心角,所對應的圓弧及弦的相關定義及性質定理,熟練掌握圓的相關定理是解題的關鍵.3、ABD【解析】【分析】根據題干定義求出y=(2x)※(x+1)的解析式,根據2x≥x+1及2x<x+1可得x≥1時y=2x2﹣2x,x<1時,y=﹣x2+1,進而求解.【詳解】解:根據題意得:當2x≥x+1,即x≥1時,y=(2x)2﹣2x(x+1)=2x2﹣2x,當2x<x+1,即x<1時,y=(x+1)2﹣2x(x+1)=﹣x2+1,∴當x≥1時,2x2﹣2x=0,解得x=0(舍去)或x=1,當x<1時,﹣x2+1=0,解得x=1(舍去)或x=﹣1,∴(2x)※(x+1)=0的解是x1=﹣1,x2=1;故A正確,B、當x>1時,y=2x2﹣2x,拋物線開口向上,對稱軸是直線x=,∴x>1時,y隨x的增大而增大,∴B選項正確.當x≥1時,y=2x2﹣2x=2(x﹣)2﹣,∴x=1時,y取最小值為y=0,當x<1時,y=﹣x2+1=0,當x=0時,y取最大值為y=1,如圖,當0<m<1時,方程(2x)※(x+1)=m有三個解,∴選項C錯誤,選項D正確.故答案為:ABD.【考點】本題考查二次函數(shù)的新定義問題,解題關鍵是掌握二次函數(shù)的性質,掌握二次函數(shù)與方程的關系.4、ABD【解析】【分析】根據垂徑定理及其推論進行判斷即可.【詳解】A、垂直于弦的直徑平分弦所對的兩條弧,正確;B、弦的垂直平分線經過圓心,正確;C、平分弦(不是直徑)的直徑垂直于弦,故錯誤;D、平分弦所對的兩條弧的直線垂直于弦,正確;故選ABD.【考點】本題考查了垂徑定理:熟練掌握垂徑定理及其推論是解決問題的關鍵.5、ACD【解析】【分析】根據題目中的函數(shù)解析式,可以判斷各個選項中的說法是否正確.【詳解】解:二次函數(shù),a=2>0,∴該函數(shù)的圖象開口向上,故選項A錯誤,圖象的對稱軸是直線x=1,故選項B正確,函數(shù)的最小值是y=0,故選項C錯誤,當x>1時隨的增大而增大,故選項D錯誤,故選:A,C,D.【考點】本題考查二次函數(shù)的性質、二次函數(shù)的最值,解答本題的關鍵是明確題意,利用二次函數(shù)的性質解答.三、填空題1、40°度【分析】直接根據圓周角定理即可得出結論.【詳解】解:與是同弧所對的圓心角與圓周角,,.故答案為:.【點睛】本題考查的是圓周角定理,解題的關鍵是熟知在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.2、60【分析】根據弧長公式求解即可.【詳解】解:,解得,,故答案為:60.【點睛】本題考查了弧長公式,靈活應用弧長公式是解題的關鍵.3、【解析】【分析】直接根據“上加下減,左加右減”進行計算即可.【詳解】解:拋物線向左平移1個單位長度,再向下平移3個單位長度,得到的拋物線的解析式為:,即:故答案為:.【考點】本題主要考查函數(shù)圖像的平移,熟記函數(shù)圖像的平移方式“上加下減,左加右減”是解題的關鍵.4、【分析】設BN與AC交于D,過M作MF⊥BA于F,過M作ME⊥BC于E,連接AM,先證明△EMC≌△FMA得ME=MF,從而可得∠CBD=45°,∠CDB=180°-∠BCA-∠CBD=90°,再在Rt△BCD、Rt△CDM中,分別求出BD和DM,即可得到答案.【詳解】解:設BN與AC交于D,過M作MF⊥BA于F,過M作ME⊥BC于E,連接AM,如圖:∵△ABC繞著點C逆時針旋轉60°,∴∠ACM=60°,CA=CM,∴△ACM是等邊三角形,∴CM=AM①,∠ACM=∠MAC=60°,∵∠B=90°,AB=BC=1,∴∠BCA=∠CAB=45°,AC==CM,∴∠BCM=∠BCA+∠ACM=105°,∠BAM=∠CAB+∠MAC=105°,∴∠ECM=∠MAF=75°②,∵MF⊥BA,ME⊥BC,∴∠E=∠F=90°③,由①②③得△EMC≌△FMA,∴ME=MF,而MF⊥BA,ME⊥BC,∴BM平分∠EBF,∴∠CBD=45°,∴∠CDB=180°-∠BCA-∠CBD=90°,Rt△BCD中,BD=BC=,Rt△CDM中,DM=CM=,∴BM=BD+DM=,故答案為:.【點睛】本題考查等腰三角形性質、等邊三角形的性質及判定,解題的關鍵是證明∠CDB=90°.5、-3【解析】【分析】由題意可把x=2代入一元二次方程進行求解a的值,然后再進行求解方程的另一個根.【詳解】解:由題意把x=2代入一元二次方程得:,解得:,∴原方程為,解方程得:,∴方程的另一個根為-3;故答案為-3.【考點】本題主要考查一元二次方程的解及其解法,熟練掌握一元二次方程的解及其解法是解題的關鍵.四、簡答題1、(1);(2);(3)【解析】【分析】(1)由拋物線的對稱軸為直線,即可求得點E的坐標;在y=ax2﹣3ax﹣4a(a<0)令y=0可得關于x的方程ax2﹣3ax﹣4a=0,解方程即可求得點A的坐標;(2)如圖1,設⊙E與直線BC相切于點D,連接DE,則DE⊥BC,結合(1)可得DE=OE=,EB=,OC=-4a,在Rt△BDE中由勾股定理可得BD=2,這樣由tan∠OBC=即可列出關于a的方程,解方程求得a的值即可得到拋物線的解析式;(3)由折疊的性質和MN∥y軸可得∠MCN=∠M′CN=∠MNC,由此可得CM=MN,由點B的坐標為(4,0),點C的坐標為(0,3)可得線段BC=5,直線BC的解析式為y=﹣x+3,由此即可得到M、N的坐標分別為(m,﹣m+3)、(m,﹣m2+m+3),作MF⊥OC于F,這樣由sin∠BCO=即可解得CM=m,然后分點N在直線BC的上方和下方兩種情況用含m的代數(shù)式表達出MN的長度,結合MN=CM即可列出關于m的方程,解方程即可求得對應的m的值,從而得到對應的點Q的坐標.【詳解】解:(1)∵對稱軸x=,∴點E坐標(,0),令y=0,則有ax2﹣3ax﹣4a=0,∴x=﹣1或4,∴點A坐標(﹣1,0).故答案分別為(,0),(﹣1,0).(2)如圖①中,設⊙E與直線BC相切于點D,連接DE,則DE⊥BC,∵DE=OE=,EB=,OC=﹣4a,∴DB=,∵tan∠OBC=,∴,解得a=,∴拋物線解析式為y=.(3)如圖②中,由題意∠M′CN=∠NCB,∵MN∥OM′,∴∠M′CN=∠CNM,∴MN=CM,∵點B的坐標為(4,0),點C的坐標為(0,3),∴直線BC解析式為y=﹣x+3,BC=5,∴M(m,﹣m+3),N(m,﹣m2+m+3),作MF⊥OC于F,∵sin∠BCO=,∴,∴CM=m,①當N在直線BC上方時,﹣x2+x+3﹣(﹣x+3)=m,解得:m=或0(舍棄),∴Q1(,0).②當N在直線BC下方時,(﹣m+3)﹣(﹣m2+m+3)=m,解得m=或0(舍棄),∴Q2(,0),綜上所述:點Q坐標為(,0)或(,0).【考點】本題是一道二次函數(shù)與幾何及銳角三角函數(shù)綜合的題,解題的要點是:(1)熟悉二次函數(shù)的對稱軸方程及二次函數(shù)與一元二次方程的關系是解第1小題的關鍵;(2)由切線的性質得到DE⊥BC,從而得到tan∠OBC=,這樣結合已知條件求出a的值是解第2小題的關鍵;(3)過點M作MF⊥y軸于點F,這樣由sin∠BCO=變形把MC用含m的代數(shù)式表達出來,再由折疊的性質和MN∥y軸證得MN=MC,這樣就可分點N在BC的上方和下方兩種情況列出關于m的方程,解方程求得對應的m的值是解第3小題的關鍵.2、(1)證明見解析;(2)35°【解析】【詳解】試題分析:(1)要證明CB∥PD,只要證明∠1=∠P;由∠1=∠C,∠P=∠C,可得∠1=∠P,即可解決問題;(2)在Rt△CEB中,求出∠C即可解決問題.試題解析:(1)如圖,∵∠1=∠C,∠P=∠C,∴∠1=∠P,∴CB∥PD;(2)∵CD⊥AB,∴∠CEB=90°,∵∠CBE=55°,∴∠C=90°﹣55°=35°,∴∠P=∠C=35°.【考點】主要考查了圓周角定理、垂徑定理、直角三角形的性質等知識,解題的關鍵是熟練掌握基本知識.五、解答題1、A'(-1,-3),B'(1,-1),C'(-2,0),畫圖見解析.【分析】先畫出點A,B關于點C中心對稱的點A',B',再連接A',B',C即可解題.【詳解】解:A關于點C中心對稱的點A'(-1,-3),B關于點C中心對稱的點B'(1,-1),C關于點C中心對稱的點C'(-2,0),如圖,△A'B'C'即為所求作圖形.【點睛】本題考查中心對稱圖形,是基礎考點,掌握相關知識是解題關鍵.2、(1)y=﹣x2+2x+3;(2)①S四邊形ACFD=4;②Q點坐標為(1,4)或(,)或(,).【解析】【分析】此題涉及的知識點是拋物線的綜合應用,難度較大,需要有很好的邏輯思維,解題時先根據已知點的坐標列方程求出函數(shù)解析式,然后再根據解析式和已知條件求出四邊形的面積和點的坐標.【詳解】(1)由題意可得,解得,∴拋物線解析式為y=﹣x2+2x+3;(2)①∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴F(1,4),∵C(0,3),D(2,3),∴CD=2,且CD∥x軸,∵A(﹣1,0),∴S四邊形ACFD=S△ACD+S△FCD=×2×3+×2×(4﹣3)=4;②∵點P在線段AB上,∴∠DAQ不可能為直角,∴當△AQD為直角三角形時,有∠ADQ=90°或∠AQD=90°,i.當∠ADQ=90°時,則DQ⊥AD,∵A(﹣1

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論