版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
滬科版9年級下冊期末試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計16分)1、如圖,AB是的直徑,CD是的弦,且,,,則圖中陰影部分的面積為()A. B. C. D.2、如圖,在△ABC中,∠BAC=130°,將△ABC繞點C逆時針旋轉(zhuǎn)得到△DEC,點A,B的對應(yīng)點分別為D,E,連接AD.當點A,D,E在同一條直線上時,則∠BAD的大小是()A.80° B.70° C.60° D.50°3、7個小正方體按如圖所示的方式擺放,則這個圖形的左視圖是()A.B. C.D.4、如圖是由5個相同的小正方體搭成的幾何體,它的左視圖是().A. B. C. D.5、在不透明口袋內(nèi)裝有除顏色外完全相同的5個小球,其中紅球2個,白球3個.攪拌均勻后,隨機抽取一個小球,是紅球的概率為()A. B. C. D.6、下列汽車標志中既是軸對稱圖形又是中心對稱圖形的是()A. B. C. D.7、如圖,將一個棱長為3的正方體表面涂上顏色,把它分割成棱長為1的小正方體,將它們?nèi)糠湃胍粋€不透明盒子中搖勻,隨機取出一個小正方體,有三個面被涂色的概率為()A. B. C. D.8、如圖,AB,CD是⊙O的弦,且,若,則的度數(shù)為()A.30° B.40° C.45° D.60°第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計14分)1、一個不透明的袋子裝有除顏色外其余均相同的2個紅球和m個黃球,隨機從袋中摸出個球記錄下顏色,再放回袋中搖勻大量重復(fù)試驗后,發(fā)現(xiàn)摸出紅球的頻率穩(wěn)定在0.2附近,則m的值為_________.2、第24屆世界冬季奧林匹克運動會,于2022年2月4日在中國北京市和河北省張家口市聯(lián)合舉行,其會徽為“冬夢”,這是中國歷史上首次舉辦冬季奧運會.如圖,是一幅印有北京冬奧會會徽且長為3m,寬為2m的長方形宣傳畫,為測量宣傳畫上會徽圖案的面積,現(xiàn)將宣傳畫平鋪,向長方形宣傳畫內(nèi)隨機投擲骰子(假設(shè)骰子落在長方形內(nèi)的每一點都是等可能的),經(jīng)過大量重復(fù)投擲試驗,發(fā)現(xiàn)骰子落在會徽圖案上的頻率穩(wěn)定在0.15左右,由此可估計宣傳畫上北京冬奧會會徽圖案的面積約為______.3、邊長為2的正三角形的外接圓的半徑等于___.4、如圖,與x軸交于、兩點,,點P是y軸上的一個動點,PD切于點D,則△ABD的面積的最大值是________;線段PD的最小值是________.5、已知如圖,AB=8,AC=4,∠BAC=60°,BC所在圓的圓心是點O,∠BOC=60°,分別在、線段AB和AC上選取點P、E、F,則PE+EF+FP的最小值為____________.6、如圖,AB為的弦,半徑于點C.若,,則的半徑長為______.7、如圖,PA是⊙O的切線,A是切點.若∠APO=25°,則∠AOP=___________°.三、解答題(7小題,每小題0分,共計0分)1、如圖1,O為直線DE上一點,過點O在直線DE上方作射線OC,∠EOC=130°.將直角三角板AOB(∠OAB=30°)的直角頂點放在點O處,一條邊OA在射線OD上,另一邊OB在直線DE上方,將直角三角板繞點O按每秒5°的速度逆時針旋轉(zhuǎn)一周,設(shè)旋轉(zhuǎn)時間為t秒.(1)如圖2,當t=4時,∠AOC=,∠BOE=,∠BOE﹣∠AOC=;(2)當三角板旋轉(zhuǎn)至邊AB與射線OE相交時(如圖3),試猜想∠AOC與∠BOE的數(shù)量關(guān)系,并說明理由;(3)在旋轉(zhuǎn)過程中,是否存在某個時刻,使得射線OA、OC、OD中的某一條射線是另兩條射線所成夾角的角平分線?若存在,請直接寫出t的取值,若不存在,請說明理由.2、某商家銷售一批盲盒,每一個看上去無差別的盲盒內(nèi)含有A,B,C,D四種玩具中的一種,抽到玩具B的有關(guān)統(tǒng)計量如表所示:抽盲盒總數(shù)50010001500200025003000頻數(shù)130273414566695843頻率0.2600.2730.2760.2830.2780.281(1)估計從這批盲盒中任意抽取一個是玩具B的概率是;(結(jié)果保留小數(shù)點后兩位)(2)小明從分別裝有A,B,C,D四種玩具的四個盲盒中隨機抽取兩個,請利用畫樹狀圖或列表的方法,求抽到的兩個玩具恰為玩具A和玩具C的概率.3、定理:一條弧所對的圓周角等于這條弧所對的圓心角的一半.如圖1,∠A=∠O.已知:如圖2,AC是⊙O的一條弦,點D在⊙O上(與A、C不重合),聯(lián)結(jié)DE交射線AO于點E,聯(lián)結(jié)OD,⊙O的半徑為5,tan∠OAC=.(1)求弦AC的長.(2)當點E在線段OA上時,若△DOE與△AEC相似,求∠DCA的正切值.(3)當OE=1時,求點A與點D之間的距離(直接寫出答案).4、在同樣的條件下對某種小麥種子進行發(fā)芽試驗,統(tǒng)計發(fā)芽種子數(shù),獲得如下頻數(shù)表.實驗種植數(shù)(粒)1550100200500100020003000發(fā)芽頻數(shù)04459218847695119002850(1)估計該麥種的發(fā)芽概率.(2)如果播種該種小麥每公頃所需麥苗數(shù)為4000000棵,種子發(fā)芽后的成秧率為80%,該麥種的千粒質(zhì)量為50g.那么播種3公頃該種小麥,估計約需麥種多少千克(精確到1kg)?5、隨著“新冠肺炎”疫情防控形勢日漸好轉(zhuǎn),各地開始復(fù)工復(fù)學(xué),某校復(fù)學(xué)后成立“防疫志愿者服務(wù)隊”,設(shè)立四個“服務(wù)監(jiān)督崗”:①洗手監(jiān)督崗,②戴口罩監(jiān)督崗,③就餐監(jiān)督崗,④操場活動監(jiān)督崗.李老師和王老師報名參加了志愿者服務(wù)工作,學(xué)校將報名的志愿者隨機分配到四個監(jiān)督崗.(1)王老師被分配到“就餐監(jiān)督崗”的概率為;(2)用列表法或畫樹狀圖法,求李老師和王老師被分配到同一個監(jiān)督崗的概率.6、已知:Rt△ABC中,∠ACB=90°,∠ABC=60°,將△ABC繞點B按順時針方向旋轉(zhuǎn).(1)當C轉(zhuǎn)到AB邊上點C′位置時,A轉(zhuǎn)到A′,(如圖1所示)直線CC′和AA′相交于點D,試判斷線段AD和線段A′D之間的數(shù)量關(guān)系,并證明你的結(jié)論.(2)將Rt△ABC繼續(xù)旋轉(zhuǎn)到圖2的位置時,(1)中的結(jié)論是否成立?若成立,請證明;若不成立,請說明理由;(3)將Rt△ABC旅轉(zhuǎn)至A、C′、A′三點在一條直線上時,請直接寫出此時旋轉(zhuǎn)角α的度數(shù).7、如圖1,在平面直角坐標系中,二次函數(shù)的圖象經(jīng)過點,過點A作軸,做直線AC平行x軸,點D是二次函數(shù)的圖象與x軸的一個公共點(點D與點O不重合).(1)求點D的橫坐標(用含b的代數(shù)式表示)(2)求的最大值及取得最大值時的二次函數(shù)表達式.(3)在(2)的條件下,如圖2,P為OC的中點,在直線AC上取一點M,連接PM,做點C關(guān)于PM的對稱點N,①連接AN,求AN的最小值.②當點N落在拋物線的對稱軸上,求直線MN的函數(shù)表達式.-參考答案-一、單選題1、C【分析】如圖,連接OC,OD,可知是等邊三角形,,,,計算求解即可.【詳解】解:如圖連接OC,OD∵∴是等邊三角形∴由題意知,故選C.【點睛】本題考查了扇形的面積,等邊三角形等知識.解題的關(guān)鍵在于用扇形表示陰影面積.2、A【分析】根據(jù)三角形旋轉(zhuǎn)得出,,根據(jù)點A,D,E在同一條直線上利用鄰補角關(guān)系求出,根據(jù)等腰三角形的性質(zhì)即可得到∠DAC=50°,由此即可求解.【詳解】證明:∵繞點C逆時針旋轉(zhuǎn)得到,∴,,∴∠ADC=∠DAC,∵點A,D,E在同一條直線上,∴,∴∠DAC=50°,∴∠BAD=∠BAC-∠DAC=80°故選A.【點睛】本題考查三角形旋轉(zhuǎn)性質(zhì),鄰補角的性質(zhì),等腰三角形的性質(zhì)與判定,解題的關(guān)鍵在于熟練掌握旋轉(zhuǎn)的性質(zhì).3、C【分析】細心觀察圖中幾何體擺放的位置,根據(jù)左視圖是從左面看到的圖象判定則可.【詳解】解:從左邊看,是左邊3個正方形,右邊一個正方形.故選:C.【點睛】本題考查了三視圖的知識,左視圖是從物體的左面看得到的視圖.4、B【分析】找到從左面看所得到的圖形即可,注意所有的看到的棱都應(yīng)表現(xiàn)在左視圖中.【詳解】從左面看,第一層有2個正方形,第二層左側(cè)有1個正方形.故選:B.【點睛】本題考查了三視圖的知識,熟知左視圖是從物體的左面看得到的視圖是解答本題的關(guān)鍵.5、A【分析】用紅球的個數(shù)除以所有球的個數(shù)即可求得抽到紅球的概率.【詳解】解:∵共有5個球,其中紅球有2個,∴P(摸到紅球)=,故選:A.【點睛】此題主要考查概率的意義及求法.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.6、C【分析】根據(jù)軸對稱圖形與中心對稱圖形的概念求解.【詳解】解:A、是軸對稱圖形,不是中心對稱圖形,故此選項不符合題意;B、是軸對稱圖形,不是中心對稱圖形,故此選項不符合題意;C、是軸對稱圖形,是中心對稱圖形,故此選項符合題意;D、不是軸對稱圖形,是中心對稱圖形,故此選項不符合題意;故選:C.【點睛】此題主要考查了中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后兩部分重合.7、B【分析】直接根據(jù)題意得出恰有三個面被涂色的有8個,再利用概率公式求出答案.【詳解】解:由題意可得:小立方體一共有27個,恰有三個面被涂色的為棱長為3的正方體頂點處的8個小正方體;故取得的小正方體恰有三個面被涂色.的概率為.故選:B.【點睛】此題主要考查了概率公式的應(yīng)用,正確得出三個面被涂色.小立方體的個數(shù)是解題關(guān)鍵.8、B【分析】由同弧所對的圓周角是圓心角的一半可得,利用平行線的性質(zhì):兩直線平行,內(nèi)錯角相等即可得.【詳解】解:∵,∴,∵,∴,故選:B.【點睛】題目主要考查圓周角定理,平行線的性質(zhì)等,理解題意,找出相關(guān)的角度是解題關(guān)鍵.二、填空題1、8【分析】首先根據(jù)題意可取確定摸出紅球的概率為0.2,然后根據(jù)概率公式建立方程求解即可.【詳解】解:∵大量重復(fù)試驗后,發(fā)現(xiàn)摸出紅球的頻率穩(wěn)定在0.2附近,∴摸出紅球的概率為0.2,由題意,,解得:,經(jīng)檢驗,是原方程的解,且符合題意,故答案為:8.【點睛】本題考查由頻率估計概率,以及已知概率求數(shù)量;大量重復(fù)試驗后,某種情況出現(xiàn)的頻率穩(wěn)定在某個值附近時,這個值即為該事件發(fā)生的概率,掌握概率公式是解題關(guān)鍵.2、0.9【分析】根據(jù)題意可得長方形的面積,然后依據(jù)骰子落在會徽圖案上的頻率穩(wěn)定在0.15左右,總面積乘以頻率即為會徽圖案的面積.【詳解】解:由題意可得:長方形的面積為,∵骰子落在會徽圖案上的頻率穩(wěn)定在0.15左右,∴會徽圖案的面積為:,故答案為:.【點睛】題目主要考查根據(jù)頻率計算滿足條件的情況,理解題意,熟練掌握頻率的計算方法是解題關(guān)鍵.3、【分析】過圓心作一邊的垂線,根據(jù)勾股定理可以計算出外接圓半徑.【詳解】如圖所示,是正三角形,故O是的中心,,∵正三角形的邊長為2,OE⊥AB∴,,∴,由勾股定理得:,∴,∴,∴(負值舍去).故答案為:.【點睛】本題考查了正多邊形和圓,解題的關(guān)鍵是根據(jù)題意畫出圖形,利用數(shù)形結(jié)合求解.4、【分析】根據(jù)題中點的坐標可得圓的直徑,半徑為1,分析以AB定長為底,點D在圓上,高最大為圓的半徑,即可得出三角形最大的面積;連接AP,設(shè)點,根據(jù)切線的性質(zhì)及勾股定理可得,由其非負性即可得.【詳解】解:如圖所示:當點P到如圖位置時,的面積最大,∵、,∴圓的直徑,半徑為1,∴以AB定長為底,點D在圓上,高最大為圓的半徑,如圖所示:此時面積的最大值為:;如圖所示:連接AP,∵PD切于點D,∴,∴,設(shè)點,在中,,,∴,在中,,∴,則,當時,PD取得最小值,最小值為,故答案為:①;②.【點睛】題目主要考查切線的性質(zhì)及勾股定理的應(yīng)用,理解題意,作出相應(yīng)圖形求出解析式是解題關(guān)鍵.5、12【分析】如圖,連接BC,AO,作點P關(guān)于AB的對稱點M,作點P關(guān)于AC的對稱點N,連接MN交AB于E,交AC于F,此時△PEF的周長=PE+PF+EF=EM+EF+FM=MN,想辦法求出MN的最小值即可解決問題.【詳解】解:如圖,連接BC,AO,作點P關(guān)于AB的對稱點M,作點P關(guān)于AC的對稱點N,連接MN交AB于E,交AC于F,此時△PEF的周長=PE+PF+EF=EM+EF+FM=MN,∴當MN的值最小時,△PEF的值最小,∵AP=AM=AN,∠BAM=∠BAP,∠CAP=∠CAN,∠BAC=60°,∴∠MAN=120°,∴MN=AM=PA,∴當PA的值最小時,MN的值最小,取AB的中點J,連接CJ.∵AB=8,AC=4,∴AJ=JB=AC=4,∵∠JAC=60°,∴△JAC是等邊三角形,∴JC=JA=JB,∴∠ACB=90°,∴BC=,∵∠BOC=60°,OB=OC,∴△OBC是等邊三角形,∴OB=OC=BC=4,∠BCO=60°,∴∠ACH=30°,∵AH⊥OH,AH=AC=2,CH=AH=2,∴OH=6,∴OA==4,∵當點P在直線OA上時,PA的值最小,最小值為-,∴MN的最小值為?(-)=-12.故答案:-12.【點睛】本題考查了圓周角定理,垂徑定理,軸對稱-最短問題等知識,解題的關(guān)鍵是學(xué)會利用軸對稱解決最短問題,屬于中考填空題中的壓軸題.6、5【分析】先根據(jù)垂徑定理求出AC的長,設(shè)⊙O的半徑為r,再連接OA,在Rt△OAC中利用勾股定理求出r的值即可.【詳解】解:∵⊙O的弦AB=8,半徑OD⊥AB,∴AC=AB=×8=4,設(shè)⊙O的半徑為r,則OC=r-CD=r-2,連接OA,在Rt△OAC中,OA2=OC2+AC2,即r2=(r-2)2+42,解得r=5.故答案為:5【點睛】本題考查的是垂徑定理及勾股定理,根據(jù)題意作出輔助線,構(gòu)造出直角三角形,利用勾股定理求解是解答此題的關(guān)鍵.7、65【分析】根據(jù)切線的性質(zhì)得到OA⊥AP,根據(jù)直角三角形的兩銳角互余計算,得到答案.【詳解】解:∵PA是⊙O的切線,∴OA⊥AP,∴,∵∠APO=25°,∴,故答案為:65.【點睛】本題考查的是切線的性質(zhì)、直角三角形的性質(zhì),掌握圓的切線垂直于經(jīng)過切點的半徑是解題的關(guān)鍵.三、解答題1、(1)30°,70°,40°;(2)∠AOC-∠BOE=40°,理由見解析;(3)t的取值為5或20或62【分析】(1)先根據(jù)已知求出∠DOC、∠BOC,再求出當t=4時的旋轉(zhuǎn)角的度數(shù),再利用角的和與差求解即可;(2)設(shè)旋轉(zhuǎn)角為x,用x表示∠AOC和∠BOE,即可得出結(jié)論;(3)分①OA為∠DOC的平分線;②OC為∠DOA的平分線;③OD為∠COA的平分線三種情況,利用角平分線定義和旋轉(zhuǎn)性質(zhì)求出旋轉(zhuǎn)角即可.(1)解:∵∠EOC=130°,∠AOB=∠BOE=90°,∴∠DOC=180°-130°=50°,∠BOC=130°-90°=40°,當t=4時,旋轉(zhuǎn)角4×5°=20°,∴∠AOC=∠DOC-∠DOA=50°-20°=30°,∠BOE=90°-20°=70°,∠BOE-∠AOC=70°-30°=40°,故答案為:30°,70°,40°;(2)解:∠AOC-∠BOE=40°,理由為:設(shè)旋轉(zhuǎn)角為x,當三角板旋轉(zhuǎn)至邊AB與射線OE相交時,∠AOC=x-50°,∠BOE=x-90°,∴∠AOC-∠BOE=(x-50°)-(x-90°)=40°;(3)解:存在,①當OA為∠DOC的平分線時,旋轉(zhuǎn)角5t=∠DOC=25,∴t=5;②當OC為∠DOA的平分線時,旋轉(zhuǎn)角5t=2∠DOC=100,∴t=20;③當OD為∠COA的平分線時,360-5t=∠DOC=50,∴t=62,綜上,滿足條件的t的取值為5或20或62.【點睛】本題考查角平分線的定義、旋轉(zhuǎn)的性質(zhì)、角的運算,熟練掌握旋轉(zhuǎn)性質(zhì),利用分類討論思想求解是解答的關(guān)鍵.2、(1)0.28;(2)【分析】(1)由表中數(shù)據(jù)可判斷頻率在0.28左右擺動,利用頻率估計概率可判斷任意抽取一個毛絨玩具是優(yōu)等品的概率為0.28;(2)先列表得出所有等可能結(jié)果,從中找到符合條件的結(jié)果數(shù),再根據(jù)概率公式求解可得.(1)解:從這批盲盒中任意抽取一個是玩具B的概率是0.28,故答案為0.28.(2)列表為:ABCDA--BACADABAB--CBDBCACBC--DCDADBDCD--由上表可知,從四種玩具的四個盲盒中隨機抽取兩個共有12種等可能結(jié)果,其中恰為玩具A和玩具C的結(jié)果有2種,所以恰為玩具A和玩具C的概率P=.【點睛】本題考查了利用頻率估計概率及用列表法或樹狀圖法求概率,大量重復(fù)實驗時,事件發(fā)生的頻率在某個固定位置左右擺動,并且擺動的幅度越來越小,根據(jù)這個頻率穩(wěn)定性定理,可以用頻率的集中趨勢來估計概率,這個固定的近似值就是這個事件的概率.列表法或樹狀圖法求概率,用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.3、(1)8(2)(3)或.【分析】(1)過點O作OH⊥AC于點H,由垂徑定理可得AH=CH=AC,由銳角三角函數(shù)和勾股定理可求解;(2)分兩種情況討論,由相似三角形的性質(zhì)可求AG,EG,CG的長,即可求解;(3)分兩種情況討論,由相似三角形和勾股定理可求解.(1)如圖2,過點O作OH⊥AC于點H,由垂徑定理得:AH=CH=AC,在Rt△OAH中,,∴設(shè)OH=3x,AH=4x,∵OH2+AH2=OA2,∴(3x)2+(4x)2=52,解得:x=±1,(x=﹣1舍去),∴OH=3,AH=4,∴AC=2AH=8;(2)如圖2,過點O作OH⊥AC于H,過E作EG⊥AC于G,∵∠DEO=∠AEC,∴當△DOE與△AEC相似時可得:∠DOE=∠A或者∠DOE=∠ACD;,∴∠ACD≠∠DOE∴當△DOE與△AEC相似時,不存在∠DOE=∠ACD情況,∴當△DOE與△AEC相似時,∠DOE=∠A,∴OD∥AC,∴,∵OD=OA=5,AC=8,∴,∴,∵∠AGE=∠AHO=90°,∴GE∥OH,∴△AEG∽△AOH,∴,∴,∴,∴,,在Rt△CEG中,;(3)當點E在線段OA上時,如圖3,過點E作EG⊥AC于G,過點O作OH⊥AC于H,延長AO交⊙O于M,連接AD,DM,由(1)可得OH=3,AH=4,AC=8,∵OE=1,∴AE=4,ME=6,∵EG∥OH,∴△AEG∽△AOH,∴,∴AG=,EG=,∴GC=,∴EC===,∵AM是直徑,∴∠ADM=90°=∠EGC,又∵∠M=∠C,∴△EGC∽△ADM,∴,∴,∴AD=2;當點E在線段AO的延長線上時,如圖4,延長AO交⊙O于M,連接AD,DM,過點E作EG⊥AC于G,同理可求EG=,AG=,AE=6,GC=,∴EC===,∵AM是直徑,∴∠ADM=90°=∠EGC,又∵∠M=∠C,∴△EGC∽△ADM,∴,∴,∴AD=,綜上所述:AD的長是或【點睛】本題考查了垂徑定理,勾股定理,解直角三角形,求角的正切值,相似三角形的性質(zhì)與判定,圓周角定理,正切的作出輔助線是解題的關(guān)鍵.4、(1)該麥種的發(fā)芽概率約為95%;(2)約需麥種790千克【分析】(1)利用頻率估計麥種的發(fā)芽率,大數(shù)次實驗,當頻率固定到一個穩(wěn)定值時,可根據(jù)頻率公式=頻數(shù)÷總數(shù)計算即可;(2)設(shè)約需麥種x千克,根據(jù)x千克轉(zhuǎn)化為克×1000,再轉(zhuǎn)為顆?!?0×1000,根據(jù)發(fā)芽率再×95%,根據(jù)芽轉(zhuǎn)苗再×80%,等于三公頃地需要的苗總數(shù),例方程x×1000÷50×1000×95%×80%=4000000×3,解方程即可(1)解:根據(jù)實驗數(shù)量變大,發(fā)芽數(shù)也在增大,2850÷3000×100%=95%,故該麥種的發(fā)芽概率約為95%;(2)解:設(shè)約需麥種x千克,x×1000÷50×1000×95%×80%=4000000×3,化簡得15200x=12000000,解得x=789,答:約需麥種790千克【點睛】本題考查用頻率估計發(fā)芽率,一元一次方程解應(yīng)用題,掌握用頻率估計發(fā)芽率,一元一次方程解應(yīng)用題的方法與步驟是解題關(guān)鍵.5、(1);(2)李老師和王老師被分配到同一個監(jiān)督崗的概率為.【分析】(1)直接利用概率公式計算;(2)畫樹狀圖展示所有16種等可能的結(jié)果,找出李老師和王老師被分配到同一個監(jiān)督崗的結(jié)果數(shù),然后根據(jù)概率公式計算.【詳解】解:(1)因為設(shè)立了四個“服務(wù)監(jiān)督崗”:“洗手監(jiān)督崗”,“戴口罩監(jiān)督崗”,“戴口罩監(jiān)督崗”,“就餐監(jiān)督崗”而“操場活動監(jiān)督崗”是其中之一,∴王老師被分配到“就餐監(jiān)督崗”的概率=;故答案為:;(2)畫樹狀圖為:由樹狀圖可知共有16種等可能的結(jié)果,其中李老師和王老師被分配到同一個監(jiān)督崗的結(jié)果數(shù)為4,∴李老師和王老師被分配到同一個監(jiān)督崗的概率==.【點睛】本題考查了列舉法求解概率,列表法與樹狀圖法求解概率:利用列表法或樹狀圖法展示所有等可能的結(jié)果n,再從中選出符合事件A或B的結(jié)果數(shù)目m,然后利用概率公式計算事件A或事件B的概率.6、(1),證明見解析(2)成立,證明見解析(3)【分析】(1)設(shè),先根據(jù)直角三角形的性質(zhì)可得,再根據(jù)旋轉(zhuǎn)的性質(zhì)可得,然后根據(jù)等邊三角形的判定與性質(zhì)可得,,都是等邊三角形,從而可得,由此即可得出結(jié)論;(2)在上截取,連接,先根據(jù)旋轉(zhuǎn)的性質(zhì)可得,從而可得,再根據(jù)三角形全等的判定定理證出,根據(jù)全等三角形的性質(zhì)可得,,然后根據(jù)三角形的外角性質(zhì)可得,最后根據(jù)等腰三角形的判定可得,由此即可得出結(jié)論;(3)如圖(見解析),先根據(jù)旋轉(zhuǎn)的性質(zhì)可得,再根據(jù)直角三角形全等的判定定理證出,然后根據(jù)全等三角形的性質(zhì)可得,最后根據(jù)旋轉(zhuǎn)角即可得.(1)解:,證明如下:設(shè),在中,,,由旋轉(zhuǎn)的性質(zhì)得:,,和都是等邊三角形,,,是等邊三角形,,;(2)解:成立,證明如下:如圖,在上截取,連接,由旋轉(zhuǎn)的性質(zhì)得:,,,在和中,,,,,,;(3)解:如圖,當點三點在一條直線上時,由旋轉(zhuǎn)的性質(zhì)得:,,在和中
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 綠化工程生態(tài)治理技術(shù)方案
- 定制家具生產(chǎn)流程優(yōu)化方案
- 陽臺改造及綠化設(shè)計方案
- 舊房照明系統(tǒng)優(yōu)化方案
- 道路施工全過程跟蹤方案
- 二次裝修注意事項及技術(shù)方案
- 紙卡系統(tǒng)培訓(xùn)課件
- 2026年證券從業(yè)資格認證考試證券市場基礎(chǔ)知識題
- 縣管校聘培訓(xùn)課程課件
- 2026年影視制片人專業(yè)筆試預(yù)測模擬題
- 工程勘探與設(shè)計報告范文模板
- 【數(shù)學(xué)】2025-2026學(xué)年人教版七年級上冊數(shù)學(xué)壓軸題訓(xùn)練
- 產(chǎn)品銷售團隊外包協(xié)議書
- 汽車充電站安全知識培訓(xùn)課件
- 民航招飛pat測試題目及答案
- 2026年鄭州鐵路職業(yè)技術(shù)學(xué)院單招職業(yè)傾向性考試題庫及參考答案詳解
- DB35-T 2278-2025 醫(yī)療保障監(jiān)測統(tǒng)計指標規(guī)范
- 長沙股權(quán)激勵協(xié)議書
- 心源性腦卒中的防治課件
- 2025年浙江輔警協(xié)警招聘考試真題含答案詳解(新)
- 果園合伙經(jīng)營協(xié)議書
評論
0/150
提交評論