版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
黑龍江省密山市中考數(shù)學(xué)考前沖刺練習(xí)考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題25分)一、單選題(5小題,每小題2分,共計10分)1、若a是從“、0、1、2”這四個數(shù)中任取的一個數(shù),則關(guān)于x的方程為一元二次方程的概率是()A.1 B. C. D.2、距考試還有20天的時間,為鼓舞干勁,老師要求班上每一名同學(xué)要給同組的其他同學(xué)寫一份拼搏進(jìn)取的留言,小明所在的小組共寫了30份留言,該小組共有()A.7人 B.6人 C.5人 D.4人3、一元二次方程配方后可化為(
)A. B.C. D.4、如圖,一次函數(shù)y=-3x+4的圖象交x軸于點A,交y軸于點B,點P在線段AB上(不與點A,B重合),過點P分別作OA和OB的垂線,垂足為C,D.若矩形OCPD的面積為1時,則點P的坐標(biāo)為()A.(,3) B.(,2) C.(,2)和(1,1) D.(,3)和(1,1)5、把圖中的交通標(biāo)志圖案繞著它的中心旋轉(zhuǎn)一定角度后與自身重合,則這個旋轉(zhuǎn)角度至少為(
)A.30° B.90° C.120° D.180°二、多選題(5小題,每小題3分,共計15分)1、下列說法正確的是(
)A.圓是軸對稱圖形,它有無數(shù)條對稱軸B.圓的半徑、弦長的一半、弦上的弦心距能組成一個直角三角形,且圓的半徑是此直角三角形的斜邊C.弦長相等,則弦所對的弦心距也相等D.垂直于弦的直徑平分這條弦,并且平分弦所對的弧2、在中,,,且關(guān)于x的方程有兩個相等的實數(shù)根,以下結(jié)論正確的是(
)A.AC邊上的中線長為1 B.AC邊上的高為C.BC邊上的中線長為 D.外接圓的半徑是23、關(guān)于二次函數(shù)y=ax2+bx+c的圖象有下列命題,其中正確的命題是()A.當(dāng)c=0時,函數(shù)的圖象經(jīng)過原點;B.當(dāng)c>0,且函數(shù)的圖象開口向下時,方程ax2+bx+c=0必有兩個不相等的實根;C.函數(shù)圖象最高點的縱坐標(biāo)是;D.當(dāng)b=0時,函數(shù)的圖象關(guān)于y軸對稱.4、二次函數(shù)y=ax2+bx+c(a≠0)的頂點坐標(biāo)為(-1,n),其部分圖象如圖所示.下列結(jié)論正確的是(
)A.B.C.若,是拋物線上的兩點,則D.關(guān)于x的方程無實數(shù)根5、如圖,二次函數(shù)y=ax2+bx+c的圖象經(jīng)過點A(﹣4,0),其對稱軸為直線x=﹣1,下列結(jié)論正確的是(
)A.a(chǎn)+b+c<0B.a(chǎn)bc<0C.2a+b=0D.若P(﹣6,y1),Q(m,y2)是拋物線上兩點,且y1>y2,則﹣6<m<4第Ⅱ卷(非選擇題75分)三、填空題(5小題,每小題3分,共計15分)1、如圖,與x軸交于、兩點,,點P是y軸上的一個動點,PD切于點D,則△ABD的面積的最大值是________;線段PD的最小值是________.2、圓錐的底面直徑是80cm,母線長90cm.它的側(cè)面展開圖的圓心角和圓錐的全面積依次是______.3、如圖,是等邊三角形,點D為BC邊上一點,,以點D為頂點作正方形DEFG,且,連接AE,AG.若將正方形DEFG繞點D旋轉(zhuǎn)一周,當(dāng)AE取最小值時,AG的長為________.4、如圖,在⊙O中,∠BOC=80°,則∠A=___________°.5、若代數(shù)式有意義,則x的取值范圍是_____.四、簡答題(2小題,每小題10分,共計20分)1、如圖所示,拋物線的對稱軸為直線,拋物線與軸交于、兩點,與軸交于點.(1)求拋物線的解析式;(2)連結(jié),在第一象限內(nèi)的拋物線上,是否存在一點,使的面積最大?最大面積是多少?2、已知關(guān)于的二次函數(shù).(1)求證:不論為何實數(shù),該二次函數(shù)的圖象與軸總有兩個公共點;(2)若,兩點在該二次函數(shù)的圖象上,直接寫出與的大小關(guān)系;(3)若將拋物線沿軸翻折得到新拋物線,當(dāng)時,新拋物線對應(yīng)的函數(shù)有最小值3,求的值.五、解答題(4小題,每小題10分,共計40分)1、某商場經(jīng)營某種品牌的玩具,購進(jìn)的單價是30元,根據(jù)市場調(diào)查,在一段時間內(nèi),銷售單價是40元時,銷售量是600元,而銷售單價每漲1元,就會少售出10件玩具.(1)設(shè)該種品牌玩具的銷售單價為x元,請你分別用x的代數(shù)式來表示銷售量y件和銷售該品牌玩具獲利利潤W元;(2)在(1)的條件下,若商場獲利了10000元銷售利潤,求該玩具銷售單價x應(yīng)定為多少元?(3)在(1)的條件下,若玩具廠規(guī)定該品牌玩具銷售單價不低于45元,且商場要完成不少于480件的銷售任務(wù),求商場銷售該品牌玩具獲利的最大利潤是多少元?2、某商品的進(jìn)價為每件40元,如果售價為每件50元,每個月可賣出210件;如果售價超過50元但不超過80元,每件商品的售價每上漲1元,則每個月少賣1件,如果售價超過80元后,若再漲價,則每漲1元每月少賣3件.設(shè)每件商品的售價x元(x為整數(shù)),每個月的銷售量為y件.(1)求y與x的函數(shù)關(guān)系式并直接寫出自變量x的取值范圍;(2)設(shè)每月的銷售利潤為W,請直接寫出W與x的函數(shù)關(guān)系式.3、如圖,已知AB是⊙O的直徑,,連接OC,弦,直線CD交BA的延長線于點.(1)求證:直線CD是⊙O的切線;(2)若,,求OC的長.4、如圖,直角三角形中,,為中點,將繞點旋轉(zhuǎn)得到.一動點從出發(fā),以每秒1的速度沿的路線勻速運(yùn)動,過點作直線,使.(1)當(dāng)點運(yùn)動2秒時,另一動點也從出發(fā)沿的路線運(yùn)動,且在上以每秒1的速度勻速運(yùn)動,在上以每秒2的速度勻速運(yùn)動,過作直線使,設(shè)點的運(yùn)動時間為秒,直線與截四邊形所得圖形的面積為,求關(guān)于的函數(shù)關(guān)系式,并求出的最大值.(2)當(dāng)點開始運(yùn)動的同時,另一動點從處出發(fā)沿的路線運(yùn)動,且在上以每秒的速度勻速運(yùn)動,在上以每秒2的速度勻度運(yùn)動,是否存在這樣的,使為等腰三角形?若存在,直接寫出點運(yùn)動的時間的值,若不存在請說明理由.-參考答案-一、單選題1、B【分析】根據(jù)一元二次方程的定義,二次項系數(shù)不為0,四個數(shù)中有一個1不能取,a是從“、0、1、2”這四個數(shù)中任取的一個數(shù),有四種等可能的結(jié)果,其中滿足條件的情況有3種,然后利用概率公式計算即可.【詳解】解:當(dāng)a=1時于x的方程不是一元二次方程,其它三個數(shù)都是一元二次方程,a是從“、0、1、2”這四個數(shù)中任取的一個數(shù),有四種等可能的結(jié)果,其中滿足條件的情況有3種,關(guān)于x的方程為一元二次方程的概率是,故選擇B.【點睛】本題考查一元二次方程的定義,列舉法求概率,掌握一元二次方程的定義,列舉法求概率方法是解題關(guān)鍵.2、B【解析】【分析】設(shè)小組有x人,根據(jù)題意,得x(x-1)=30,解方程即可.【詳解】設(shè)小組有x人,根據(jù)題意,得x(x-1)=30,整理,得,解方程,得(舍去),故選B.【考點】本題考查了一元二次方程的應(yīng)用,熟練掌握方程的應(yīng)用是解題的關(guān)鍵.3、B【解析】【分析】根據(jù)題意直接對一元二次方程配方,然后把常數(shù)項移到等號右邊即可.【詳解】解:根據(jù)題意,把一元二次方程配方得:,即,∴化成的形式為.故選:B.【考點】本題考查配方法解一元二次方程,注意掌握配方法的一般步驟:把常數(shù)項移到等號的右邊;把二次項的系數(shù)化為1;等式兩邊同時加上一次項系數(shù)一半的平方.選擇用配方法解一元二次方程時,最好使方程的二次項的系數(shù)為1,一次項的系數(shù)是2的倍數(shù).4、D【解析】【分析】由點P在線段AB上可設(shè)點P的坐標(biāo)為(m,-3m+4)(0<m<),進(jìn)而可得出OC=m,OD=-3m+4,結(jié)合矩形OCPD的面積為1,即可得出關(guān)于m的一元二次方程,解之即可得出m的值,再將其代入點P的坐標(biāo)中即可求出結(jié)論.【詳解】解:∵點P在線段AB上(不與點A,B重合),且直線AB的解析式為y=-3x+4,∴設(shè)點P的坐標(biāo)為(m,-3m+4)(0<m<),∴OC=m,OD=-3m+4.∵矩形OCPD的面積為1,∴m(-3m+4)=1,∴m1=,m2=1,∴點P的坐標(biāo)為(,3)或(1,1).故選:D.【考點】本題考查了一次函數(shù)圖象上點的坐標(biāo)特征以及解一元二次方程,利用一次函數(shù)圖象上點的坐標(biāo)特征及,找出關(guān)于m的一元二次方程是解題的關(guān)鍵.5、C【解析】【分析】根據(jù)圖形的對稱性,用360°除以3計算即可得解.【詳解】解:∵360°÷3=120°,∴旋轉(zhuǎn)的角度是120°的整數(shù)倍,∴旋轉(zhuǎn)的角度至少是120°.故選C.【考點】本題考查了旋轉(zhuǎn)對稱圖形,仔細(xì)觀察圖形求出旋轉(zhuǎn)角是120°的整數(shù)倍是解題的關(guān)鍵.二、多選題1、ABD【解析】【分析】根據(jù)圓的相關(guān)知識和垂徑定理進(jìn)行分析即可.【詳解】解:A.圓是軸對稱圖形,它有無數(shù)條對稱軸,正確;B.圓的半徑、弦長的一半、弦上的弦心距能組成一個直角三角形,且圓的半徑是此直角三角形的斜邊,正確;C.弦長相等,則弦所對的弦心距也相等,不正確,只有在同圓或等圓中,弦長相等,則弦所對的弦心距也相等;D.垂直于弦的直徑平分這條弦,并且平分弦所對的弧,正確.故選:ABD.【考點】本題考查了學(xué)生對圓的基本概念和垂徑定理的理解,屬于基礎(chǔ)題.2、BCD【解析】【分析】由根的判別式求出AC=b=4,由勾股定理的逆定理證出△ABC是直角三角形,再由直角三角形斜邊上的中線性質(zhì)即可得出AC的長,利用等積法求出斜邊上的高,根據(jù)勾股定理求出BC邊上的中線,利用直角三角形外接圓的半徑是斜邊的一半得出外接圓的半徑.【詳解】∵一元二次方程x2-4x+b=0有兩個相等的實數(shù)根,∴(-4)2-4b=0,∴b=4.∴AC=4,∴AB2+BC2=AC2,∵△ABC為直角三角形,∵直角三角形斜邊上的中線等于斜邊的一半的性質(zhì),∴AC邊上的中線長=2,故A錯誤;∵ABBC=ACh∴22=4h∴h=故B正確;BC邊上的中線==故C正確直角三角形外接圓的半徑等于斜邊的一半,所以為2故D正確.故答案為:BCD【考點】本題考查了一元二次方程ax2+bx+c=0(a≠0)的根的判別式Δ=b2-4ac:當(dāng)Δ=0,方程有兩個相等的實數(shù)根;還考查了利用勾股定理判定直角三角形及勾股定理的應(yīng)用,并考查了直角三角形斜邊上的中線等于斜邊的一半的性質(zhì)以及三角形的外接圓的性質(zhì).3、ABD【解析】【分析】根據(jù)c與0的關(guān)系判斷二次函數(shù)y=ax2+bx+c與y軸交點的情況;根據(jù)頂點坐標(biāo)與拋物線開口方向判斷函數(shù)的最值;根據(jù)函數(shù)y=ax2+c的圖象與y=ax2圖象相同,判斷函數(shù)y=ax2+c的圖象對稱軸.【詳解】解:A.c是二次函數(shù)y=ax2+bx+c與y軸的交點,所以當(dāng)c=0時,函數(shù)的圖象經(jīng)過原點;B.c>0時,二次函數(shù)y=ax2+bx+c與y軸的交點在y軸的正半軸,又因為函數(shù)的圖象開口向下,所以方程ax2+bx+c=0必有兩個不相等的實根;C.當(dāng)a<0時,函數(shù)圖象最高點的縱坐標(biāo)是;當(dāng)a>0時,函數(shù)圖象最低點的縱坐標(biāo)是;由于a值不定,故無法判斷最高點或最低點;D.當(dāng)b=0時,二次函數(shù)y=ax2+bx+c變?yōu)閥=ax2+c,又因為y=ax2+c的圖象與y=ax2圖象相同,所以當(dāng)b=0時,函數(shù)的圖象關(guān)于y軸對稱.故選:ABD.【考點】二次函數(shù)y=ax2+bx+c最值,掌握當(dāng)a<0時,函數(shù)的最大值是;當(dāng)a>0時,函數(shù)的最小值是是解題關(guān)鍵.4、CD【解析】【分析】根據(jù)二次函數(shù)的性質(zhì)及與x軸另一交點的位置,即可判定A;當(dāng)x=2時,即可判定B;根據(jù)對稱性及二次函數(shù)的性質(zhì),可判定C;根據(jù)平移后與x軸有無交點,可判定D.【詳解】解:由圖象可知:該二次函數(shù)圖象的對稱軸為直線,∴b=2a,由圖象可知:該二次函數(shù)圖象與x軸的左側(cè)交點在-3與-2之間,故與x軸的另一個交點在0與1之間,∴當(dāng)x=1時,y<0,即a+b+c<0,3a+c<0,故A錯誤;當(dāng)x=-2時,y>0,即4a-2b+c>0,故B錯誤;點關(guān)于對稱軸對稱的點的坐標(biāo)為,即,在對稱軸的左側(cè)y隨x的增大而增大,故,故C正確;該二次函數(shù)的頂點坐標(biāo)為(?1,n),將函數(shù)向下平移n+1個單位,函數(shù)圖象與x軸無交點,∴方程無實數(shù)根,故D正確,故選:CD.【考點】本題考查了二次函數(shù)圖象與性質(zhì),根據(jù)二次函數(shù)的圖象判定式子是否成立,解題的關(guān)鍵是從圖象中找到相關(guān)信息.5、ABD【解析】【分析】根據(jù)題意可得點A(﹣4,0)關(guān)于對稱軸的對稱點,從而得到當(dāng)時,,再由,可得在對稱軸右側(cè)隨的增大而增大,從而得到當(dāng)時,;根據(jù)圖象可得,,可得;再由,可得;然后根據(jù)P(﹣6,y1)關(guān)于對稱軸的對稱點,可得當(dāng)y1>y2時,﹣6<m<4,即可求解.【詳解】解:∵二次函數(shù)y=ax2+bx+c的圖象經(jīng)過點A(﹣4,0),其對稱軸為直線x=﹣1,∴點A(﹣4,0)關(guān)于對稱軸的對稱點,即當(dāng)時,,∵拋物線開口向上,∴,∴在對稱軸右側(cè)隨的增大而增大,∴當(dāng)時,,故A正確;∵拋物線與交于負(fù)半軸,∴,∵對稱軸為直線x=﹣1,,∴,即,∴,故B正確;∵,∴,故C錯誤;∵P(﹣6,y1)關(guān)于對稱軸的對稱點,∴當(dāng)y1>y2時,﹣6<m<4,故D正確.故選:ABD【考點】本題主要考查了二次函數(shù)的圖象和性質(zhì),熟練掌握二次函數(shù)的圖象和性質(zhì),并利用數(shù)形結(jié)合思想解答是解題的關(guān)鍵.三、填空題1、【分析】根據(jù)題中點的坐標(biāo)可得圓的直徑,半徑為1,分析以AB定長為底,點D在圓上,高最大為圓的半徑,即可得出三角形最大的面積;連接AP,設(shè)點,根據(jù)切線的性質(zhì)及勾股定理可得,由其非負(fù)性即可得.【詳解】解:如圖所示:當(dāng)點P到如圖位置時,的面積最大,∵、,∴圓的直徑,半徑為1,∴以AB定長為底,點D在圓上,高最大為圓的半徑,如圖所示:此時面積的最大值為:;如圖所示:連接AP,∵PD切于點D,∴,∴,設(shè)點,在中,,,∴,在中,,∴,則,當(dāng)時,PD取得最小值,最小值為,故答案為:①;②.【點睛】題目主要考查切線的性質(zhì)及勾股定理的應(yīng)用,理解題意,作出相應(yīng)圖形求出解析式是解題關(guān)鍵.2、160°,5200【分析】由題意知,圓錐的展開圖扇形的r半徑為90cm,弧長l為.代入扇形弧長公式求解圓心角;代入扇形面積公式求出圓錐側(cè)面積,然后加上底面面積即可求出全面積.【詳解】解:圓錐的展開圖扇形的r半徑為90cm,弧長l為∵∴解得∵∴故答案為:160°,.【點睛】本題考查了扇形的圓心角與面積.解題的關(guān)鍵在于運(yùn)用扇形的弧長與面積公式進(jìn)行求解.難點在于求出公式中的未知量.3、8【解析】【分析】過點A作于M,由已知得出,得出,由等邊三角形的性質(zhì)得出,,得出,在中,由勾股定理得出,當(dāng)正方形DEFG繞點D旋轉(zhuǎn)到點E、A、D在同一條直線上時,,即此時AE取最小值,在中,由勾股定理得出,在中,由勾股定理即可得出.【詳解】過點A作于M,∵,∴,∴,∵是等邊三角形,∴,∵,∴,∴,在中,,當(dāng)正方形DEFG繞點D旋轉(zhuǎn)到點E、A、D在同一條直線上時,,即此時AE取最小值,在中,,∴在中,;故答案為8.【考點】本題考查了旋轉(zhuǎn)的性質(zhì)、正方形的性質(zhì)、等邊三角形的性質(zhì)、勾股定理以及最小值問題;熟練掌握正方形的性質(zhì)和等邊三角形的性質(zhì)是解題的關(guān)鍵.4、40°度【分析】直接根據(jù)圓周角定理即可得出結(jié)論.【詳解】解:與是同弧所對的圓心角與圓周角,,.故答案為:.【點睛】本題考查的是圓周角定理,解題的關(guān)鍵是熟知在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.5、﹣3≤x≤且x≠.【解析】【分析】根據(jù)二次根式的性質(zhì),被開方數(shù)大于等于0;分母中有字母,分母不為0.【詳解】解:若代數(shù)式有意義,必有,解①得解②移項得兩邊平方得整理得解得③∴解集為﹣3≤x≤且x≠.故答案為:﹣3≤x≤且x≠.【考點】本題考查了二次根式的概念:式子(a≥0)叫二次根式,(a≥0)是一個非負(fù)數(shù).注意:二次根式中的被開方數(shù)必須是非負(fù)數(shù),否則二次根式無意義;當(dāng)二次根式在分母上時還要考慮分母不等于零,此時被開方數(shù)大于0.四、簡答題1、(1);(2)存在,當(dāng)時,面積最大為16,此時點點坐標(biāo)為.【解析】【分析】(1)用待定系數(shù)法解答便可;(2)設(shè)點的坐標(biāo)為,連結(jié)、、.根據(jù)對稱性求出點B的坐標(biāo),根據(jù)得到二次函數(shù)關(guān)系式,最后配方求解即可.【詳解】解:(1)∵拋物線過點,∴.∵拋物線的對稱軸為直線,∴可設(shè)拋物線為.∵拋物線過點,∴,解得.∴拋物線的解析式為,即.(2)存在,設(shè)點的坐標(biāo)為,連結(jié)、、.∵點A、關(guān)于直線對稱,且∴.∴.∵∴當(dāng)時,面積最大為16,此時點點坐標(biāo)為.【考點】本題主要考查了二次函數(shù)的圖象與性質(zhì),待定系數(shù)法,三角形面積公式以及二次函數(shù)的最值求法,根據(jù)圖形得出由此得出二次函數(shù)關(guān)系式是解答此題的關(guān)鍵.2、(1)見解析(2)(3)的值為1或-5【解析】【分析】(1)計算判別式的值,得到,即可判定;(2)計算二次函數(shù)的對稱軸為:直線,利用當(dāng)拋物線開口向上時,誰離對稱軸遠(yuǎn)誰大判斷即可;(3)先得到拋物線沿y軸翻折后的函數(shù)關(guān)系式,再利用對稱軸與取值范圍的位置分類討論即可.(1)證明:令,則∴∴不論為何實數(shù),方程有兩個不相等的實數(shù)根∴無論為何實數(shù),該二次函數(shù)的圖象與軸總有兩個公共點(2)解:二次函數(shù)的對稱軸為:直線∵,拋物線開口向上∴拋物線上的點離對稱軸越遠(yuǎn)對應(yīng)的函數(shù)值越大∵∴M點到對稱軸的距離為:1N點到對稱軸的距離為:2∴(3)解:∵拋物線∴沿軸翻折后的函數(shù)解析式為∴該拋物線的對稱軸為直線①若,即,則當(dāng)時,有最小值∴解得,∵∴②若,即,則當(dāng)時,有最小值-1不合題意,舍去③若,,則當(dāng)時,有最小值∴解得,∵∴綜上,的值為1或-5【考點】本題考查了拋物線與x軸的交點以及二次函數(shù)的最值問題,利用一元二次方程根的判別式判斷拋物線與x軸的交點情況;熟練掌握二次函數(shù)的最值情況、根據(jù)對稱軸與取值范圍的位置關(guān)系來確定二次函數(shù)的最值是解本題的關(guān)鍵.五、解答題1、(1),;(2)50元或80元;(3)商場銷售該品牌玩具獲利的最大利潤是10560元【解析】【分析】(1)根據(jù)銷售量與銷售單價之間的變化關(guān)系就可以直接求出y與x之間的關(guān)系式;根據(jù)銷售問題的利潤=售價-進(jìn)價就可以表示出w與x之間的關(guān)系;(2)根據(jù)題意得方程求得x1=50,x2=80,于是得到結(jié)論;(3)根據(jù)銷售單價不低于45元且商場要完成不少于480件的銷售任務(wù)求得45≤x≤52,根據(jù)二次函數(shù)的性質(zhì)得到當(dāng)45≤x≤52時,y隨x增大而增大,于是得到結(jié)論.【詳解】解:(1)依等量關(guān)系式“銷量=原銷量-因漲價而減少銷量,總利潤=單個利潤×銷量”可列式為:y=600-10(x-40)=-10x+1000;W=(x-30)(-10x+1000)=-10+1300x-30000(2)由題意可得:10+1300x30000=10000,解得:x=50或x=80,∴該玩具銷售單價x應(yīng)定為50元或80元(3)由題意可得:,解得:45≤x≤52,W=10+1300x30000=10(+12250,∵10<0,W隨x的增大而減小,又∵45≤x≤52,∴當(dāng)x=52時,W有最大值,最大值為10560元,∴商場銷售該品牌玩具獲利的最大利潤是10560元.【考點】本題考查了一元二次方程的解法的運(yùn)用,二次函數(shù)的解析式的運(yùn)用,二次函數(shù)的頂點式的運(yùn)用,解答時求出二次函數(shù)的解析式是關(guān)鍵.2、(1);(2)【解析】【分析】(1)根據(jù)題意先分類討論,當(dāng)售價超過50元但不超過80元時,上漲的價格是元,就少賣件,用原來的210件去減得到銷售量;當(dāng)售價超過80元,超過80的部分是元,就少賣件,用原來的210件先減去售價從50漲到80之間少賣的30件再減去得到最終的銷售量.(2)根據(jù)利潤=(售價-成本)銷量,現(xiàn)在的單件利潤是元,再去乘以(1)中兩種情況下的銷售量,得到銷售利潤關(guān)于售價的式子.【詳解】(1)當(dāng)時,,即.當(dāng)時,,即,則(2)由利潤=(售價-成本)×銷售量可以列出函數(shù)關(guān)系式為【考點】本題考查二次函數(shù)實際應(yīng)用中的利潤問題,關(guān)鍵在于根據(jù)題意列出銷量與售
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年陽山縣幼兒園教師招教考試備考題庫附答案解析(必刷)
- 衛(wèi)生間潔具拆除與改造工程施工技術(shù)方案
- 2024年長春財經(jīng)學(xué)院馬克思主義基本原理概論期末考試題含答案解析(必刷)
- 2025年昔陽縣招教考試備考題庫及答案解析(必刷)
- 2024年硯山縣幼兒園教師招教考試備考題庫帶答案解析(必刷)
- 某家具公司電腦報廢處理方案
- 某家具公司家具直播銷售方案(規(guī)則)
- 2024年金塔縣招教考試備考題庫及答案解析(必刷)
- 化工公司校企合作管控方案
- 2026年財務(wù)分析技能題庫實操
- 書籍營銷方案
- (15)普通高中美術(shù)課程標(biāo)準(zhǔn)日常修訂版(2017年版2025年修訂)
- 四年級數(shù)學(xué)除法三位數(shù)除以兩位數(shù)100道題 整除 帶答案
- 村委會 工作總結(jié)
- 廠房以租代售合同范本
- 2025年“漂亮飯”社媒觀察報告-藝恩
- 《TCEC1742018分布式儲能系統(tǒng)遠(yuǎn)程集中監(jiān)控技術(shù)規(guī)范》
- 護(hù)理急診進(jìn)修匯報
- SOAP病歷書寫課件
- 2025年時事政治考試題庫及參考答案(100題)
- 2025年三年級語文上冊期末測試卷:成語接龍競賽訓(xùn)練試題
評論
0/150
提交評論