版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
江西省樟樹市中考數學考點攻克考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題25分)一、單選題(5小題,每小題2分,共計10分)1、點A(x,y)在第二象限內,且│x│=2,│y│=3,則點A關于原點對稱的點的坐標為(
)A.(-2,3) B.(2,-3) C.(-3,2) D.(3,-2)2、下列說法正確的是()A.擲一枚質地均勻的骰子,擲得的點數為3的概率是.B.若AC、BD為菱形ABCD的對角線,則的概率為1.C.概率很小的事件不可能發(fā)生.D.通過少量重復試驗,可以用頻率估計概率.3、如圖,PA,PB是⊙O的切線,A,B為切點,PA=4,則PB的長度為()A.3 B.4 C.5 D.64、如圖,AB,CD是⊙O的弦,且,若,則的度數為()A.30° B.40° C.45° D.60°5、拋一枚質地均勻的硬幣三次,其中“至少有兩次正面朝上”的概率是()A. B. C. D.二、多選題(5小題,每小題3分,共計15分)1、兩個關于的一元二次方程和,其中,,是常數,且.如果是方程的一個根,那么下列各數中,一定是方程的根的是()A. B. C.2 D.-22、下列命題中,不正確的是(
)A.三點可確定一個圓B.三角形的外心是三角形三邊中線的交點C.一個三角形有且只有一個外接圓D.三角形的外心必在三角形的內部或外部3、下列方程中是一元二次方程的有(
)A.B.C.D.E.F.4、下列圖形中,是中心對稱圖形的是(
)A. B.C. D.5、如圖,拋物線過點,對稱軸是直線.下列結論正確的是(
)A.B.C.若關于x的方程有實數根,則D.若和是拋物線上的兩點,則當時,第Ⅱ卷(非選擇題75分)三、填空題(5小題,每小題3分,共計15分)1、對于任意實數,拋物線與軸都有公共點.則的取值范圍是_______.2、如圖,四邊形內接于,若,則_______°.3、邊長相等、各內角均為120°的六邊形ABCDEF在直角坐標系內的位置如圖所示,,點B在原點,把六邊形ABCDEF沿x軸正半軸繞頂點按順時針方向,從點B開始逐次連續(xù)旋轉,每次旋轉60°,經過2021次旋轉之后,點B的坐標是_____________.4、如圖,在甲,,,,以點為圓心,的長為半徑作圓,交于點,交于點,陰影部分的面積為__________(結果保留).5、已知一元二次方程ax2+bx+c=0(a≠0),下列結論:①若方程兩根為-1和2,則2a+c=0;②若b>a+c,則方程有兩個不相等的實數根;③若b=2a+3c,則方程有兩個不相等的實數根;④若m是方程的一個根,則一定有b2-4ac=(2am+b)2成立.其中結論正確的序號是__________.四、簡答題(2小題,每小題10分,共計20分)1、如圖,AB為⊙O直徑,AC為弦,過⊙O外的點D作DE⊥OA于點E,交AC于點F,連接DC并延長交AB的延長線于點H,且∠D=2∠A.(1)求證:DC與⊙O相切;(2)若⊙O半徑為4,,求AC的長.2、如圖1,某同學家的一面窗戶上安裝有遮陽篷,圖2和圖3是截面示意圖,CD是遮陽篷,窗戶AB為1.5米,BC為0.5米.該遮陽篷有伸縮功能.如圖2,該同學在夏季某日的正午時刻測得太陽光和水平線的夾角為60°,遮陽篷CD正好將進入窗戶AB的陽光擋??;如圖3,該同學在冬季某日的正午時刻測得太陽光和水平線的夾角為30°,將遮陽篷收縮成CD′時,遮陽篷正好完全不擋進入窗戶AB的陽光.(1)計算圖3中CD′的長度比圖2中CD的長度收縮了多少米;(結果保留根號)(2)如果圖3中遮陽篷的長度為圖2中CD的長度,請計算該遮陽篷落在窗戶AB上的陰影長度為多少米?(請在圖3中畫圖并標出相應字母,然后再計算)五、解答題(4小題,每小題10分,共計40分)1、渠縣是全國優(yōu)質黃花主產地,某加工廠加工黃花的成本為30元/千克,根據市場調查發(fā)現,批發(fā)價定為48元/千克時,每天可銷售500千克.為增大市場占有率,在保證盈利的情況下,工廠采取降價措施.批發(fā)價每千克降低1元,每天銷量可增加50千克.(1)寫出工廠每天的利潤元與降價元之間的函數關系.當降價2元時,工廠每天的利潤為多少元?(2)當降價多少元時,工廠每天的利潤最大,最大為多少元?(3)若工廠每天的利潤要達到9750元,并讓利于民,則定價應為多少元?2、隨著科技的發(fā)展,溝通方式越來越豐富.一天,甲、乙兩位同學同步從“微信”“QQ”,“電話”三種溝通方式中任意選一種與同學聯系.(1)用恰當的方法列舉出甲、乙兩位同學選擇溝通方式的所有可能;(2)求甲、乙兩位同學恰好選擇同一種溝通方式的概率.3、如圖,AB是⊙O的直徑,點D,E在⊙O上,四邊形BDEO是平行四邊形,過點D作交AE的延長線于點C.(1)求證:CD是⊙O的切線.(2)若,求陰影部分的面積.4、如圖1,拋物線y=ax2+bx+3交x軸于點A(﹣1,0)和點B(3,0).(1)求該拋物線所對應的函數解析式;(2)如圖2,該拋物線與y軸交于點C,頂點為F,點D(2,3)在該拋物線上.①求四邊形ACFD的面積;②點P是線段AB上的動點(點P不與點A、B重合),過點P作PQ⊥x軸交該拋物線于點Q,連接AQ、DQ,當△AQD是直角三角形時,求出所有滿足條件的點Q的坐標.-參考答案-一、單選題1、B【解析】【分析】根據A(x,y)在第二象限內可以判斷x,y的符號,再根據|x|=2,|y|=3就可以確定點A的坐標,進而確定點A關于原點的對稱點的坐標.【詳解】∵A(x,y)在第二象限內,∴x<0y>0,又∵|x|=2,|y|=3,∴x=-2,y=3,∴點A關于原點的對稱點的坐標是(2,-3).故選:B.【考點】本題考查了關于原點對稱的點的坐標,由點所在的象限能判斷出坐標的符號,同時考查了關于原點對稱的點坐標之間的關系,難度一般.2、B【分析】概率是指事情發(fā)生的可能性,等可能發(fā)生的事件的概率相同,小概率事件是指發(fā)生的概率比較小,不代表不會發(fā)生,通過大量重復試驗才能用頻率估計概率,利用這些對四個選項一次判斷即可.【詳解】A項:擲一枚質地均勻的骰子,每個面朝上的概率都是一樣的都是,故A錯誤,不符合題意;B項:若AC、BD為菱形ABCD的對角線,由菱形的性質:對角線相互垂直平分得知兩條線段一定垂直,則AC⊥BD的概率為1是正確的,故B正確,符合題意;C項:概率很小的事件只是發(fā)生的概率很小,不代表不會發(fā)生,故C錯誤,不符合題意;D項:通過大量重復試驗才能用頻率估計概率,故D錯誤,不符合題意.故選B【點睛】本題考查概率的命題真假,準確理解事務發(fā)生的概率是本題關鍵.3、B【分析】由切線的性質可推出,.再根據直角三角形全等的判定條件“HL”,即可證明,即得出.【詳解】∵PA,PB是⊙O的切線,A,B為切點,∴,,∴在和中,,∴,∴.故選:B【點睛】本題考查切線的性質,三角形全等的判定和性質.熟練掌握切線的性質是解答本題的關鍵.4、B【分析】由同弧所對的圓周角是圓心角的一半可得,利用平行線的性質:兩直線平行,內錯角相等即可得.【詳解】解:∵,∴,∵,∴,故選:B.【點睛】題目主要考查圓周角定理,平行線的性質等,理解題意,找出相關的角度是解題關鍵.5、B【分析】根據隨機擲一枚質地均勻的硬幣三次,可以分別假設出三次情況,畫出樹狀圖即可.【詳解】解:隨機擲一枚質地均勻的硬幣三次,根據樹狀圖可知至少有兩次正面朝上的事件次數為:4,總的情況為8次,故至少有兩次正面朝上的事件概率是:.故選:B.【點睛】本題主要考查了樹狀圖法求概率,解題的關鍵是根據題意畫出樹狀圖.二、多選題1、AD【解析】【分析】利用方程根的定義去驗證判斷即可.【詳解】∵,,∴,∴,,∴,,∵是方程的一個根,∴是方程的一個根,∴是方程的一個根,即時方程的一個根.∵是方程的一個根,∴,當x=時,,∴是方程的根.故選:A,D.【考點】本題考查了一元二次方程根的定義即使得方程兩邊相等的未知數的值,正確理解定義是解題的關鍵.2、ABD【解析】【分析】根據圓的性質定理逐項排查即可.【詳解】解:A.不在同一條直線上的三點確定一個圓,故本選項錯誤;B.三角形的外心是三角形三邊垂直平分線的交點,所以本選項是錯誤;C.三角形的外接圓是三條垂直平分線的交點,有且只有一個交點,所以任意三角形一定有一個外接圓,并且只有一個外接圓,所以本選項是正確的;D.直角三角形的外心在斜邊中點處,故本選項錯誤.故選:ABD.【考點】考查確定圓的條件以及三角形外接圓的知識,掌握三角形的外接圓是三條垂直平分線的交點是解題的關鍵.3、BCD【解析】【分析】根據一元二次方程的定義對6個選項逐一進行分析.【詳解】A中最高次數是3不是2,故本選項錯誤;B符合一元二次方程的定義,故本選項正確;C原式可化為4x2—=0,符合一元二次方程的定義,故本選項正確;D原式可化為2x2十x-1=0,符合一元二次方程的定義,故本選項正確;E原式可化為2x+1=0,不符合一元二次方程的定義,故本選項錯誤;Fax2+bx+c=0,只有在滿足a≠0的條件下才是一元二次方程,故本選項錯誤.故答案為:BCD【考點】本題考查了一元二次方程的概念,只有一個未知數且未知數最高次數為2的整式方程叫做一元二次方程,一般形式是ax2+bx+c=0(且a≠0)特別要注意a≠0的條件,這是在做題過程中容易忽視的知識點.4、BD【解析】【分析】根據中心對稱圖形的定義旋轉180°后能夠與原圖形完全重合即是中心對稱圖形,進而判斷得出答案.【詳解】解:A.∵此圖形旋轉180°后不能與原圖形重合,∴此圖形不是中心對稱圖形,故此選項不符合題意;B.∵此圖形旋轉180°后能與原圖形重合,∴此圖形是中心對稱圖形,故此選項符合題意;C.∵此圖形旋轉180°后不能與原圖形重合,∴此圖形不是中心對稱圖形,故此選項不合題意;D.∵此圖形旋轉180°后能與原圖形重合,∴此圖形是中心對稱圖形,故此選項符合題意.故選:BD.【考點】本題考查的是中心對稱圖形的概念,把一個圖形繞某一點旋轉180°,如果旋轉后的圖形能夠與原來的圖形重合,那么這個圖形就叫做中心對稱圖形.5、D【解析】【詳解】解:A.∵拋物線開口向下,∴a<0,∵對稱軸在y軸左側,∴a、b同號,∴b<0,∵拋物線與y軸交點在正半軸上,∴c>0,∴abc>0,故此選項不符合題意;B.∵(4a+c)2-(2b)2=(4a+c+2b)(4a+c-2b),∵拋物線過點,對稱軸是直線,∴拋物線與x軸另一交點為(2,0),∴當x=2時,y=ax2+bx+c=4a+c+2b=0,∴(4a+c)2-(2b)2=(4a+c+2b)(4a+c-2b)=0,∴(4a+c)2=4b2,故此選項不符合題意;C.∵-=-1,∴b=2a,∵當x=2時,y=ax2+bx+c=4a+c+2b=0,∴4a+c+4a=0,∴c=-8a,∵關于x的方程有實數根,∴Δ=b2-4a(c-m)≥0,∴(2a)2-4a(-8a-m)≥0,∵a<0,∴9a+m≤0,故此選項不符合題意;D.∵|x1+1|=|x1-(-1)|,|x2+1|=|x2-(-1)|,又∵|x1+1|>|x2+1|,∴點(x1,y1)到對稱軸的距離大于點(x2,y2)到對稱軸的距離,∴y1<y2,故此選項符合題意;故選:D.【考點】本題考查二次函數圖象與系數的關系,二次函數的性質,二次函數與一元二次方程的聯系,熟練掌握二次函數圖象性質是解題的關鍵.三、填空題1、【解析】【分析】由題意易得,則有,然后設,由無論a取何值時,拋物線與軸都有公共點可進行求解.【詳解】解:由拋物線與軸都有公共點可得:,即,∴,設,則,要使對于任意實數,拋物線與軸都有公共點,則需滿足小于等于的最小值即可,∴,即的最小值為,∴;故答案為.【考點】本題主要考查二次函數的綜合,熟練掌握二次函數的綜合是解題的關鍵.2、104【解析】【分析】根據圓內接四邊形的對角互補列式計算即可.【詳解】解:∵四邊形ABCD內接于⊙O,∴∠A+∠C=180°,∴∠C=180°﹣∠A=180°﹣76°=104°,故答案為:104.【考點】本題考查的是圓內接四邊形的性質,掌握圓內接四邊形的對角互補是解題的關鍵.3、【分析】根據旋轉找出規(guī)律后再確定坐標.【詳解】∵正六邊形ABCDEF沿x軸正半軸作無滑動的連續(xù)翻轉,每次翻轉60°,∴每6次翻轉為一個循環(huán)組循環(huán),∵,∴經過2021次翻轉為第337循環(huán)組的第5次翻轉,點B在開始時點C的位置,∵,∴,∴翻轉前進的距離為:,如圖,過點B作BG⊥x于G,則∠BAG=60°,∴,,∴,∴點B的坐標為.故答案為:.【點睛】題考查旋轉的性質與正多邊形,由題意找出規(guī)律是解題的關鍵.4、【解析】【分析】連接BE,根據正切的定義求出∠A,根據扇形面積公式、三角形的面積公式計算即可.【詳解】解:連接BE,在Rt△ABC中,∠ABC=90°,∴tanA=,∴∠A=60°,∵BA=BE,∴△ABE為等邊三角形,∴∠ABE=30°,∴∠EBC=30°,∴陰影部分的面積=×2×2×+=故答案為.【考點】本題考查的是扇形面積計算、等邊三角形的判定和性質,掌握扇形面積公式是解題的關鍵.5、①③④【解析】【分析】利用根與系數的關系判斷①;由Δ=b2-4ac判斷②;由判別式可判斷③;將x=m代入方程得am2=-(bm+c),再代入=(2am+b)2變形可判斷④.【詳解】解:若方程兩根為-1和2,則=-1×2=-2,即c=-2a,2a+c=2a-2a=0,故①正確;由b>a+c不能判斷Δ=b2-4ac值的大小情況,故②錯誤;若b=2a+3c,則Δ=b2-4ac=4(a+c)2+5c2>0,一元二次方程ax2+bx+c=0有兩個不相等的實數根,故③正確.若m是方程ax2+bx+c=0的一個根,所以有am2+bm+c=0,即am2=-(bm+c),而(2am+b)2=4a2m2+4abm+b2=4a[-(bm+c)]+4abm+b2=4abm-4abm-4ac+b2=b2-4ac.故④正確;故答案為:①③④.【考點】本題考查了一元二次方程ax2+bx+c=0(a≠0)的根與系數的關系及根的判別式Δ=b2-4ac:當Δ>0,方程有兩個不相等的實數根;當Δ=0,方程有兩個相等的實數根;當Δ<0,方程沒有實數根.四、簡答題1、(1)證明見解析(2)【解析】【分析】(1)連接OC,由圓周角定理和已知條件得出∠BOC=∠D,證出∠OCH=90°,得出DC⊥OC,即可得出結論;(2)作AG⊥CD于G,則AG∥OC,由三角函數定義求出OH=OC=5,得出AH=OA+OH=9,由勾股定理得出CH==3,證△OCH∽△AGH,求出AG=OC=,GH=CH=,得出CG=GH﹣CH=,再由勾股定理即可得出答案.【詳解】(1)證明:連接OC,如圖1所示:∵DE⊥OA,∴∠HED=90°,∴∠H+∠D=90°,∵∠BOC=2∠A,∠D=2∠A,∴∠BOC=∠D,∴∠H+∠BOC=90°,∴∠OCH=90°,∴DC⊥OC,∴DC與⊙O相切;(2)作AG⊥CD于G,如圖2所示:則AG∥OC,∵DC⊥OC,∴∠OCH=90°,∵∠BOC=∠D,OC=4,∴cos∠BOC==,∴OH=OC=5,∴AH=OA+OH=4+5=9,CH===3,∵AG∥OC,∴△OCH∽△AGH,∴===,∴AG=OC=,GH=CH=,∴CG=GH﹣CH=﹣3=,∴AC===.【考點】本題考查圓的綜合問題,涉及切線的判定、勾股定理、銳角三角函數,相似三角形等知識,屬于中等題型.熟練掌握圓的切線的證明方法以及圓周角定理是解題的關鍵.2、(1)圖3中CD′的長度比圖2中CD的長度收縮了米;(2)該遮陽篷落在窗戶AB上的陰影長度為米.【解析】【分析】(1)解直角△ACD,求出CD,再解直角△BCD′,求出CD′,然后計算CD﹣CD′的長度即可;(2)圖3中遮陽蓬的長度為圖2中CD的長度時,過D作DE∥BD′,交AB于E,解直角△ECD,求出CE,再計算CE-BC即可.【詳解】(1)在直角△ACD中,∵AC=AB+BC=2米,∠CAD=30°,∴tan∠CAD=,∴CD=AC?tan∠CAD=2×=(米).在直角△BCD′中,∵BC=0.5米,∠CBD′=60°,∴tan∠CBD′=,∴CD′=BC?tan∠CBD′=0.5×=(米),∴CD﹣CD′=﹣=(米).故圖3中CD′的長度比圖2中CD的長度收縮了米;(2)如圖,圖3中遮陽篷的長度為圖2中CD的長度時,過D作DE∥BD′,交AB于E.在直角△ECD中,∵CD=米,∠CED=60°,∴tan∠CED=,∴CE===,∴BE=CE﹣BC=﹣0.5=(米).故該遮陽篷落在窗戶AB上的陰影長度為米.【考點】本題考查了解直角三角形的實際應用,掌握解直角三角形的方法是解題的關鍵.五、解答題1、(1),9600;(2)降價4元,最大利潤為9800元;(3)43【解析】【分析】(1)若降價元,則每天銷量可增加千克,根據利潤公式求解并整理即可得到解析式,然后代入求出對應函數值即可;(2)將(1)中的解析式整理為頂點式,然后利用二次函數的性質求解即可;(3)令可解出對應的的值,然后根據“讓利于民”的原則選擇合適的的值即可.【詳解】(1)若降價元,則每天銷量可增加千克,∴,整理得:,當時,,∴每天的利潤為9600元;(2),∵,∴當時,取得最大值,最大值為9800,∴降價4元,利潤最大,最大利潤為9800元;(3)令,得:,解得:,,∵要讓利于民,∴,(元)∴定價為43元.【考點】本題考查二次函數的實際應用,弄清數量關系,準確求出函數解析式并熟練掌握二次函數的性質是解題關鍵.2、(1)3種可能,分別是“微信”“QQ”,“電話”(2)【分析】(1)用例舉法可得甲,乙兩位同學選擇溝通方式都有3種可能.(2)畫樹狀圖展示所有9種等可能的結果數,再找出恰好選中同一種溝通方式的結果數,然后根據概率公式求解.(1)解:甲,乙兩位同學選擇溝通方式都有3種可能,分別是“微信”“QQ”,“電話”.(2)解:畫出樹狀圖,如圖所示所有情況共有9種情況,其中恰好選擇同一種溝通方式的共有3種情況,故兩人恰好選中同一種溝通方式的概率為.【點睛】本題考查了判斷簡單隨機事件的可能性,利用列表法與樹狀圖法求解等可能事件的概率;利用列表法或樹狀圖法展示所有等可能的結果n,再從中選出符合事件A或B的結果數目m,然后利用概率公式求事件A或B的概率.3、(1)見詳解;(2)【分析】(1)連接OD,由題意易得,則有△ODB是等邊三角形,然后可得△AEO也為等邊三角形,進而可得OD∥AC,最后問題可求證;(2)由(1)易得AE=ED,∠CED=∠OBD=60°,然后可得圓O的半徑,進而可得扇形OED和△OED的面積,則有弓形ED的面積,最后問題可求解.【詳解】(1)證明:連接OD,如圖所示:∵四邊形BDEO是平行四邊形,∴,∴△ODB是等邊三角形,∴∠OBD=∠BOD=60°,∴∠AOE=∠OBD=60°,∵OE=OA,∴△AEO也為等邊三角形,∴∠EAO=∠DOB=60°,∴AE∥OD,∴∠ODC+∠C=180°,∵CD⊥AE,∴∠C=90°,∴∠ODC=90°,∵OD是圓O的半徑,∴CD是⊙O的切線.(2)解:由(1)得∠EAO=∠AOE=∠OBD=∠BOD=60°,ED∥AB,∴∠EAO=∠CE
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 高級教練班培訓制度
- 質量安全管理人員培訓考核制度
- 市養(yǎng)老服務教育培訓制度
- 煤礦外委培訓管理制度
- 學法法制培訓工作制度
- 事業(yè)單位培訓計劃制度
- 幼兒園教職安全培訓制度
- 培訓流程及獎罰制度
- 婦幼新員工崗前培訓制度
- 幼兒園教師消防培訓制度
- 小學四年級語文上冊期末測試卷(可打印)
- 《抗體偶聯藥物》課件
- 《肺癌的診斷與治療》課件
- 人教版三年級上冊數學應用題100題及答案
- 防污閃涂料施工技術措施
- 環(huán)衛(wèi)清掃保潔、垃圾清運及綠化服務投標方案(技術標 )
- 房地產運營-項目代建及管理實務
- GB/T 21393-2008公路運輸能源消耗統(tǒng)計及分析方法
- GB/T 13803.2-1999木質凈水用活性炭
- GB/T 12385-2008管法蘭用墊片密封性能試驗方法
- 中國近代史期末復習(上)(第16-20課)【知識建構+備課精研】 高一歷史上學期期末 復習 (中外歷史綱要上)
評論
0/150
提交評論