版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
一、解答題1.如圖,A點的坐標為(0,3),B點的坐標為(﹣3,0),D為x軸上的一個動點且不與B,O重合,將線段AD繞點A逆時針旋轉90°得線段AE,使得AE⊥AD,且AE=AD,連接BE交y軸于點M.(1)如圖,當點D在線段OB的延長線上時,①若D點的坐標為(﹣5,0),求點E的坐標.②求證:M為BE的中點.③探究:若在點D運動的過程中,的值是否是定值?如果是,請求出這個定值;如果不是,請說明理由.(2)請直接寫出三條線段AO,DO,AM之間的數量關系(不需要說明理由).2.如圖,,點A、B分別在直線MN、GH上,點O在直線MN、GH之間,若,.(1)=;(2)如圖2,點C、D是、角平分線上的兩點,且,求的度數;(3)如圖3,點F是平面上的一點,連結FA、FB,E是射線FA上的一點,若,,且,求n的值.3.綜合與實踐背景閱讀:在同一平面內,兩條不重合的直線的位置關系有相交、平行,若兩條不重合的直線只有一個公共點,我們就說這兩條直線相交,若兩條直線不相交,我們就說這兩條直線互相平行兩條直線的位置關系的性質和判定是幾何的重要知識,是初中階段幾何合情推理的基礎.已知:AM∥CN,點B為平面內一點,AB⊥BC于B.問題解決:(1)如圖1,直接寫出∠A和∠C之間的數量關系;(2)如圖2,過點B作BD⊥AM于點D,求證:∠ABD=∠C;(3)如圖3,在(2)問的條件下,點E、F在DM上,連接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,則∠EBC=.4.已知直線,點P為直線、所確定的平面內的一點.(1)如圖1,直接寫出、、之間的數量關系;(2)如圖2,寫出、、之間的數量關系,并證明;(3)如圖3,點E在射線上,過點E作,作,點G在直線上,作的平分線交于點H,若,,求的度數.5.如圖1,MN∥PQ,點C、B分別在直線MN、PQ上,點A在直線MN、PQ之間.(1)求證:∠CAB=∠MCA+∠PBA;(2)如圖2,CD∥AB,點E在PQ上,∠ECN=∠CAB,求證:∠MCA=∠DCE;(3)如圖3,BF平分∠ABP,CG平分∠ACN,AF∥CG.若∠CAB=60°,求∠AFB的度數.6.已知直線AB//CD,點P、Q分別在AB、CD上,如圖所示,射線PB按逆時針方向以每秒12°的速度旋轉至PA便立即回轉,并不斷往返旋轉;射線QC按逆時針方向每秒3°旋轉至QD停止,此時射線PB也停止旋轉.(1)若射線PB、QC同時開始旋轉,當旋轉時間10秒時,PB'與QC'的位置關系為;(2)若射線QC先轉15秒,射線PB才開始轉動,當射線PB旋轉的時間為多少秒時,PB′//QC′.7.觀察下來等式:12×231=132×21,13×341=143×31,23×352=253×32,34×473=374×43,62×286=682×26,……在上面的等式中,等式兩邊的數字分別是對稱的,且每個等式中組成兩位數與三位數的數字之間具有相同規(guī)律,我們稱這類等式為“數字對稱等式”.(1)根據以上各等式反映的規(guī)律,使下面等式成為“數字對稱等式”:52×_____=______×25;(2)設這類等式左邊的兩位數中,個位數字為a,十位數字為b,且2≤a+b≤9,則用含a,b的式子表示這類“數字對稱等式”的規(guī)律是_______.8.我們知道,正整數按照能否被2整除可以分成兩類:正奇數和正偶數,小華受此啟發(fā),按照一個正整數被3除的余數把正整數分成了三類:如果一個正整數被3除余數為1,則這個正整數屬于A類,例如1,4,7等;如果一個正整數被3除余數為2,則這個正整數屬于B類,例如2,5,8等;如果一個正整數被3整除,則這個正整數屬于C類,例如3,6,9等.(1)2020屬于類(填A,B或C);(2)①從A類數中任取兩個數,則它們的和屬于類(填A,B或C);②從A、B類數中任取一數,則它們的和屬于類(填A,B或C);③從A類數中任意取出8個數,從B類數中任意取出9個數,從C類數中任意取出10個數,把它們都加起來,則最后的結果屬于類(填A,B或C);(3)從A類數中任意取出m個數,從B類數中任意取出n個數,把它們都加起來,若最后的結果屬于C類,則下列關于m,n的敘述中正確的是(填序號).①屬于C類;②屬于A類;③,屬于同一類.9.閱讀材料:求1+2+22+23+24+…+22017的值.解:設S=1+2+22+23+24+…+22017,將等式兩邊同時乘以2得:2S=2+22+23+24+…+22017+22018將下式減去上式得2S-S=22018-1即S=22018-1即1+2+22+23+24+…+22017=22018-1請你仿照此法計算:(1)1+2+22+23+…+29=_____;(2)1+5+52+53+54+…+5n(其中n為正整數);(3)1+2×2+3×22+4×23+…+9×28+10×29.10.定義:對任意一個兩位數,如果滿足個位數字與十位數字互不相同,且都不為零,那么稱這個兩位數為“奇異數”.將一個“奇異數”的個位數字與十位數字對調后得到一個新的兩位數,把這個新兩位數與原兩位數的和與的商記為例如:,對調個位數字與十位數字后得到新兩位數是,新兩位數與原兩位數的和為,和與的商為,所以根據以上定義,完成下列問題:(1)填空:①下列兩位數:,,中,“奇異數”有.②計算:..(2)如果一個“奇異數”的十位數字是,個位數字是,且請求出這個“奇異數”(3)如果一個“奇異數”的十位數字是,個位數字是,且滿足,請直接寫出滿足條件的的值.11.對于實數a,我們規(guī)定:用符號表示不大于的最大整數,稱為a的根整數,例如:,=3.(1)仿照以上方法計算:=______;=_____.(2)若,寫出滿足題意的x的整數值______.如果我們對a連續(xù)求根整數,直到結果為1為止.例如:對10連續(xù)求根整數2次=1,這時候結果為1.(3)對100連續(xù)求根整數,____次之后結果為1.(4)只需進行3次連續(xù)求根整數運算后結果為1的所有正整數中,最大的是____.12.[閱讀材料]∵,即,∴,∴的整數部分為1,∴的小數部分為[解決問題](1)填空:的小數部分是__________;(2)已知是的整數部分,是的小數部分,求代數式的平方根為______.13.如圖1,在平面直角坐標系中,A(a,0)是x軸正半軸上一點,C是第四象限內一點,CB⊥y軸交y軸負半軸于B(0,b),且|a﹣3|+(b+4)2=0,S四邊形AOBC=16.(1)求點C的坐標.(2)如圖2,設D為線段OB上一動點,當AD⊥AC時,∠ODA的角平分線與∠CAE的角平分線的反向延長線交于點P,求∠APD的度數;(點E在x軸的正半軸).(3)如圖3,當點D在線段OB上運動時,作DM⊥AD交BC于M點,∠BMD、∠DAO的平分線交于N點,則點D在運動過程中,∠N的大小是否會發(fā)生變化?若不變化,求出其值;若變化,請說明理由.14.問題情境:(1)如圖1,,,.求度數.小穎同學的解題思路是:如圖2,過點作,請你接著完成解答.問題遷移:(2)如圖3,,點在射線上運動,當點在、兩點之間運動時,,.試判斷、、之間有何數量關系?(提示:過點作),請說明理由;(3)在(2)的條件下,如果點在、兩點外側運動時(點與點、、三點不重合),請你猜想、、之間的數量關系并證明.15.如圖,在平面直角坐標系中,點O為坐標原點,三角形OAB的邊OA、OB分別在x軸正半軸上和y軸正半軸上,A(a,0),a是方程的解,且△OAB的面積為6.(1)求點A、B的坐標;(2)將線段OA沿軸向上平移后得到PQ,點O、A的對應點分別為點P和點Q(點P與點B不重合),設點P的縱坐標為t,△BPQ的面積為S,請用含t的式子表示S;(3)在(2)的條件下,設PQ交線段AB于點K,若PK=,求t的值及△BPQ的面積.16.我們定義,關于同一個未知數的不等式和,若的解都是的解,則稱與存在“雅含”關系,且不等式稱為不等式的“子式”.如,,滿足的解都是的解,所以與存在“雅含”關系,是的“子式”.(1)若關于的不等式,,請問與是否存在“雅含”關系,若存在,請說明誰是誰的“子式”;(2)已知關于的不等式,,若與存在“雅含”關系,且是的“子式”,求的取值范圍;(3)已知,,,,且為整數,關于的不等式,,請分析是否存在,使得與存在“雅含”關系,且是的“子式”,若存在,請求出的值,若不存在,請說明理由.17.在平面直角坐標系中,點,滿足關系式.(1)求,的值;(2)若點滿足的面積等于,求的值;(3)線段與軸交于點,動點從點出發(fā),在軸上以每秒個單位長度的速度向下運動,動點從點出發(fā),以每秒個單位長度的速度向右運動,問為何值時有,請直接寫出的值.18.如圖1,已知,點A(1,a),AH⊥x軸,垂足為H,將線段AO平移至線段BC,點B(b,0),其中點A與點B對應,點O與點C對應,a、b滿足.(1)填空:①直接寫出A、B、C三點的坐標A(________)、B(________)、C(________);②直接寫出三角形AOH的面積________.(2)如圖1,若點D(m,n)在線段OA上,證明:4m=n.(3)如圖2,連OC,動點P從點B開始在x軸上以每秒2個單位的速度向左運動,同時點Q從點O開始在y軸上以每秒1個單位的速度向下運動.若經過t秒,三角形AOP與三角形COQ的面積相等,試求t的值及點P的坐標.19.學校將20××年入學的學生按入學年份、年級、班級、班內序號的順序給每一位學生編號,如2015年入學的8年級3班的46號學生的編號為15080346.張山同學模仿二維碼的方式給學生編號設計了一套身份識別系統(tǒng),在5×5的正方形風格中,黑色正方形表示數字1,白色正方形表示數字0.我們把從上往下數第i行、從左往右數第j列表示的數記為aij,(其中,i、j=1,2,3,4,5),規(guī)定Ai=16ai1+8ai2+4ai3+2ai4+ai5.(1)若A1表示入學年份,A2表示所在年級,A3表示所在班級,A4表示編號的十位數字,A5表示編號的個位數字.①圖1是張山同學的身份識別圖案,請直接寫出張山同學的編號;②請在圖2中畫出2018年入學的9年級5班的39號同學的身份識別圖案;(2)張山同學又設計了一套信息加密系統(tǒng),其中A1表示入學年份加8,A2表示所在年級的數減6再加上所在班級的數,A3表示所在年級的數乘2后減3再減所在班級的數,將編號(班內序號)的末兩位單列出來,作為一個兩位數,個位與十位數字對換后再加2,所得結果的十位數字用A4表示、個位數字用A5表示.例如:2018年9年級5班的39號同學,其加密后的身份識別圖案中,A1=18+8=26,A2=9-6+5=8,A3=9×2-3-5=10,93+2=95,所以A4=9,A5=5,所以其加密后的身份識別(26081095)圖案如圖3所示.圖4是李思同學加密后的身份識別圖案,請求出李思同學的編號.20.五一節(jié)前,某商店擬購進A、B兩種品牌的電風扇進行銷售,已知購進3臺A種品牌電風扇所需費用與購進2臺B種品牌電風扇所需費用相同,購進1臺A種品牌電風扇與2臺B種品牌電風扇共需費用400元.(1)求A、B兩種品牌電風扇每臺的進價分別是多少元?(2)銷售時,該商店將A種品牌電風扇定價為180元/臺,B種品牌電風扇定價為250元/臺,商店擬用1000元購進這兩種風扇(1000元剛好全部用完),為能在銷售完這兩種電風扇后獲得最大的利潤,該商店應采用哪種進貨方案?21.為了加強公民的節(jié)水意識,合理利用水資源,某城市規(guī)定用水收費標準如下:每戶每月用水量不超過6米3時,水費按a元/米3收費;每戶每月用水量超過6米3時,不超過的部分每立方米仍按a元收費,超過的部分按c元/米3收費,該市某用戶今年3、4月份的用水量和水費如下表所示:月份用水量(m3)收費(元)357.54927(1)求a、c的值,并寫出每月用水量不超過6米3和超過6米3時,水費與用水量之間的關系式;(2)已知某戶5月份的用水量為8米3,求該用戶5月份的水費.22.如圖,已知和的度數滿足方程組,且.(1)分別求和的度數;(2)請判斷與的位置關系,并說明理由;(3)求的度數.23.七年(1)(2)兩班各40人參加垃圾分類知識競賽,規(guī)則如圖.比賽中,所有同學均按要求一對一連線,無多連、少連.(1)分數5,10,15,20中,每人得分不可能是________分.(2)七年(1)班有4人全錯,其余成員中,滿分人數是未滿分人數的2倍;七年(2)班所有人都得分,最低分人數的2倍與其他未滿分人數之和等于滿分人數.①問(1)班有多少人得滿分?②若(1)班除0分外,最低得分人數與其他未滿分人數相等,問哪個班的總分高?24.在平面直角坐標系中,把線段先向右平移h個單位,再向下平移1個單位得到線段(點A對應點C),其中分別是第三象限與第二象限內的點.(1)若,求C點的坐標;(2)若,連接,過點B作的垂線l①判斷直線l與x軸的位置關系,并說明理由;②已知E是直線l上一點,連接,且的最小值為1,若點B,D及點都是關于x,y的二元一次方程的解為坐標的點,試判斷是正數?負數還是0?并說明理由.25.如圖,正方形ABCD的邊長是2厘米,E為CD的中點,Q為正方形ABCD邊上的一個動點,動點Q以每秒1厘米的速度從A出發(fā)沿運動,最終到達點D,若點Q運動時間為秒.(1)當時,平方厘米;當時,平方厘米;(2)在點Q的運動路線上,當點Q與點E相距的路程不超過厘米時,求的取值范圍;(3)若的面積為平方厘米,直接寫出值.26.某工廠準備用圖甲所示的A型正方形板材和B型長方形板材,制作成圖乙所示的豎式和橫式兩種無蓋箱子.(1)若現(xiàn)有A型板材150張,B型板材300張,可制作豎式和橫式兩種無蓋箱子各多少個?(2)若該工廠準備用不超過24000元資金去購買A、B兩種型號板材,制作豎式、橫式箱子共100個,已知A型板材每張20元,B型板材每張60元,問最多可以制作豎式箱子多少個?(3)若該工廠新購得65張規(guī)格為的C型正方形板材,將其全部切割成A型或B型板材(不計損耗),用切割的板材制作兩種類型的箱子,要求豎式箱子不少于10個,且材料恰好用完,則最多可以制作豎式箱子多少個?27.在平面直角坐標系xOy中,已知點M(a,b).如果存在點N(a′,b′),滿足a′=|a+b|,b′=|a﹣b|,則稱點N為點M的“控變點”.(1)點A(﹣1,2)的“控變點”B的坐標為;(2)已知點C(m,﹣1)的“控變點”D的坐標為(4,n),求m,n的值;(3)長方形EFGH的頂點坐標分別為(1,1),(5,1),(5,4),(1,4).如果點P(x,﹣2x)的“控變點”Q在長方形EFGH的內部,直接寫出x的取值范圍.28.閱讀理解:例1.解方程|x|=2,因為在數軸上到原點的距離為2的點對應的數為±2,所以方程|x|=2的解為x=±2.例2.解不等式|x﹣1|>2,在數軸上找出|x﹣1|=2的解(如圖),因為在數軸上到1對應的點的距離等于2的點對應的數為﹣1或3,所以方程|x﹣1|=2的解為x=﹣1或x=3,因此不等式|x﹣1|>2的解集為x<﹣1或x>3.參考閱讀材料,解答下列問題:(1)方程|x﹣2|=3的解為;(2)解不等式:|x﹣2|≤1.(3)解不等式:|x﹣4|+|x+2|>8.(4)對于任意數x,若不等式|x+2|+|x﹣4|>a恒成立,求a的取值范圍.29.某超市投入31500元購進A、B兩種飲料共800箱,飲料的成本與銷售價如下表:(單位:元/箱)類別成本價銷售價A4264B3652(1)該超市購進A、B兩種飲料各多少箱?(2)全部售完800箱飲料共盈利多少元?(3)若超市計劃盈利16200元,且A類飲料售價不變,則B類飲料銷售價至少應定為每箱多少元?30.如圖1,在平面直角坐標系中,A(a,0),C(b,2),且滿足,過C作軸于B,(1)求a,b的值;(2)在y軸上是否存在點P,使得△ABC和△OCP的面積相等,若存在,求出點P坐標,若不存在,試說明理由.(3)若過B作BD∥AC交y軸于D,且AE,DE分別平分∠CAB,∠ODB,如圖2,圖3,①求:∠CAB+∠ODB的度數;②求:∠AED的度數.【參考答案】***試卷處理標記,請不要刪除一、解答題1.(1)①E(3,﹣2)②見解析;③,理由見解析;(2)OD+OA=2AM或OA﹣OD=2AM【分析】(1)①過點E作EH⊥y軸于H.證明△DOA≌△AHE(AAS)可得結論.②證明△BOM≌△EHM(AAS)可得結論.③是定值,證明△BOM≌△EHM可得結論.(2)根據點D在點B左側和右側分類討論,分別畫出對應的圖形,根據全等三角形的判定及性質即可分別求出結論.【詳解】解:(1)①過點E作EH⊥y軸于H.∵A(0,3),B(﹣3,0),D(﹣5,0),∴OA=OB=3,OD=5,∵∠AOD=∠AHE=∠DAE=90°,∴∠DAO+∠EAH=90°,∠EAH+∠AEH=90°,∴∠DAO=∠AEH,∴△DOA≌△AHE(AAS),∴AH=OD=5,EH=OA=3,∴OH=AH﹣OA=2,∴E(3,﹣2).②∵EH⊥y軸,∴∠EHO=∠BOH=90°,∵∠BMO=∠EMH,OB=EH=3,∴△BOM≌△EHM(AAS),∴BM=EM.③結論:=.理由:∵△DOA≌△AHE,∴OD=AH,∵OA=OB,∴BD=OH,∵△BOM≌△EHM,∴OM=MH,∴OM=OH=BD.(2)結論:OA+OD=2AM或OA﹣OD=2AM.理由:當點D在點B左側時,∵△BOM≌△EHM,△DOA≌△AHE∴OM=MH,OD=AH∴OH=2OM,OD-OB=AH-OA∴BD=OH∴BD=2OM,∴OD﹣OA=2(AM﹣AO),∴OD+OA=2AM.當點D在點B右側時,過點E作EH⊥y軸于點H∵∠AOD=∠AHE=∠DAE=90°,∴∠DAO+∠EAH=90°,∠EAH+∠AEH=90°,∴∠DAO=∠AEH,∵AD=AE∴△DOA≌△AHE(AAS),∴EH=AO=3=OB,OD=AH∴∠EHO=∠BOH=90°,∵∠BMO=∠EMH,OB=EH=3,∴△BOM≌△EHM(AAS),∴OM=MH∴OA+OD=OA+AH=OH=OM+MH=2MH=2(AM+AH)=2(AM+OD)整理可得OA﹣OD=2AM.綜上:OA+OD=2AM或OA﹣OD=2AM.【點睛】此題考查的是全等三角形的判定及性質、旋轉的性質和平面直角坐標系,掌握全等三角形的判定及性質、旋轉的性質和點的坐標與線段長度的關系是解決此題的關鍵.2.(1)100;(2)75°;(3)n=3.【分析】(1)如圖:過O作OP//MN,由MN//OP//GH得∠NAO+∠POA=180°,∠POB+∠OBH=180°,即∠NAO+∠AOB+∠OBH=360°,即可求出∠AOB;(2)如圖:分別延長AC、CD交GH于點E、F,先根據角平分線求得,再根據平行線的性質得到;進一步求得,,然后根據三角形外角的性質解答即可;(3)設BF交MN于K,由∠NAO=116°,得∠MAO=64°,故∠MAE=,同理∠OBH=144°,∠HBF=n∠OBF,得∠FBH=,從而,又∠FKN=∠F+∠FAK,得,即可求n.【詳解】解:(1)如圖:過O作OP//MN,∵MN//GHl∴MN//OP//GH∴∠NAO+∠POA=180°,∠POB+∠OBH=180°∴∠NAO+∠AOB+∠OBH=360°∵∠NAO=116°,∠OBH=144°∴∠AOB=360°-116°-144°=100°;(2)分別延長AC、CD交GH于點E、F,∵AC平分且,∴,又∵MN//GH,∴;∵,∵BD平分,∴,又∵∴;∴;(3)設FB交MN于K,∵,則;∴∵,∴,,在△FAK中,,∴,∴.經檢驗:是原方程的根,且符合題意.【點睛】本題主要考查平行線的性質及應用,正確作出輔助線、構造平行線、再利用平行線性質進行求解是解答本題的關鍵.3.(1);(2)見解析;(3)105°【分析】(1)通過平行線性質和直角三角形內角關系即可求解.(2)過點B作BG∥DM,根據平行線找角的聯(lián)系即可求解.(3)利用(2)的結論,結合角平分線性質即可求解.【詳解】解:(1)如圖1,設AM與BC交于點O,∵AM∥CN,∴∠C=∠AOB,∵AB⊥BC,∴∠ABC=90°,∴∠A+∠AOB=90°,∠A+∠C=90°,故答案為:∠A+∠C=90°;(2)證明:如圖2,過點B作BG∥DM,∵BD⊥AM,∴DB⊥BG,∴∠DBG=90°,∴∠ABD+∠ABG=90°,∵AB⊥BC,∴∠CBG+∠ABG=90°,∴∠ABD=∠CBG,∵AM∥CN,∴∠C=∠CBG,∴∠ABD=∠C;(3)如圖3,過點B作BG∥DM,∵BF平分∠DBC,BE平分∠ABD,∴∠DBF=∠CBF,∠DBE=∠ABE,由(2)知∠ABD=∠CBG,∴∠ABF=∠GBF,設∠DBE=α,∠ABF=β,則∠ABE=α,∠ABD=2α=∠CBG,∠GBF=∠AFB=β,∠BFC=3∠DBE=3α,∴∠AFC=3α+β,∵∠AFC+∠NCF=180°,∠FCB+∠NCF=180°,∴∠FCB=∠AFC=3α+β,△BCF中,由∠CBF+∠BFC+∠BCF=180°得:2α+β+3α+3α+β=180°,∵AB⊥BC,∴β+β+2α=90°,∴α=15°,∴∠ABE=15°,∴∠EBC=∠ABE+∠ABC=15°+90°=105°.故答案為:105°.【點睛】本題考查平行線性質,畫輔助線,找到角的和差倍分關系是求解本題的關鍵.4.(1)∠A+∠C+∠APC=360°;(2)見解析;(3)55°【分析】(1)首先過點P作PQ∥AB,則易得AB∥PQ∥CD,然后由兩直線平行,同旁內角互補,即可證得∠A+∠C+∠APC=360°;(2)作PQ∥AB,易得AB∥PQ∥CD,根據兩直線平行,內錯角相等,即可證得∠APC=∠A+∠C;(3)由(2)知,∠APC=∠PAB-∠PCD,先證∠BEF=∠PQB=110°、∠PEG=∠FEG,∠GEH=∠BEG,根據∠PEH=∠PEG-∠GEH可得答案.【詳解】解:(1)∠A+∠C+∠APC=360°如圖1所示,過點P作PQ∥AB,∴∠A+∠APQ=180°,∵AB∥CD,∴PQ∥CD,∴∠C+∠CPQ=180°,∴∠A+∠APQ+∠C+∠CPQ=360°,即∠A+∠C+∠APC=360°;(2)∠APC=∠A+∠C,如圖2,作PQ∥AB,∴∠A=∠APQ,∵AB∥CD,∴PQ∥CD,∴∠C=∠CPQ,∵∠APC=∠APQ-∠CPQ,∴∠APC=∠A-∠C;(3)由(2)知,∠APC=∠PAB-∠PCD,∵∠APC=30°,∠PAB=140°,∴∠PCD=110°,∵AB∥CD,∴∠PQB=∠PCD=110°,∵EF∥BC,∴∠BEF=∠PQB=110°,∵EF∥BC,∴∠BEF=∠PQB=110°,∵∠PEG=∠PEF,∴∠PEG=∠FEG,∵EH平分∠BEG,∴∠GEH=∠BEG,∴∠PEH=∠PEG-∠GEH=∠FEG-∠BEG=∠BEF=55°.【點睛】此題考查了平行線的性質以及角平分線的定義.此題難度適中,注意掌握輔助線的作法,注意掌握數形結合思想的應用.5.(1)證明見解析;(2)證明見解析;(3)120°.【分析】(1)過點A作AD∥MN,根據兩直線平行,內錯角相等得到∠MCA=∠DAC,∠PBA=∠DAB,根據角的和差等量代換即可得解;(2)由兩直線平行,同旁內角互補得到∴、∠CAB+∠ACD=180°,由鄰補角定義得到∠ECM+∠ECN=180°,再等量代換即可得解;(3)由平行線的性質得到,∠FAB=120°﹣∠GCA,再由角平分線的定義及平行線的性質得到∠GCA﹣∠ABF=60°,最后根據三角形的內角和是180°即可求解.【詳解】解:(1)證明:如圖1,過點A作AD∥MN,∵MN∥PQ,AD∥MN,∴AD∥MN∥PQ,∴∠MCA=∠DAC,∠PBA=∠DAB,∴∠CAB=∠DAC+∠DAB=∠MCA+∠PBA,即:∠CAB=∠MCA+∠PBA;(2)如圖2,∵CD∥AB,∴∠CAB+∠ACD=180°,∵∠ECM+∠ECN=180°,∵∠ECN=∠CAB∴∠ECM=∠ACD,即∠MCA+∠ACE=∠DCE+∠ACE,∴∠MCA=∠DCE;(3)∵AF∥CG,∴∠GCA+∠FAC=180°,∵∠CAB=60°即∠GCA+∠CAB+∠FAB=180°,∴∠FAB=180°﹣60°﹣∠GCA=120°﹣∠GCA,由(1)可知,∠CAB=∠MCA+∠ABP,∵BF平分∠ABP,CG平分∠ACN,∴∠ACN=2∠GCA,∠ABP=2∠ABF,又∵∠MCA=180°﹣∠ACN,∴∠CAB=180°﹣2∠GCA+2∠ABF=60°,∴∠GCA﹣∠ABF=60°,∵∠AFB+∠ABF+∠FAB=180°,∴∠AFB=180°﹣∠FAB﹣∠FBA=180°﹣(120°﹣∠GCA)﹣∠ABF=180°﹣120°+∠GCA﹣∠ABF=120°.【點睛】本題主要考查了平行線的性質,線段、角、相交線與平行線,準確的推導是解決本題的關鍵.6.(1)PB′⊥QC′;(2)當射線PB旋轉的時間為5秒或25秒或45秒時,PB′∥QC′【分析】(1)求出旋轉10秒時,∠BPB′和∠CQC′的度數,設PB′與QC′交于O,過O作OE∥AB,根據平行線的性質求得∠POE和∠QOE的度數,進而得結論;(2)分三種情況:①當0<t≤15時,②當15<t≤30時,③當30<t<45時,根據平行線的性質,得出角的關系,列出t的方程便可求得旋轉時間.【詳解】解:(1)如圖1,當旋轉時間30秒時,由已知得∠BPB′=10°×12=120°,∠CQC′=3°×10=30°,過O作OE∥AB,∵AB∥CD,∴AB∥OE∥CD,∴∠POE=180°﹣∠BPB′=60°,∠QOE=∠CQC′=30°,∴∠POQ=90°,∴PB′⊥QC′,故答案為:PB′⊥QC′;(2)①當0<t≤15時,如圖,則∠BPB′=12t°,∠CQC′=45°+3t°,∵AB∥CD,PB′∥QC′,∴∠BPB′=∠PEC=∠CQC′,即12t=45+3t,解得,t=5;②當15<t≤30時,如圖,則∠APB′=12t﹣180°,∠CQC'=3t+45°,∵AB∥CD,PB′∥QC′,∴∠BPB′=∠BEQ=∠CQC′,即12t﹣180=45+3t,解得,t=25;③當30<t≤45時,如圖,則∠BPB′=12t﹣360°,∠CQC′=3t+45°,∵AB∥CD,PB′∥QC′,∴∠BPB′=∠BEQ=∠CQC′,即12t﹣360=45+3t,解得,t=45;綜上,當射線PB旋轉的時間為5秒或25秒或45秒時,PB′∥QC′.【點睛】本題主要考查了平行線的性質,第(1)題關鍵是作平行線,第(2)題關鍵是分情況討論,運用方程思想解決幾何問題.7.(1)275,572;(2)(10b+a)[100a+10(a+b)+b]=(10a+b[100b+10(a+b)+a].【分析】(1)觀察等式,發(fā)現(xiàn)規(guī)律,等式的左邊:兩位數所乘的數是這個兩位數的個位數字變?yōu)榘傥粩底郑粩底肿優(yōu)閭€位數字,兩個數字的和放在十位;等式的右邊:三位數與左邊的三位數字百位與個位數字交換,兩位數與左邊的兩位數十位與個位數字交換然后相乘,根據此規(guī)律進行填空即可;(2)按照(1)中對稱等式的方法寫出,然后利用多項式的乘法進行寫出即可.【詳解】解:(1)∵5+2=7,∴左邊的三位數是275,右邊的三位數是572,∴52×275=572×25,(2)左邊的兩位數是10b+a,三位數是100a+10(a+b)+b;右邊的兩位數是10a+b,三位數是100b+10(a+b)+a;“數字對稱等式”為:(10b+a)[100a+10(a+b)+b]=(10a+b[100b+10(a+b)+a].故答案為275,572;(10b+a)[100a+10(a+b)+b]=(10a+b[100b+10(a+b)+a].【點睛】本題是對數字變化規(guī)律的考查,根據已知信息,理清利用左邊的兩位數的十位數字與個位數字變化得到其它的三個數字是解題的關鍵.8.(1)A;(2)①B;②C;③B;(3)①③.【分析】(1)計算,結合計算結果即可進行判斷;(2)①從A類數中任取兩個數進行計算,即可求解;②從A、B兩類數中任取兩個數進行計算,即可求解;③根據題意,從A類數中任意取出8個數,從B類數中任意取出9個數,從C類數中任意取出10個數,把它們的余數相加,再除以3,即可得到答案;(3)根據m,n的余數之和,舉例,觀察即可判斷.【詳解】解:(1)根據題意,∵,∴2020被3除余數為1,屬于A類;故答案為:A.(2)①從A類數中任取兩個數,如:(1+4)÷3=1…2,(4+7)÷3=3…2,……∴兩個A類數的和被3除余數為2,則它們的和屬于B類;②從A、B類數中任取一數,與①同理,如:(1+2)÷3=1,(1+5)÷3=2,(4+5)÷3=3,……∴從A、B類數中任取一數,則它們的和屬于C類;③從A類數中任意取出8個數,從B類數中任意取出9個數,從C類數中任意取出10個數,把它們的余數相加,則,∴,∴余數為2,屬于B類;故答案為:①B;②C;③B.(3)從A類數中任意取出m個數,從B類數中任意取出n個數,余數之和為:m×1+n×2=m+2n,∵最后的結果屬于C類,∴m+2n能被3整除,即m+2n屬于C類,①正確;②若m=1,n=1,則|mn|=0,不屬于B類,②錯誤;③觀察可發(fā)現(xiàn)若m+2n屬于C類,m,n必須是同一類,③正確;綜上,①③正確.故答案為:①③.【點睛】本題考查了新定義的應用和有理數的除法,解題的關鍵是熟練掌握新定義進行解答.9.(1)210-1;(2);(3)9×210+1.【分析】(1)根據題目中材料可以得到用類比的方法得到1+2+22+23+…+29的值;(2)根據題目中材料可以得到用類比的方法得到1+5+52+53+54+…+5n的值.(3)根據題目中的信息,運用類比的數學思想可以解答本題.【詳解】解:(1)設S=1+2+22+23+…+29,將等式兩邊同時乘以2得:2S=2+22+23+24+…+29+210,將下式減去上式得2S-S=210-1,即S=210-1,即1+2+22+23+…+29=210-1.故答案為210-1;(2)設S=1+5+52+53+54+…+5n,將等式兩邊同時乘以5得:5S=5+52+53+54+55+…+5n+5n+1,將下式減去上式得5S-S=5n+1-1,即S=,即1+5+52+53+54+…+5n=;(3)設S=1+2×2+3×22+4×23+…+9×28+10×29,將等式兩邊同時乘以2得:2S=2+2×22+3×23+4×24+…+9×29+10×210,將上式減去下式得-S=1+2+22+23+…+29+10×210,-S=210-1-10×210,S=9×210+1,即1+2×2+3×22+4×23+…+9×28+10×29=9×210+1.【點睛】本題考查有理數的混合運算、數字的變化類,解題的關鍵是明確題意,發(fā)現(xiàn)數字的變化規(guī)律.10.(1)①,②,;(2);(3)【分析】(1)①由“奇異數”的定義可得;②根據定義計算可得;(2)由f(10m+n)=m+n,可求k的值,即可求b;(3)根據題意可列出等式,可求出x、y的值,即可求的值.【詳解】解:(1)①∵對任意一個兩位數a,如果a滿足個位數字與十位數字互不相同,且都不為零,那么稱這個兩位數為“奇異數”.∴“奇異數”為21;②f(15)=(15+51)÷11=6,f(10m+n)=(10m+n+10n+m)÷11=m+n;(2)∵f(10m+n)=m+n,且f(b)=8∴k+2k-1=8∴k=3∴b=10×3+2×3-1=35;(3)根據題意有∵∴∴∵x、y為正數,且x≠y∴x=6,y=5∴a=6×10+5=65故答案為:(1)①,②,;(2);(3)【點睛】本題考查了新定義下的實數運算,能理解“奇異數”定義是本題的關鍵.11.(1)2;5;(2)1,2,3;(3)3;(4)255【分析】(1)先估算和的大小,再由并新定義可得結果;(2)根據定義可知x<4,可得滿足題意的x的整數值;(3)根據定義對120進行連續(xù)求根整數,可得3次之后結果為1;(4)最大的正整數是255,根據操作過程分別求出255和256進行幾次操作,即可得出答案.【詳解】解:(1)∵22=4,62=36,52=25,∴5<<6,∴[]=[2]=2,[]=5,故答案為2,5;(2)∵12=1,22=4,且[]=1,∴x=1,2,3,故答案為1,2,3;(3)第一次:[]=10,第二次:[]=3,第三次:[]=1,故答案為3;(4)最大的正整數是255,理由是:∵[]=15,[]=3,[]=1,∴對255只需進行3次操作后變?yōu)?,∵[]=16,[]=4,[]=2,[]=1,∴對256只需進行4次操作后變?yōu)?,∴只需進行3次操作后變?yōu)?的所有正整數中,最大的是255,故答案為255.【點睛】本題考查了估算無理數的大小的應用,主要考查學生的閱讀能力和猜想能力,同時也考查了一個數的平方數的計算能力.12.(1);(2)±3.【分析】(1)由于4<7<9,可求的整數部分,進一步得出的小數部分;(2)先求出的整數部分和小數部分,再代入代數式進行計算即可.【詳解】解:(1)∵4<7<9,∴,即,∴,∴的整數部分為2,∴的小數部分為;(2)∵是的整數部分,是的小數部分,9<10<16,∴,即,∴,∴的整數部分為3,的小數部分為,即有,,∴9的平方根為±3.∴的平方根為±3.【點睛】本題考查了估算無理數的大小:利用完全平方數和算術平方根對無理數的大小進行估算.13.(1)C(5,﹣4);(2)90°;(3)見解析.【詳解】分析:(1)利用非負數的和為零,各項分別為零,求出a,b即可;(2)用同角的余角相等和角平分線的意義即可;(3)利用角平分線的意義和互余兩角的關系簡單計算證明即可.詳解:(1)∵(a﹣3)2+|b+4|=0,∴a﹣3=0,b+4=0,∴a=3,b=﹣4,∴A(3,0),B(0,﹣4),∴OA=3,OB=4,∵S四邊形AOBC=16.∴0.5(OA+BC)×OB=16,∴0.5(3+BC)×4=16,∴BC=5,∵C是第四象限一點,CB⊥y軸,∴C(5,﹣4);(2)如圖,延長CA,∵AF是∠CAE的角平分線,∴∠CAF=0.5∠CAE,∵∠CAE=∠OAG,∴∠CAF=0.5∠OAG,∵AD⊥AC,∴∠DAO+∠OAG=∠PAD+∠PAG=90°,∵∠AOD=90°,∴∠DAO+∠ADO=90°,∴∠ADO=∠OAG,∴∠CAF=0.5∠ADO,∵DP是∠ODA的角平分線,∴∠ADO=2∠ADP,∴∠CAF=∠ADP,∵∠CAF=∠PAG,∴∠PAG=∠ADP,∴∠APD=180°﹣(∠ADP+∠PAD)=180°﹣(∠PAG+∠PAD)=180°﹣90°=90°即:∠APD=90°(3)不變,∠ANM=45°理由:如圖,∵∠AOD=90°,∴∠ADO+∠DAO=90°,∵DM⊥AD,∴∠ADO+∠BDM=90°,∴∠DAO=∠BDM,∵NA是∠OAD的平分線,∴∠DAN=0.5∠DAO=0.5∠BDM,∵CB⊥y軸,∴∠BDM+∠BMD=90°,∴∠DAN=0.5(90°﹣∠BMD),∵MN是∠BMD的角平分線,∴∠DMN=0.5∠BMD,∴∠DAN+∠DMN=0.5(90°﹣∠BMD)+0.5∠BMD=45°在△DAM中,∠ADM=90°,∴∠DAM+∠DMA=90°,在△AMN中,∠ANM=180°﹣(∠NAM+∠NMA)=180°﹣(∠DAN+∠DAM+∠DMN+∠DMA)=180°﹣[(∠DAN+DMN)+(∠DAM+∠DMA)]=180°﹣(45°+90°)=45°,∴D點在運動過程中,∠N的大小不變,求出其值為45°點睛:此題是四邊形綜合題,主要考查了非負數的性質,四邊形面積的計算方法,角平分線的意義,解本題的關鍵是用整體的思想解決問題,也是本題的難點.14.(1)見解析;(2),理由見解析;(3)①當在延長線時(點不與點重合),;②當在之間時(點不與點,重合),.理由見解析【分析】(1)過P作PE∥AB,構造同旁內角,利用平行線性質,可得∠APC=113°;(2)過過作交于,,推出,根據平行線的性質得出,即可得出答案;(3)畫出圖形(分兩種情況:①點P在BA的延長線上,②當在之間時(點不與點,重合)),根據平行線的性質即可得出答案.【詳解】解:(1)過作,,,,,,,,;(2),理由如下:如圖3,過作交于,,,,,,,又;(3)①當在延長線時(點不與點重合),;理由:如圖4,過作交于,,,,,,,,又,;②當在之間時(點不與點,重合),.理由:如圖5,過作交于,,,,,,,,又.【點睛】本題考查了平行線的性質的應用,主要考查學生的推理能力,解決問題的關鍵是作輔助線構造內錯角以及同旁內角.15.(1)B(0,3);(2)S=(3)4【分析】(1)解方程求出a的值,利用三角形的面積公式構建方程求出b的值即可解決問題;(2)分兩種情形分別求解:當點P在線段OB上時,當點P在線段OB的延長線上時;(3)過點K作KH⊥OA用H.根據S△BPK+S△AKH=S△AOB-S長方形OPKH,構建方程求出t,即可解決問題;【詳解】解:(1)∵,∴2(a+2)-3(a-2)=6,∴-a+4=0,∴a=4,∴A(4,0),∵S△OAB=6,∴?4?OB=6,∴OB=3,∴B(0,3).(2)當點P在線段OB上時,S=?PQ?PB=×4×(3-t)=-2t+6.當點P在線段OB的延長線上時,S=?PQ?PB=×4×(t-3)=2t-6.綜上所述,S=.(3)過點K作KH⊥OA用H.∵S△BPK+S△AKH=S△AOB-S長方形OPKH,∴PK?BP+AH?KH=6-PK?OP,∴××(3-t)+(4-)?t=6-?t,解得t=1,∴S△BPQ=-2t+6=4.【點睛】本題考查三角形綜合題,一元一次方程、三角形的面積、平移變換等知識,解題的關鍵是學會利用參數構建方程解決問題,屬于中考壓軸題.16.(1)A與B存在“雅含”關系,B是A的“子式”;(2);(3)存在,.【分析】(1)根據“雅含”關系的定義即可判斷;(2)先求出解集,根據“雅含”關系的定義得出,解不等式即可;(3)首先解關于的方程組即可求得的值,然后根據,,且為整數即可得到一個關于的范圍,從而求得的整數值.【詳解】解:(1)不等式A:x+2>1的解集為,∵∴A與B存在“雅含”關系,B是A的“子式”;(2)不等式,解得:,不等式:,解得:,∵與存在“雅含”關系,且是的“子式”,∴,解得:,(3)存在;由解得:,∵,,即:,解得:,∵為整數,∴的值為,解不等式得:,解不等式得:,∵與存在“雅含”關系,且是的“子式”,∴不等式的解集為:,∴,且,解得:,∴.【點睛】本題考查了不等式組的解法及整數解的確定.求不等式組的解集,應遵循以下原則:同大取較大,同小取較小,大小小大中間找,大大小小無解.17.(1),;(2)或;(3)或【分析】(1)根據一個數的平方與絕對值均非負,且其和為0,則可得它們都為0,從而可求得a和b的值;(2)過點P作直線l垂直于x軸,延長交直線于點,設點坐標為,過作交直線于點,根據面積關系求出Q點坐標,再求出PQ的長度,即可求出n的值;(3)先根據求出C點坐標,再根據求出D點坐標,根據題意可得F點坐標,由得關于t的方程,求出t值即可.【詳解】(1),,且,,(2)過作直線垂直于軸,延長交直線于點,設點坐標為,過作交直線于點,如圖所示∵∴解得,點坐標為∵∴解得:或(3)當或時,有.如圖,延長BA交x軸于點D,過A點作AG⊥x軸于點G,過B點作BN⊥x軸于點N,∵∴解得:∴∵∴解得:∵∴當運動t秒時,∴∵CE=t∴,∵∴解得:或.【點睛】本題主要考查三角形的面積,含絕對值方程解法,熟練掌握直角坐標系的知識,三角形的面積,梯形的面積等知識是解題的關鍵,難點在于對圖形進行割補轉化為易求面積的圖形.18.(1)①1,4;3,0;2,﹣4;②2;(2)見解析;(3)t=1.2時,P(0.6,0),t=2時,P(﹣1,0).【分析】(1)①利用非負數的性質求出a,b的值,可得結論.②利用三角形面積公式求解即可.(2)連接DH,根據△ODH的面積+△ADH的面積=△OAH的面積,構建關系式,可得結論.(3)分兩種情形:①當點P在線段OB上,②當點P在BO的延長線上時,分別利用面積關系,構建方程,可得結論.【詳解】(1)解:①∵,又∵≥0,(b﹣3)2≥0,∴a=4,b=3,∴A(1,4),B(3,0),∵B是由A平移得到的,∴A向右平移2個單位,向下平移4個單位得到B,∴點C是由點O向右平移2個單位,向下平移4個單位得到的,∴C(2,﹣4),故答案為:1,4;3,0;2,﹣4.②△AOH的面積=×1×4=2,故答案為:2.(2)證明:如圖,連接DH.∵△ODH的面積+△ADH的面積=△OAH的面積,∴×1×n+×4×(1﹣m)=2,∴4m=n.(3)解:①當點P在線段OB上,由三角形AOP與三角形COQ的面積相等得:OP·yA=OQ·xC,∴×(3﹣2t)×4=×2t,解得t=1.2.此時P(0.6,0).②當點P在BO的延長線上時,由三角形AOP與三角形COQ的面積相等得:OP·yA=OQ·xC,×(2t﹣3)×4=×2×t,解得t=2,此時P(﹣1,0),綜上所述,t=1.2時,P(0.6,0),t=2時,P(﹣1,0).【點睛】本題考查坐標與圖形變化-平移,非負數的性質,三角形的面積等知識,解題的關鍵是學會利用參數構建方程解決問題.19.(1)①20070618;②見解析;(2)16080413【分析】(1)根據題意,分別求出A1,A2,A3,A4,A5,即可得到答案;(2)根據題意,分別求出A1,A2,A3,A4,A5,即可得到答案;(3)由圖4知,A1=16+8=24,由加密規(guī)則得24-8=16,A2=4+2=6,A3=8+1=9,由此得到李思在8年級4班,再求出A4,A5,即可得到答案.【詳解】解:(1)①在圖1中,A1=16×1+8×0+4×1+2×0+0=20,A2=16×0+8×0+4×1+2×1+1=7,A3=16×0+8×0+4×1+2×1+0=6,A4=1,A5=16×0+8×1+4×0+2×0+0=8,故答案為:20070618;②如圖所示.2018年入學的9年級5班的39號,其中:A1=18=16+0+0+1+1,A2=09=8+1A3=05=4+1,A4=3,A5=9=8+1.(2)設李思同學在x年級y班.由圖4知,A1=16+8=24,由加密規(guī)則得24-8=16,因此,李思是2016年入學的.A2=4+2=6,A3=8+1=9.由加密規(guī)則,得:,解得x=8,y=4,所以,李思在8年級4班.A4=2+1=3,A5=2+1=3,33-2=31,根據加密規(guī)則,原編號的末兩位數為13.綜上,李思同學的編號是16080413.【點睛】本題主要考查了實數與圖形,解二元一次方程組,截圖的關鍵在于能夠準確讀懂題意.20.(1)A、B兩種品牌電風扇每臺的進價分別是100元、150元;(2)為能在銷售完這兩種電風扇后獲得最大的利潤,該商店應采用購進A種品牌的電風扇7臺,購進B種品牌的電風扇2臺.【分析】(1)設A種品牌電風扇每臺進價元,B種品牌電風扇每臺進價元,根據題意即可列出關于x、y的二元一次方程組,解出x、y即可.(2)設購進A品牌電風扇臺,B品牌電風扇臺,根據題意可列等式,由a和b都為整數即可求出a和b的值的幾種可能,然后分別算出每一種情況的利潤進行比較即可.【詳解】(1)設A、B兩種品牌電風扇每臺的進價分別是x元、y元,由題意得:,解得:,答:A、B兩種品牌電風扇每臺的進價分別是100元、150元;(2)設購進A種品牌的電風扇a臺,購進B種品牌的電風扇b臺,由題意得:100a+150b=1000,其正整數解為:或或,當a=1,b=6時,利潤=80×1+100×6=680(元),當a=4,b=4時,利潤=80×4+100×4=720(元),當a=7,b=2時,利潤=80×7+100×2=760(元),∵680<720<760,∴當a=7,b=2時,利潤最大,答:為能在銷售完這兩種電風扇后獲得最大的利潤,該商店應采用購進A種品牌的電風扇7臺,購進B種品牌的電風扇2臺.【點睛】本題主要考查了二元一次方程組的實際應用,根據題意找出等量關系列出等式是解答本題的關鍵.21.(1);0≤x≤6時,y=1.5x;x>6時,y=6x-27;(2)該戶5月份水費是21元.【分析】(1)根據3、4兩個月的用水量和相應水費列方程組求解可得a、c的值;當0≤x≤6時,水費=用水量×此時單價;當x>6時,水費=前6立方水費+超出部分水費,據此列式即可;(2)x=8代入x>6時y與x的函數關系式求解即可.【詳解】解:(1)根據題意,得:,解得:;當0≤x≤6時,y=1.5x;當x>6時,y=1.5×6+6(x-6)=6x-27;(2)當x=8時,y=6x-27=6×8-27=21.答:若某戶5月份的用水量為8米3,該戶5月份水費是21元.【點睛】本題主要考查利用一次函數的模型解決實際問題的能力.要先根據題意列出函數關系式,再代數求值.解題的關鍵是要分析題意根據實際意義準確的列出解析式,再把對應值代入求解.22.(1);(2),理由詳見解析;(3)40°【分析】(1)利用加減消元法,通過解二元一次方程組可求出和的度數;(2)利用求得的和的度數可得到,于是根據平行線的判定可判斷AB∥EF,然后利用平行的傳遞性可得到AB∥CD;(3)先根據垂直的定義得到,再根據平行線的性質計算的度數.【詳解】解(1)解方程組,①-②得:,解得:把代入②得:解得:;(2),理由:∵,,,(同旁內角互補,兩直線平行),又,;(3),.【點睛】本題考查了平行線的性質與判定、解二元一次方程組,熟練掌握平行線的性質和判定定理是解題關鍵.23.(1)15;(2)①七年級(1)班有24人得滿分;②七年級(2)班的總分高.【分析】(1)分別對連正確的數量進行分析,即可得到答案;(2)①設七年(1)班滿分人數有x人,則未滿分的有人,然后列出方程,解方程即可得到答案;②根據題意,先求出兩個班各分數段的人數,然后求出各班的總分,即可進行比較.【詳解】解:(1)根據題意,連對0個得分為0分;連對一個得分為5分;連對兩個得分為10分;連對四個得分為20分;不存在連對三個的情況,則得15分是不可能的;故答案為:15.(2)①根據題意,設七年(1)班滿分人數有x人,則未滿分的有人,則,解得:,∴(1)班有24人得滿分;②根據題意,(1)班中除0分外,最低得分人數與其他未滿分人數相等,∴(1)班得5分和10分的人數相等,人數為:(人);∴(1)班得總分為:(分);由題意,(2)班存在得5分、得10分、得20分,三種情況,設得5分的有y人,得10分的有z人,滿分20分的有人,∴,∴,∴七(2)班得總分為:(分);∵,∴七(2)班的總分高.【點睛】本題考查了二元一次方程的應用,一元一次方程的應用,解題的關鍵是熟練掌握題意,正確掌握題目的等量關系,列出方程進行解題.24.(1)(-1,-2);(2)①結論:直線l⊥x軸.證明見解析;②結論:(s-m)+(t-n)=0.證明見解析【分析】(1)利用非負數的性質求出a,b的值,可得結論.(2)①求出A,D的縱坐標,證明AD∥x軸,可得結論.②判斷出D(m+1,n-1),利用待定系數法,構建方程組解決問題即可.【詳解】解:(1),又,,,,,點先向右平移2個單位,再向下平移1個單位得到點,.(2)①結論:直線軸.理由:,,,向右平移個單位,再向下平移1個單位得到點,,,的縱坐標相同,軸,直線,直線軸.②結論:.理由:是直線上一點,連接,且的最小值為1,,點,及點都是關于,的二元一次方程的解為坐標的點,,①②得到,,③②得到,,,,.【點睛】本題考查坐標與圖形變化-平移,非負數的性質,待定系數法等知識,解題的關鍵是熟練掌握平移變換的性質,學會利用參數解決問題,屬于中考常考題型.25.(1)1;(2)(3)【分析】(1)根據三角形的面積公式即可求解;(2)根據題意列出不等式組故可求解;(3)分Q點在AB上、BC上和CD上分別列出方程即可求解.【詳解】(1)當時,=1平方厘米;當時,=平方厘米;故答案為;;(2)解:根據題意,得解得,故的取值范圍為;(3)當Q點在AB上時,依題意可得解得;當Q點在BC上時,依題意可得解得>6,不符合題意;當Q點在AB上時,依題意可得或解得或;∴值為.【點睛】此題主要考查不等式組與一元一次方程的應用,解題的關鍵是根據題意得到方程或不等式組進行求解.26.(1)可制作豎式無蓋箱子30個,可制作橫式無蓋箱子60個;(2)最多可以制作豎式箱子50個;(3)最多可以制作豎式箱子45個【分析】(1)根據題意可以列出相應的二元一次方程組,再解方程組即可解答本題;(2)根據題意可以列出相應的不等式,從而可以求得最多可以制作豎式箱子多少個;(3)根據題意可以列出相應的二元一次方程,再根據a為整數和a≥10,即可解答本題.【詳解】解:(1)設可制作豎式無蓋箱子m個,可制作橫式無蓋箱子n個,依題意有,解得,故可制作豎式無蓋箱子30個,可制作橫式無蓋箱子60個;(2)由題意可得,1個豎式箱子需要1個A型和4個B型,1個橫式箱子需要2個A型和3個B型,設豎式箱子x個,則橫式箱子(100-x)個,(20+4×60)x+(2×20+3×60)(100-x)≤24000,解得x≤50,故x的最大值是50,答:最多可以制作豎式箱子50個;(3)C型可以看成三列,每一列可以做成3個A型或1個B型,65個C型就有65×3=195列,∵材料恰好用完,∴最后A型的數量一定是3的倍數,設豎式a個,橫式b個,∵
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 鉭鈮壓制成型工班組評比能力考核試卷含答案
- 動畫制作員班組安全模擬考核試卷含答案
- 鉆床工操作能力水平考核試卷含答案
- 中式面點師安全教育水平考核試卷含答案
- 注水泵工沖突解決測試考核試卷含答案
- 老年甲狀腺功能異常外泌體治療研究方案
- 2026江蘇南京大學智能科學與技術學院技術管理招聘備考題庫及答案詳解一套
- 2026吉林白城市大安市公安局招聘警務輔助人員50人備考題庫及答案詳解一套
- 2026廣東茂名市化州市投資審核中心招聘合同制工作人員5人備考題庫及答案詳解(奪冠系列)
- 老年氣候適應型醫(yī)療設備更新策略
- DB21-T 20012-2024 公路養(yǎng)護工程基層注漿補強技術規(guī)范
- 造紙業(yè)五年環(huán)?;?025年竹漿環(huán)保再生紙行業(yè)報告
- GB/T 17587.2-2025滾珠絲杠副第2部分:公稱直徑、公稱導程、螺母尺寸和安裝螺栓公制系列
- 鍋爐應急預案演練(3篇)
- 2026中國數字化口腔醫(yī)療設備市場滲透率與增長動力研究報告
- 2025中證信息技術服務有限責任公司招聘16人筆試參考題庫附答案
- 建筑工程決算編制標準及實例
- 安徽省江淮十校2025年高二數學第一學期期末質量檢測試題含解析
- 電力工程項目預算審核流程
- GB/T 14748-2025兒童呵護用品安全兒童推車
- 蒸汽管道-應急預案
評論
0/150
提交評論