綜合解析京改版數(shù)學(xué)9年級(jí)上冊(cè)期末試卷【真題匯編】附答案詳解_第1頁
綜合解析京改版數(shù)學(xué)9年級(jí)上冊(cè)期末試卷【真題匯編】附答案詳解_第2頁
綜合解析京改版數(shù)學(xué)9年級(jí)上冊(cè)期末試卷【真題匯編】附答案詳解_第3頁
綜合解析京改版數(shù)學(xué)9年級(jí)上冊(cè)期末試卷【真題匯編】附答案詳解_第4頁
綜合解析京改版數(shù)學(xué)9年級(jí)上冊(cè)期末試卷【真題匯編】附答案詳解_第5頁
已閱讀5頁,還剩35頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

京改版數(shù)學(xué)9年級(jí)上冊(cè)期末試卷考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題26分)一、單選題(6小題,每小題2分,共計(jì)12分)1、如圖,Rt△ABC中,,,,D為BC的中點(diǎn),若動(dòng)點(diǎn)E以1cm/s的速度從A點(diǎn)出發(fā),沿AB向B點(diǎn)運(yùn)動(dòng),設(shè)E點(diǎn)的運(yùn)動(dòng)時(shí)間為t秒,連接DE,當(dāng)以B、D、E為頂點(diǎn)的三角形與△ABC相似時(shí),t的值為()A.2或3.5 B.2或3.2 C.2或3.4 D.3.2或3.42、若函數(shù)y=(a﹣1)x2+2x+a2﹣1是二次函數(shù),則()A.a(chǎn)≠1 B.a(chǎn)≠﹣1 C.a(chǎn)=1 D.a(chǎn)=±13、如圖所示,雙曲線y=上有一動(dòng)點(diǎn)A,連接OA,以O(shè)為頂點(diǎn)、OA為直角邊,構(gòu)造等腰直角三角形OAB,則△OAB面積的最小值為(

)A. B. C.2 D.24、已知函數(shù)是反比例函數(shù),圖象在第一、三象限內(nèi),則的值是()A.3 B.-3 C. D.5、記某商品銷售單價(jià)為x元,商家銷售此種商品每月獲得的銷售利潤為y元,且y是關(guān)于x的二次函數(shù).已知當(dāng)商家將此種商品銷售單價(jià)分別定為55元或75元時(shí),他每月均可獲得銷售利潤1800元;當(dāng)商家將此種商品銷售單價(jià)定為80元時(shí),他每月可獲得銷售利潤1550元,則y與x的函數(shù)關(guān)系式是(

)A.y=﹣(x﹣60)2+1825 B.y=﹣2(x﹣60)2+1850C.y=﹣(x﹣65)2+1900 D.y=﹣2(x﹣65)2+20006、下列說法中不正確的是()A.任意兩個(gè)等邊三角形相似 B.有一個(gè)銳角是40°的兩個(gè)直角三角形相似C.有一個(gè)角是30°的兩個(gè)等腰三角形相似 D.任意兩個(gè)正方形相似二、多選題(7小題,每小題2分,共計(jì)14分)1、如圖是拋物線的一部分,拋物線的頂點(diǎn)坐標(biāo)是A(1,3),與x軸的一個(gè)交點(diǎn)是B(4,0),點(diǎn)P在拋物線上,且在直線AB上方,則下列結(jié)論正確的是(

)A. B.方程有兩個(gè)相等的實(shí)根C. D.點(diǎn)P到直線AB的最大距離2、下表時(shí)二次函數(shù)y=ax2+bx+c的x,y的部分對(duì)應(yīng)值:…………則對(duì)于該函數(shù)的性質(zhì)的判斷中正確的是()A.該二次函數(shù)有最大值B.不等式y(tǒng)>﹣1的解集是x<0或x>2C.方程y=ax2+bx+c的兩個(gè)實(shí)數(shù)根分別位于﹣<x<0和2<x<之間D.當(dāng)x>0時(shí),函數(shù)值y隨x的增大而增大3、如圖,在△ABC中,點(diǎn)D在邊AC上,下列條件中,不能判斷△BDC與△ABC相似的是(

)A.AB·CB=CA·CD B.AB·CD=BD·BCC.BC2=AC·DC D.BD2=CD·DA4、已知四條線段a,b,c,d是成比例線段,即,下列說法正確的是(

)A.a(chǎn)d=bc B. C. D.5、如圖,在△ABC中,點(diǎn)D,E分別在邊AB、AC上,下列條件中能判斷△AED∽△ABC的是()A.∠AED=∠ABC B.∠ADE=∠ACBC. D.6、下列說法不正確的是()A.相切兩圓的連心線經(jīng)過切點(diǎn) B.長度相等的兩條弧是等弧C.平分弦的直徑垂直于弦 D.相等的圓心角所對(duì)的弦相等7、如圖,AB是的直徑,C是上一點(diǎn),E是△ABC的內(nèi)心,,延長BE交于點(diǎn)F,連接CF,AF.則下列結(jié)論正確的是(

)A. B.C.△AEF是等腰直角三角形 D.若,則第Ⅱ卷(非選擇題74分)三、填空題(7小題,每小題2分,共計(jì)14分)1、如圖,點(diǎn)A是反比例函數(shù)圖象上一點(diǎn),軸于點(diǎn)C且與反比例函數(shù)的圖象交于點(diǎn)B,,連接OA,OB,若的面積為6,則_________.2、二次函數(shù)y=ax2+bx+c圖象上部分點(diǎn)的橫坐標(biāo)x與縱坐標(biāo)y的對(duì)應(yīng)值如表格所示,那么它的圖象與x軸的另一個(gè)交點(diǎn)坐標(biāo)是_____.3、若,則________.4、如圖,△ABC中,∠ACB=90°,AB=5,AC=3,BC為半圓O的直徑,將△ABC沿射線CB方向平移得到△A1B1C1.當(dāng)A1B1與半圓O相切于點(diǎn)D時(shí),平移的距離的長為_____.5、如圖,I是△ABC的內(nèi)心,∠B=60°,則∠AIC=_____.6、如圖所示,在△ABC中,,,.(1)如圖1,四邊形為的內(nèi)接正方形,則正方形的邊長為_________;(2)如圖2,若△ABC內(nèi)有并排的n個(gè)全等的正方形,它們組成的矩形內(nèi)接于,則正方形的邊長為_________.7、如圖,拋物線的圖象與坐標(biāo)軸交于點(diǎn)、、,頂點(diǎn)為,以為直徑畫半圓交軸的正半軸于點(diǎn),圓心為,是半圓上的一動(dòng)點(diǎn),連接,是的中點(diǎn),當(dāng)沿半圓從點(diǎn)運(yùn)動(dòng)至點(diǎn)時(shí),點(diǎn)運(yùn)動(dòng)的路徑長是__________.四、解答題(6小題,每小題10分,共計(jì)60分)1、某超市經(jīng)銷一種商品,每件成本為50元.經(jīng)市場(chǎng)調(diào)研,當(dāng)該商品每件的銷售價(jià)為60元時(shí),每個(gè)月可銷售300件,若每件的銷售價(jià)每增加1元,則每個(gè)月的銷售量將減少10件.設(shè)該商品每件的銷售價(jià)為x元,每個(gè)月的銷售量為y件.(1)求y與x的函數(shù)表達(dá)式;(2)當(dāng)該商品每件的銷售價(jià)為多少元時(shí),每個(gè)月的銷售利潤最大?最大利潤是多少?2、如圖,在Rt△ABC中,∠ACB=90°,AB=10,BC=6,點(diǎn)O在射線AC上(點(diǎn)O不與點(diǎn)A重合),垂足為D,以點(diǎn)O為圓心,分別交射線AC于E、F兩點(diǎn),設(shè)OD=x.(1)如圖1,當(dāng)點(diǎn)O為AC邊的中點(diǎn)時(shí),求x的值;(2)如圖2,當(dāng)點(diǎn)O與點(diǎn)C重合時(shí),連接DF;求弦DF的長;(3)當(dāng)半圓O與BC無交點(diǎn)時(shí),直接寫出x的取值范圍.3、據(jù)說,在距今2500多年前,古希臘數(shù)學(xué)家就已經(jīng)較準(zhǔn)確地測(cè)出了埃及金字塔的高度,操作過程大致如下:如圖所示,設(shè)AB是金字塔的高,在某一時(shí)刻,陽光照射下的金字塔在底面上投下了一個(gè)清晰的陰影,塔頂A的影子落在地面上的點(diǎn)C處,金字塔底部可看作方正形FGHI,測(cè)得正方形邊長FG長為160米,點(diǎn)B在正方形的中心,BC與金字塔底部一邊垂直于點(diǎn)K,與此同時(shí),直立地面上的一根標(biāo)桿DO留下的影子是OE,射向地面的太陽光線可看作平行線(AC∥DE),此時(shí)測(cè)得標(biāo)桿DO長為1.2米,影子OE長為2.7米,KC長為250米,求金字塔的高度AB及斜坡AK的坡度(結(jié)果均保留四個(gè)有效數(shù)字)4、已知拋物線c:y=-x2-2x+3和直線l:y=x+d。將拋物線c在x軸上方的部分沿x軸翻折180°,其余部分保持不變,翻折后的圖象與x軸下方的部分組成一個(gè)“M”型的新圖象(即新函數(shù)m:y=-|x2+2x-3|的圖象)。(1)當(dāng)直線l與這個(gè)新圖象有且只有一個(gè)公共點(diǎn)時(shí),d=;(2)當(dāng)直線l與這個(gè)新圖象有且只有三個(gè)公共點(diǎn)時(shí),求d的值;(3)當(dāng)直線l與這個(gè)新圖象有且只有兩個(gè)公共點(diǎn)時(shí),求d的取值范圍;(4)當(dāng)直線l與這個(gè)新圖象有四個(gè)公共點(diǎn)時(shí),直接寫出d的取值范圍.5、如圖①已知拋物線的圖象與軸交于、兩點(diǎn)(在的左側(cè)),與的正半軸交于點(diǎn),連結(jié);二次函數(shù)的對(duì)稱軸與軸的交點(diǎn).(1)拋物線的對(duì)稱軸與軸的交點(diǎn)坐標(biāo)為,點(diǎn)的坐標(biāo)為_____(2)若以為圓心的圓與軸和直線都相切,試求出拋物線的解析式:(3)在(2)的條件下,如圖②是的正半軸上一點(diǎn),過點(diǎn)作軸的平行線,與直線交于點(diǎn)與拋物線交于點(diǎn),連結(jié),將沿翻折,的對(duì)應(yīng)點(diǎn)為’,在圖②中探究:是否存在點(diǎn),使得’恰好落在軸上?若存在,請(qǐng)求出的坐標(biāo):若不存在,請(qǐng)說明理由.6、定義:我們知道,四邊形的一條對(duì)角線把這個(gè)四邊形分成了兩個(gè)三角形,如果這兩個(gè)三角形相似(不全等),我們就把這條對(duì)角線叫做這個(gè)四邊形的“相似對(duì)角線”.(1)如圖1,在四邊形中,,,對(duì)角線平分.求證:是四邊形的“相似對(duì)角線”;(2)如圖2,已知是四邊形的“相似對(duì)角線”,.連接,若的面積為,求的長.-參考答案-一、單選題1、A【解析】【分析】求出AB=2BC=4cm,分兩種情況:①當(dāng)∠EDB=∠ACB=90°時(shí),DE∥AC,△EBD∽△ABC,得出AE=BE=AB=2cm,即可得出t=2s;②當(dāng)∠DEB=∠ACB=90°時(shí),證出△DBE∽△ABC,得出∠BDE=∠A=30°,因此BE=BD=cm,得出AE=3.5cm,t=3.5s;即可得出結(jié)果.【詳解】解:∵∠ACB=90°,∠ABC=60°,∴∠A=30°,∴AB=2BC=4cm,分兩種情況:①當(dāng)∠EDB=∠ACB=90°時(shí),DE∥AC,所以△EBD∽△ABC,E為AB的中點(diǎn),AE=BE=AB=2cm,∴t=2s;②當(dāng)∠DEB=∠ACB=90°時(shí),∵∠B=∠B,∴△DBE∽△ABC,∴∠BDE=∠A=30°,∵D為BC的中點(diǎn),∴BD=BC=1cm,∴BE=BD=0.5cm,∴AE=3.5cm,∴t=3.5s;綜上所述,當(dāng)以B、D、E為頂點(diǎn)的三角形與△ABC相似時(shí),t的值為2或3.5,故選A.【考點(diǎn)】本題考查了相似三角形的判定、平行線的性質(zhì)、含30°角的直角三角形的性質(zhì)等知識(shí);熟記相似三角形的判定方法是解決問題的關(guān)鍵,注意分類討論.2、A【解析】【分析】利用二次函數(shù)定義進(jìn)行解答即可.【詳解】解:由題意得:a﹣1≠0,解得:a≠1,故選:A.【考點(diǎn)】本題主要考查了二次函數(shù)的定義,準(zhǔn)確計(jì)算是解題的關(guān)鍵.3、C【解析】【分析】根據(jù)等腰直角三角形性質(zhì)得出S△OAB=OA?OB=OA2,先求得OA取最小值時(shí)A的坐標(biāo),即可求得OA的長,從而求得△OAB面積的最小值.【詳解】解:∵△AOB是等腰直角三角形,∴OA=OB,∴S△OAB=OA?OB=OA2,∴OA取最小值時(shí),△OAB面積的值最小,∵當(dāng)直線OA為y=x時(shí),OA最小,解得或,∴此時(shí)A的坐標(biāo)為(,),∴OA=2,∴,∴△OAB面積的最小值為2,故選:C.【考點(diǎn)】本題考查了反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征,等腰直角三角形的性質(zhì),三角形的面積,求得OA取最小值時(shí)A的坐標(biāo)是解題的關(guān)鍵.4、A【解析】【分析】根據(jù)反比例函數(shù)的定義建立關(guān)于m的一元二次方程,再根據(jù)反比例函數(shù)的性質(zhì)解答.【詳解】∵函數(shù)是反比例函數(shù),∴m2-10=-1,解得,m2=9,∴m=±3,當(dāng)m=3時(shí),m-2>0,圖象位于一、三象限;當(dāng)m=-3時(shí),m-2<0,圖象位于二、四象限;故選A.【考點(diǎn)】本題考查了反比例函數(shù)的定義和性質(zhì),對(duì)于反比例函數(shù)y=(k≠0),(1)k>0,反比例函數(shù)圖象在一、三象限;(2)k<0,反比例函數(shù)圖象在第二、四象限內(nèi).5、D【解析】【分析】設(shè)二次函數(shù)的解析式為:y=ax2+bx+c,根據(jù)題意列方程組即可得到結(jié)論.【詳解】解:設(shè)二次函數(shù)的解析式為:y=ax2+bx+c,∵當(dāng)x=55,y=1800,當(dāng)x=75,y=1800,當(dāng)x=80時(shí),y=1550,∴,解得a=?2,b=260,c=?6450,∴y與x的函數(shù)關(guān)系式是y=﹣2x2+260x﹣6450=﹣2(x﹣65)2+2000,故選:D.【考點(diǎn)】本題考查了根據(jù)實(shí)際問題列二次函數(shù)關(guān)系式,正確的列方程組是解題的關(guān)鍵.6、C【解析】【分析】直接利用相似圖形的性質(zhì)分別分析得出答案.【詳解】A.任意兩個(gè)等邊三角形相似,說法正確;B.有一個(gè)銳角是40°的兩個(gè)直角三角形相似,說法正確;C.有一個(gè)角是30°的兩個(gè)等腰三角形相似,30°有可能是頂角或底角,故說法錯(cuò)誤;D.任意兩個(gè)正方形相似,說法正確.故選:C.【考點(diǎn)】本題主要考查了圖形的相似,正確把握相似圖形的判定方法是解題關(guān)鍵.二、多選題1、BCD【解析】【分析】根據(jù)二次函數(shù)的性質(zhì)、方程與二次函數(shù)的關(guān)系、函數(shù)與不等式的關(guān)系、坐標(biāo)系內(nèi)直線的平移、利用配方法求二次三項(xiàng)式的最值即可一一判斷.【詳解】解:由圖象可知,,則,故A選項(xiàng)錯(cuò)誤;由圖象可知,直線與拋物線只有一個(gè)交點(diǎn),則方程有兩個(gè)相等的實(shí)根,故B選項(xiàng)正確;當(dāng)時(shí),拋物線由最大值,則,即,故C選項(xiàng)正確;設(shè)直線AB的表達(dá)式為,且A(1,3),B(4,0)在直線上,則,解得,,即,由拋物線的對(duì)稱軸為得,則,即,又A(1,3),B(4,0)在拋物線上,則,解得,,將直線向上平移與拋物線有一個(gè)交點(diǎn)時(shí)至,要求點(diǎn)P到直線AB的最大距離,即點(diǎn)P為直線與拋物線的交點(diǎn),過點(diǎn)作于,軸,如圖所示,由直線AB可得,為等腰直角三角形,又直線由直線平移得到,且軸,,,是等腰直角三角形,由平移的性質(zhì)可設(shè)直線的表達(dá)式為,當(dāng)與拋物線有一個(gè)交點(diǎn)時(shí),即,整理得,由于只有一個(gè)交點(diǎn),則,解得,即直線AB向上平移了:,則,則,點(diǎn)P到直線AB的最大距離,故D選項(xiàng)正確,故選BCD.【考點(diǎn)】本題考查了二次函數(shù)的圖象及性質(zhì)、方程與二次函數(shù)的關(guān)系、函數(shù)與不等式的關(guān)系、平面直角坐標(biāo)系內(nèi)直線的平移,解題的關(guān)鍵學(xué)會(huì)利用函數(shù)圖象解決問題,靈活運(yùn)用相關(guān)知識(shí)解決問題,本題難點(diǎn)在于要求拋物線上的點(diǎn)到直線的最大距離即求直線平移至與拋物線有一個(gè)交點(diǎn)時(shí)交點(diǎn)到直線的距離.2、BC【解析】【分析】由圖表可得二次函數(shù)y=ax2+bx+c的對(duì)稱軸為直線x=1,a>0,即可判斷A,D不正確,由圖表可直接判斷B,C正確.【詳解】解:∵當(dāng)x=0時(shí),y=-1;當(dāng)x=2時(shí),y=-1;當(dāng)x=,y=;當(dāng)x=,y=;∴二次函數(shù)y=ax2+bx+c的對(duì)稱軸為直線x=1,x>1時(shí),y隨x的增大而增大,x<1時(shí),y隨x的增大而減?。郺>0即二次函數(shù)有最小值則A,D錯(cuò)誤由圖表可得:不等式y(tǒng)>-1的解集是x<0或x>2;由圖表可得:方程ax2+bx+c=0的兩個(gè)實(shí)數(shù)根分別位于-<x<0和2<x<之間;所以選項(xiàng)B,C正確,故選:BC.【考點(diǎn)】本題考查了拋物線與x軸的交點(diǎn),二次函數(shù)的性質(zhì),二次函數(shù)的最值,理解圖表中信息是本題的關(guān)鍵.3、ABD【解析】【分析】根據(jù)三角形相似的判斷方法逐個(gè)判斷即可.【詳解】解:A、AB·CB=CA·CD,不能判定△BDC∽△ABC,符合題意;B、AB·CD=BD·BC,不能判定△BDC∽△ABC,符合題意;C、BC2=AC·DC,∠BCD=∠ACB,∴△BDC∽△ABC,故選項(xiàng)不符合題意;D、BD2=CD·DA,不能判定△BDC與△ABC,符合題意;故選:ABD.【考點(diǎn)】此題考查了三角形相似的判定方法,解題的關(guān)鍵是熟練掌握三角形相似的判定方法.4、ABD【解析】【分析】根據(jù)比例的性質(zhì)將原式變形,分別進(jìn)行判斷即可,進(jìn)而得出答案.【詳解】解:∵四條線段a,b,c,d是成比例線段,即,∴A.利用內(nèi)項(xiàng)之積等于外項(xiàng)之積,ad=bc,故選項(xiàng)正確,B.利用內(nèi)項(xiàng)之積等于外項(xiàng)之積,a(b+d)=b(a+c),ab+ad=ab+bc,即ad=bc,故選項(xiàng)正確,C.∵,∴,故選項(xiàng)錯(cuò)誤,D.∵∴,故選項(xiàng)正確,故選:ABD.【考點(diǎn)】此題主要考查了比例的性質(zhì),將比例式靈活正確變形得出是解題關(guān)鍵.5、ABD【解析】【分析】根據(jù)三角形相似的判斷方法判斷即可.【詳解】解:A、∵∠AED=∠ABC,∠A=∠A,∴△AED∽△ABC,符合題意;B、∵∠ADE=∠AC,∠A=∠A,∴△AED∽△ABC,符合題意;C、,不能判定△AED∽△ABC,不符合題意;D、∵,∠A=∠A,∴△AED∽△ABC,符合題意.故選:ABD.【考點(diǎn)】此題考查了三角形相似的判斷方法,解題的關(guān)鍵是熟練掌握三角形相似的判定方法.6、BCD【解析】【分析】要找出正確命題,可運(yùn)用相關(guān)基礎(chǔ)知識(shí)分析找出正確選項(xiàng),也可以通過舉反例排除不正確選項(xiàng),從而得出正確選項(xiàng).(1)等弧指的是在同圓或等圓中,能夠完全重合的?。L度相等的兩條弧,不一定能夠完全重合;(2)此弦不能是直徑;(3)相等的圓心角所對(duì)的弦相等指的是在同圓或等圓中.【詳解】解:A、根據(jù)圓的軸對(duì)稱性可知此命題正確,不符合題意;B、等弧指的是在同圓或等圓中,能夠完全重合的?。嗣}沒有強(qiáng)調(diào)在同圓或等圓中,所以長度相等的兩條弧,不一定能夠完全重合,此命題錯(cuò)誤,符合題意;B、此弦不能是直徑,命題錯(cuò)誤,符合題意;C、相等的圓心角指的是在同圓或等圓中,此命題錯(cuò)誤,符合題意;故選:BCD.【考點(diǎn)】本題考查的是兩圓的位置關(guān)系、圓周角定理以及垂徑定理,熟知平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條弧是解答此題的關(guān)鍵.7、BCD【解析】【分析】由圓周角定理可得∠ACB=∠AFB=90°,再由E是△ABC的內(nèi)心可得∠EAB+∠EBA=45°,從而得出∠AEF=45°,進(jìn)一步得到△ABC是等腰直角三角形,再由垂徑定理得EF=EB,從而可得AE=EB,由中位線定理得AE=2OE=2,最后求出.【詳解】∵AB為直徑,,∴∠ACB=∠AFB=90°,∴∠CAB+∠CBA=180°,∵E是△ABC的內(nèi)心,∴∠EAB=∠CAB,∠EBA=∠CBA,∴∠EAB+∠EBA=(∠CAB+∠CBA)=45°,故選項(xiàng)B正確,∴∠AEF=∠EAB+∠EBA=45°,∴△AEF是等腰直角三角形,故選項(xiàng)C正確,∴AF=EF,AE=EF,∵,∴EF=EB,∴AE=EB,故選項(xiàng)A錯(cuò)誤,∵OA=OB,EF=EB,∴AE=2OE=2,∴EF=BE=2,∴,故選項(xiàng)D正確,故選:BCD【考點(diǎn)】本題主要考查了垂徑定理,圓周角定理,中位線定理,三角形內(nèi)心性質(zhì),等腰直角三角形,等知識(shí),證明△ABC是等腰直角三角形是解題的關(guān)鍵.三、填空題1、【解析】【分析】利用反比例函數(shù)比例系數(shù)k的幾何意義得到S△AOC=||=-,S△BOC=||=-,利用AB=3BC得到S△ABO=3S△OBC=6,所以-=2,解得=-4,再利用-=6+2得=-16,然后計(jì)算+的值.【詳解】解:∵AC⊥x軸于點(diǎn)C,與反比例函數(shù)y=(x<0)圖象交于點(diǎn)B,而<0,<0,∴S△AOC=||=-,S△BOC=||=-,∵AB=3BC,∴S△ABO=3S△OBC=6,即-=2,解得=-4,∵-=6+2,解得=-16,∴+=-16-4=-20.故答案為:-20.【考點(diǎn)】本題考查了反比例函數(shù)比例系數(shù)k的幾何意義:在反比例函數(shù)的圖象上任意一點(diǎn)向坐標(biāo)軸作垂線,這一點(diǎn)和垂足以及坐標(biāo)原點(diǎn)所構(gòu)成的三角形的面積是|k|,且保持不變.2、(1,0)【解析】【分析】根據(jù)表中數(shù)據(jù)得到點(diǎn)(-2,-3)和(0,-3)對(duì)稱點(diǎn),從而得到拋物線的對(duì)稱軸為直線x=-1,再利用表中數(shù)據(jù)得到拋物線與x軸的一個(gè)交點(diǎn)坐標(biāo)為(-3,0),然后根據(jù)拋物線的對(duì)稱性就看得到拋物線與x軸的一個(gè)交點(diǎn)坐標(biāo).【詳解】∵x=-2,y=-3;x=0時(shí),y=-3,∴拋物線的對(duì)稱軸為直線x=-1,∵拋物線與x軸的一個(gè)交點(diǎn)坐標(biāo)為(-3,0),∴拋物線與x軸的一個(gè)交點(diǎn)坐標(biāo)為(1,0).故答案為(1,0).【考點(diǎn)】本題考查了拋物線與x軸的交點(diǎn):把求二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)與x軸的交點(diǎn)坐標(biāo)問題轉(zhuǎn)化解關(guān)于x的一元二次方程即可求得交點(diǎn)橫坐標(biāo).也考查了二次函數(shù)的性質(zhì).3、【解析】【分析】根據(jù)比例的基本性質(zhì)進(jìn)行化簡(jiǎn),代入求職即可.【詳解】由可得,,代入.故答案為.【考點(diǎn)】本題主要考查了比例的基本性質(zhì)化簡(jiǎn),準(zhǔn)確觀察分析是解題的關(guān)鍵.4、【解析】【分析】連結(jié)OG,如圖,根據(jù)勾股定理得到BC=4,根據(jù)平移的性質(zhì)得到CC1=BB1,A1C1=AC=3,A1B1=AB=5,∠A1C1B1=∠ACB=90°,根據(jù)切線的性質(zhì)得到OD⊥A1B1,根據(jù)相似三角形的性質(zhì)即可得到結(jié)論.【詳解】連結(jié)OG,如圖,∵∠BAC=90°,AB=5,AC=3,∴BC==4,∵Rt△ABC沿射線CB方向平移,當(dāng)A1B1與半圓O相切于點(diǎn)D,得△A1B1C1,∴CC1=BB1,A1C1=AC=3,A1B1=AB=5,∠A1C1B1=∠ACB=90°,∵A1B1與半圓O相切于點(diǎn)D,∴OD⊥A1B1,∵BC=4,線段BC為半圓O的直徑,∴OB=OC=2,∵∠GEO=∠DEF,∴Rt△B1OD∽R(shí)t△B1A1C1,∴,即,解得OB1=,∴BB1=OB1﹣OB=﹣2=,故答案為.【考點(diǎn)】本題考查了切線的性質(zhì),平移的性質(zhì)、勾股定理和相似三角形的判定與性質(zhì),熟練掌握相關(guān)性質(zhì)是解題的關(guān)鍵.5、120°.【解析】【分析】根據(jù)三角形的內(nèi)切圓的圓心是三角形三個(gè)角的平分線的交點(diǎn)即可求解.【詳解】∵∠B=60°,∴∠BAC+∠BCA=120°∵三角形的內(nèi)切圓的圓心是三角形三個(gè)角的平分線的交點(diǎn),∴∠IAC=∠BAC,∠ICA=∠BCA,∴∠IAC+∠ICA=(∠BAC+∠BCA)=60°∴∠AIC=180°﹣60°=120°故答案為120°.【考點(diǎn)】此題主要考查利用三角形的內(nèi)切圓的圓心是三角形三個(gè)角的平分線的交點(diǎn)性質(zhì)進(jìn)行角度求解,熟練掌握,即可解題.6、

【解析】【分析】(1)根據(jù)題意畫出圖形,作CN⊥AB,再根據(jù)GF∥AB,可知△CGF∽△CAB,由相似三角形的性質(zhì)即可求出正方形的邊長;(2)設(shè)正方形的邊長是x,則過點(diǎn)C作CN⊥AB,垂足為N,交GF于點(diǎn)M,易得△CGF∽△CAB,所以,求出x值即可.【詳解】解:(1)在圖1中,作CN⊥AB,交GF于點(diǎn)M,交AB于點(diǎn)N.在Rt△ABC中,∵AC=4,BC=3,∴AB=5,∴AB?CN=BC?AC,∴CN=,∵GF∥AB,∴△CGF∽△CAB,∴CM:CN=GF:AB,設(shè)正方形邊長為x,則,解得:,∴正方形DEFG的邊長為;(2)如圖,過點(diǎn)C作CN⊥AB,垂足為N,交GF于點(diǎn)M,設(shè)小正方形的邊長為x,∵四邊形GDEF為矩形,∴GF∥AB,CM⊥GF,同理算出CN=,∴,即,∴,即小正方形的邊長是.【考點(diǎn)】本題主要考查了正方形,矩形的性質(zhì)和相似三角形的性質(zhì).會(huì)利用三角形相似中的相似比來得到相關(guān)的線段之間的等量關(guān)系是解題的關(guān)鍵.7、【解析】【分析】先求出A、B、E的坐標(biāo),然后求出半圓的直徑為4,由于E為定點(diǎn),P是半圓AB上的動(dòng)點(diǎn),N為EP的中點(diǎn),所以N的運(yùn)動(dòng)路經(jīng)為直徑為2的半圓,計(jì)算即可.【詳解】解:,∴點(diǎn)E的坐標(biāo)為(1,-2),令y=0,則,解得,,,∴A(-1,0),B(3,0),∴AB=4,由于E為定點(diǎn),P是半圓AB上的動(dòng)點(diǎn),N為EP的中點(diǎn),所以N的運(yùn)動(dòng)路經(jīng)為直徑為2的半圓,如圖,∴點(diǎn)運(yùn)動(dòng)的路徑長是.【考點(diǎn)】本題屬于二次函數(shù)和圓的綜合問題,考查了運(yùn)動(dòng)路徑的問題,熟練掌握二次函數(shù)和圓的基礎(chǔ)是解題的關(guān)鍵.四、解答題1、(1)y=-10x+900;(2)每件銷售價(jià)為70元時(shí),獲得最大利潤;最大利潤為4000元【解析】【分析】(1)根據(jù)等量關(guān)系“利潤=(售價(jià)﹣進(jìn)價(jià))×銷量”列出函數(shù)表達(dá)式即可.(2)根據(jù)(1)中列出函數(shù)關(guān)系式,配方后依據(jù)二次函數(shù)的性質(zhì)求得利潤最大值.【詳解】解:(1)根據(jù)題意,y=300﹣10(x﹣60)=-10x+900,∴y與x的函數(shù)表達(dá)式為:y=-10x+900;(2)設(shè)利潤為w,由(1)知:w=(x﹣50)(-10x+900)=﹣10x2+1400x﹣45000,∴w=﹣10(x﹣70)2+4000,∴每件銷售價(jià)為70元時(shí),獲得最大利潤;最大利潤為4000元.【考點(diǎn)】本題考查的是二次函數(shù)在實(shí)際生活中的應(yīng)用.此題難度不大,解題的關(guān)鍵是理解題意,找到等量關(guān)系,求得二次函數(shù)解析式.2、(1);(2);(3)滿足條件的x取值范圍為:0<x<3或x>12.【解析】【分析】(1)先求出OA,再判斷出,得出比例式求出x的值,即可得出結(jié)論;(2)先利用等面積求出x知,再判斷出,進(jìn)而求出DH,OH,最后用勾股定理求出DF,即可得出結(jié)論;(3)分兩種情況:點(diǎn)O在邊AC上和在AC的延長線上,找出分界點(diǎn),求出x值,即可得出結(jié)論.【詳解】(1)在Rt△ABC中,AB=10,根據(jù)勾股定理得,,∵點(diǎn)O為AC邊的中點(diǎn),∴AO=AC=,∵OD⊥AB,∠ACB=90°,∴∠ADO=∠ACB,又∵∠A=∠A,∴.∴,∴,∴.(2)如圖,過點(diǎn)D作DH⊥AC于H,∵點(diǎn)O與點(diǎn)C重合,∴S△ABC=OD?AB=,即10x=8×6,∴.∵DH⊥AC于H,∴∠DHO=∠ACB=90°,∴∠DOH+∠BOD=∠BOD+∠ABC,∴∠DOH=∠ABC,∴.∴,∴,∴,.∵OF=OD=,∴FH=OH+OF=.∴在Rt△DFH中,根據(jù)勾股定理得,∴.(3)如圖,當(dāng)點(diǎn)O在邊AC上,且半圓O與AB,∴OC=OD=x,∴AO=AC﹣OC=8﹣x,∵∠ADO=∠ACB=90°,∠A=∠A,∴,∴,∴,∴x=3,∴0<x<3,如圖,當(dāng)點(diǎn)O在AC的延長線上,且半圓O與AB,∴OC=OD=x,∴AO=AC+OC=8+x,∵∠ADO=∠ACB=90°,∠A=∠A,∴,∴,∴,∴x=12,即滿足條件的x取值范圍為:0<x<3或x>12.【考點(diǎn)】此題是圓的綜合題,主要考查了勾股定理,相似三角形的判定和性質(zhì),用分類討論的思想和方程的思想解決問題是解本題的關(guān)鍵.3、金字塔的高度AB為米,斜坡AK的坡度為1.833.【解析】【分析】根據(jù)同一時(shí)刻物高與影長成正比例列式計(jì)算即可.【詳解】解:∵FGHI是正方形,點(diǎn)B在正方形的中心,BC⊥HG,∴BK∥FG,BK==×160=80,∵根據(jù)同一時(shí)刻物高與影長成正比例,∴,即,解得:AB=米,連接AK,=1.833.∴金字塔的高度AB為米,斜坡AK的坡度為1.833.【考點(diǎn)】本題考查了相似三角形的應(yīng)用,只要是把實(shí)際問題抽象到相似三角形中,利用相似三角形的相似比,列出方程,通過解方程求解,解此題的關(guān)鍵是找到各部分以及與其對(duì)應(yīng)的影長.4、(1)d=;(2)d=或d=(3)<d<或d<;(4)<d<?!窘馕觥俊痉治觥浚?)令-x2-2x+3=x+d求解即可;(2)設(shè)拋物線c:y=-x2-2x+3與x軸交于點(diǎn)A(-3,0),點(diǎn)B(1,0),則根據(jù)方程有兩個(gè)相等的實(shí)根求出P的坐標(biāo),然后求解即可;(3)(4)根據(jù)(2)求出的P點(diǎn)坐標(biāo)進(jìn)行數(shù)形結(jié)合畫圖找出d的取值范圍即可.【詳解】解:(1)當(dāng)直線l經(jīng)過點(diǎn)A(-3,0)時(shí),d=;(2)設(shè)拋物線c:y=-x2-2x+3與x軸交于點(diǎn)A(-3,0),點(diǎn)B(1,0),直線l:y=x+d與拋物線c:y=x2+2x-3(-3<x<1)相切于點(diǎn)P,則點(diǎn)P的橫坐標(biāo)恰好是方程x+d=x2+2x-3,即2x2+3x-2d-6=0(-3<x<1)的兩個(gè)相等實(shí)數(shù)根,解△=9+8(2d+6)=0得d=,∴點(diǎn)P的坐標(biāo)為().①當(dāng)直線l經(jīng)過點(diǎn)B(1,0)時(shí),直線l與這個(gè)新圖象有且只有三個(gè)公共點(diǎn),解得d=;②當(dāng)直線l經(jīng)過點(diǎn)P()時(shí),直線l與這個(gè)新圖象有且只有三個(gè)公共點(diǎn),解得d=;

∴綜合①、②得:d=或d=(3)①由平移直線l可得:直線l從經(jīng)過點(diǎn)A(-3,0)開始向下平移到直線l經(jīng)過點(diǎn)P()的過程中,直線l與這個(gè)新圖象有且只有兩個(gè)公共點(diǎn),可得<d<②直線l從經(jīng)過點(diǎn)P()繼續(xù)向下平移的過程中,直線l與這個(gè)新圖象有且只有兩個(gè)公共點(diǎn),可得d<;∴綜合①、②得:<d<或d<;(4)如圖:當(dāng)直線l經(jīng)過點(diǎn)B(1,0)時(shí),直線l與這個(gè)新圖象有且只有三個(gè)公共點(diǎn),解得d=;當(dāng)直線l繼續(xù)向下平移的過程中經(jīng)過點(diǎn)P(),直線l與這個(gè)新圖象有且只有三個(gè)公共點(diǎn),可得d=;∴要使直線l與這個(gè)新圖象有四個(gè)公共點(diǎn)則d的取值范圍是<d<.【考點(diǎn)】本題考查的是二次函數(shù)綜合運(yùn)用,關(guān)鍵是通過數(shù)形變換,確定變換后圖形與直線的位置關(guān)系.5、(1);(2);(3)【解析】【分析】(1)由拋物線的對(duì)稱軸為直線,即可求得點(diǎn)E的坐標(biāo);在y=ax2﹣3ax﹣4a(a<0)令y=0可得關(guān)于x的方程ax2﹣3ax﹣4a=0,解方程即可求得點(diǎn)A的坐標(biāo);(2)如圖1,設(shè)⊙E與直線BC相

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論