版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
北師大版9年級數(shù)學(xué)上冊期末試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題24分)一、單選題(6小題,每小題2分,共計12分)1、生活中到處可見黃金分割的美,如圖,在設(shè)計人體雕像時,使雕像的腰部以下與全身的高度比值接近0.618,可以增加視覺美感,若圖中為2米,則約為(
)A.1.24米 B.1.38米 C.1.42米 D.1.62米2、如圖,為△的中位線,點在上,且;若,則的長為(
)A.2 B.1 C.4 D.33、直線不經(jīng)過第二象限,則關(guān)于的方程實數(shù)解的個數(shù)是(
).A.0個 B.1個 C.2個 D.1個或2個4、已知關(guān)于x的一元二次方程x2﹣3x+1=0有兩個不相等的實數(shù)根x1,x2,則x12+x22的值是()A.﹣7 B.7 C.2 D.﹣25、點P是△ABC中AB邊上一點(不與A、B重合),過P作直線截△ABC使得截得的三角形與△ABC相似,這樣的直線最多作()A.2條 B.3條 C.4條 D.5條6、下列說法中不正確的是()A.任意兩個等邊三角形相似 B.有一個銳角是40°的兩個直角三角形相似C.有一個角是30°的兩個等腰三角形相似 D.任意兩個正方形相似二、多選題(6小題,每小題2分,共計12分)1、下列關(guān)于x的方程的說法正確的是()A.一定有兩個實數(shù)根 B.可能只有一個實數(shù)根C.可能無實數(shù)根 D.當(dāng)時,方程有兩個負(fù)實數(shù)根2、兩個關(guān)于的一元二次方程和,其中,,是常數(shù),且.如果是方程的一個根,那么下列各數(shù)中,一定是方程的根的是()A. B. C.2 D.-23、(多選)如圖,正方形ABCD的對角線AC,BD相交于D于點O,點P為線段AC上一點,連接BP,過點P作交AD于點E,連接BE,若,,下列說法正確的有(
)A. B. C. D.4、如圖,將繞正方形ABCD的頂點A順時針旋轉(zhuǎn)90°得,連結(jié)EF交AB于H,則下列結(jié)論正確的是(
)A.AE⊥AF B.EF∶AF=∶1C.AF2=FH·FE D.FB∶FC=HB∶EC5、有下列四個命題,其中不正確的為(
)A.兩條對角線互相平分的四邊形是平行四邊形B.兩條對角線相等的四邊形是菱形C.兩條對角線互相垂直的四邊形是正方形D.兩條對角線相等且互相垂直的四邊形是正方形6、如圖,正方形ABCD中,CE平分∠ACB,點F在邊AD上,且AF=BE.連接BF交CE于點G,交AC于點M,點P是線段CE上的動點,點N是線段CM上的動點,連接PM,PN.下列四個結(jié)論一定成立的是(
)A.CE⊥BF B.BE=AM C.AE+FM=AB D.PM+PN≥AC第Ⅱ卷(非選擇題76分)三、填空題(8小題,每小題2分,共計16分)1、將方程(3x-1)(2x+4)=2化為一般形式為____________,其中二次項系數(shù)為________,一次項系數(shù)為________.2、如圖是用杠桿撬石頭的示意圖,是支點,當(dāng)用力壓杠桿的端時,杠桿繞點轉(zhuǎn)動,另一端向上翹起,石頭就被撬動.現(xiàn)有一塊石頭,要使其滾動,杠桿的端必須向上翹起,已知杠桿的動力臂與阻力臂之比為6:1,要使這塊石頭滾動,至少要將杠桿的端向下壓______.3、如圖,點E、F分別是矩形ABCD邊BC和CD上的點,把△CEF沿直線EF折疊得到△GEF,再把△BEG沿直線BG折疊,點E的對應(yīng)點H恰好落在對角線BD上,若此時F、G、H三點在同一條直線上,且線段HF與HD也恰好關(guān)于某條直線對稱,則的值為______.4、若函數(shù)是反比例函數(shù),那么k的值是_____.5、如果關(guān)于的一元二次方程有實數(shù)根,那么的取值范圍是___.6、在20世紀(jì)70年代,我國著名數(shù)學(xué)家華羅庚教授將黃金分割法作為一種“優(yōu)選法”,在全國大規(guī)模推廣,取得了很大成果.如圖,利用黃金分割法,所做將矩形窗框分為上下兩部分,其中E為邊的黃金分割點,即.已知為2米,則線段的長為______米.7、若正方形的對角線的長為4,則該正方形的面積為_________.8、正方形ABCD的邊長為1,點P為對角線AC上任意一點,PE⊥AD,PF⊥CD,垂足分別是E,F(xiàn).則PE+PF=_____.四、解答題(6小題,每小題10分,共計60分)1、已知圖中的曲線是反比例函數(shù)y=(m為常數(shù))圖象的一支.(1)根據(jù)圖象位置,求m的取值范圍;(2)若該函數(shù)的圖象任取一點A,過A點作x軸的垂線,垂足為B,當(dāng)△OAB的面積為4時,求m的值.2、如圖,已知正比例函數(shù)y=2x和反比例函數(shù)的圖象交于點A(m,﹣2).(1)求反比例函數(shù)的解析式;(2)觀察圖象,直接寫出正比例函數(shù)值小于反比例函數(shù)值時自變量x的取值范圍;(3)若雙曲線上點C(2,n)沿OA方向平移個單位長度得到點B,在x軸上是否存在點P,使S△OCP=S四邊形OABC?若存在,請求出P點的坐標(biāo);若不存在,請說明理由.3、如圖,在四邊形中,,,..(1)求的長;(2)求四邊形的面積.4、如圖,四邊形ABCD是正方形,點E在BC延長線上,DF⊥AE于點F,點G在AE上,且∠ABG=∠E.求證:AG=DF.5、如圖,在平面直角坐標(biāo)系中,的三個頂點坐標(biāo)分別為,,.以原點O為位似中心,位似比為,在y軸的左側(cè),畫出將放大后的,并寫出點的坐標(biāo)______.6、已知關(guān)于的方程有實根.(1)求的取值范圍;(2)設(shè)方程的兩個根分別是,,且,試求的值.-參考答案-一、單選題1、A【解析】【分析】根據(jù)a:b≈0.618,且b=2即可求解.【詳解】解:由題意可知,a:b≈0.618,代入b=2,∴a≈2×0.618=1.236≈1.24.故答案為:A【考點】本題考查了黃金分割比的定義,根據(jù)題中所給信息即可求解,本題屬于基礎(chǔ)題.2、A【解析】【分析】根據(jù)三角形中位線定理求出DE,根據(jù)直角三角形的性質(zhì)求出DF,計算即可.【詳解】∵DE為△ABC的中位線,∴DE=BC=5,∵∠AFB=90°,D是AB的中點,∴DF=AB=3,∴EF=DE-DF=2,故選A.【考點】本題考查的是三角形中位線定理、直角三角形的性質(zhì),掌握三角形的中位線平行于第三邊,且等于第三邊的一半是解題的關(guān)鍵.3、D【解析】【分析】根據(jù)直線不經(jīng)過第二象限,得到,再分兩種情況判斷方程的解的情況.【詳解】∵直線不經(jīng)過第二象限,∴,∵方程,當(dāng)a=0時,方程為一元一次方程,故有一個解,當(dāng)a<0時,方程為一元二次方程,∵?=,∴4-4a>0,∴方程有兩個不相等的實數(shù)根,故選:D.【考點】此題考查一次函數(shù)的性質(zhì):利用函數(shù)圖象經(jīng)過的象限判斷字母的符號,方程的解的情況,注意易錯點是a的取值范圍,再分類討論.4、B【解析】【分析】根據(jù)一元二次方程的根與系數(shù)的關(guān)系可得x1+x2=3,x1x2=1,再把代數(shù)式x12+x22化為,再整體代入求值即可.【詳解】解:根據(jù)根與系數(shù)的關(guān)系得x1+x2=3,x1x2=1,所以x12+x22=(x1+x2)2﹣2x1x2=32﹣2×1=7.故選:B.【考點】本題考查的是一元二次方程的根與系數(shù)的關(guān)系,熟練的利用根與系數(shù)的關(guān)系求解代數(shù)式的值是解本題的關(guān)鍵.5、C【解析】【分析】根據(jù)相似三角形的判定方法分析,即可做出判斷.【詳解】滿足條件的直線有4條,如圖所示:如圖1,過P作PE∥AC,則有△BPE∽△BAC;如圖2,過P作PE∥BC,則有△APE∽△ABC;如圖3,過P作∠AEP=∠B,又∠A=∠A,則有△APE∽△ACB;如圖4,過P作∠BEP=∠A,又∠B=∠B,則有△BEP∽△BAC,故選:C.【考點】本題考查了相似三角形的判定,解答的關(guān)鍵是對相似三角形的判定方法的理解與靈活運用.6、C【解析】【分析】直接利用相似圖形的性質(zhì)分別分析得出答案.【詳解】A.任意兩個等邊三角形相似,說法正確;B.有一個銳角是40°的兩個直角三角形相似,說法正確;C.有一個角是30°的兩個等腰三角形相似,30°有可能是頂角或底角,故說法錯誤;D.任意兩個正方形相似,說法正確.故選:C.【考點】本題主要考查了圖形的相似,正確把握相似圖形的判定方法是解題關(guān)鍵.二、多選題1、BD【解析】【分析】直接利用方程根與系數(shù)的關(guān)系以及根的判別式分析求出即可.【詳解】解:當(dāng)a=0時,方程整理為解得,∴選項B正確;故選項A錯誤;當(dāng)時,方程是一元二次方程,∴∴此時的方程表兩個不相等的實數(shù)根,故選項C錯誤;若時,,∴當(dāng)時,方程有兩個負(fù)實數(shù)根∴選項D正確,故選:BD【考點】此題主要考查了一元二次方程根的判別式和根與系數(shù)的關(guān)系,正確把握相關(guān)知識是解題關(guān)鍵.2、AD【解析】【分析】利用方程根的定義去驗證判斷即可.【詳解】∵,,∴,∴,,∴,,∵是方程的一個根,∴是方程的一個根,∴是方程的一個根,即時方程的一個根.∵是方程的一個根,∴,當(dāng)x=時,,∴是方程的根.故選:A,D.【考點】本題考查了一元二次方程根的定義即使得方程兩邊相等的未知數(shù)的值,正確理解定義是解題的關(guān)鍵.3、ABC【解析】【分析】由∠DBP+∠BPO=90°,∠APE+∠BPO=90°,可判斷結(jié)論A正確;過P作PK⊥AD于K,PT⊥AB于T,證明△PKE≌△PTB(ASA),可判定結(jié)論B正確;延長KP交BC于M,可得△CPM是等腰直角三角形,CP=PM=CP=1,即可得AE=AD-DK-KE=4,判斷結(jié)論C正確;在Rt△BPM中,BP=,可得S△PBE=BP?PE=13,可判斷結(jié)論D錯誤.【詳解】解:∵四邊形ABCD是正方形,∴∠BOP=90°,∴∠DBP+∠BPO=90°,∵PE⊥PB,∴∠APE+∠BPO=90°,∴∠APE=∠DBP,故結(jié)論A正確;過P作PK⊥AD于K,PT⊥AB于T,如圖:∵四邊形ABCD是正方形,∴∠DAC=∠BAC,又PK⊥AD,PT⊥AB∴PK=PT,∵∠KPT=90°=∠EPB,∴∠KPE=∠BPT,∵∠PKE=90°=∠PTB,∴△PKE≌△PTB(ASA),∴PE=PB,故結(jié)論B正確;延長KP交BC于M,如圖:∵四邊形ABCD是正方形,∴AD∥BC,∠ACB=45°,∴PM⊥BC,∴△CPM是等腰直角三角形,∴CP=PM=CP=1,∴DK=CM=1,KE=PM=1,∴AE=AD-DK-KE=4,故結(jié)論C正確;∵BC=6,CM=1,∴BM=5,在Rt△BPM中,BP==,∴PE=BP=,∴S△PBE=BP?PE=13,故結(jié)論D錯誤,故選:ABC.【考點】本題考查正方形的性質(zhì)及應(yīng)用,涉及全等三角形的判定與性質(zhì),等腰直角三角形的性質(zhì)及應(yīng)用等知識,解題的關(guān)鍵是作輔助線,證明△PKE≌△PTB.4、ABD【解析】【分析】由旋轉(zhuǎn)得到,進(jìn)而可得,根據(jù)等腰直角三角形的性質(zhì)以及勾股定理可得EF∶AF=∶1,根據(jù)相似三角對應(yīng)邊的比等于相似比可得FB∶FC=HB∶EC,而根據(jù)題意無法證明AF2=FH·FE,由此即可求得答案.【詳解】解:∵四邊形ABCD是正方形,∴,,∵旋轉(zhuǎn),∴,,,∴,即.,故A正確;是等腰直角三角形,,,(舍負(fù)),∴,故B正確;,,,故D正確.與不相似,∴無法證得,即無法證得,故C不正確.故選:ABD.【考點】本題考查了正方形的性質(zhì),等腰直角三角形的性質(zhì),勾股定理,相似三角形的判定和性質(zhì)等相關(guān)知識,熟練掌握相似三角形的判定與性質(zhì)是解決本題的關(guān)鍵.5、BCD【解析】【分析】利用平行四邊形的判定、菱形的判定及正方形的判定逐一判斷后即可確定正確的選項.【詳解】解:A、兩條對角線互相平分的四邊形是平行四邊形,故此選項不符合題意;B、兩條對角線互相垂直平分的四邊形是菱形,故此選項符合題意;C、兩條對角線互相垂直平分且相等的四邊形是正方形,故此選項符合題意;D、兩條對角線相等且互相垂直平分的四邊形是正方形,故此選項符合題意.故選BCD.【考點】本題考查了命題與定理的知識,了解平行四邊形的判定、菱形的判定及正方形的判定是解答本題的關(guān)鍵,難度較?。?、ABD【解析】【分析】由SAS可證△BAF≌△CBE,進(jìn)而可證EG⊥BG,即CE⊥BF,故A正確;根據(jù)ASA可證△BCG≌△MCG,知∠CBG=∠CMG,因為∠CBG=∠AFM,∠AMF=∠CMG,可得∠AFM=∠AMF,即AM=AF,可證BE=AM,故B正確;因AB=AE+BE=AE+AM,故C不正確;當(dāng)PN⊥MC時,PM+PN=BP+PN=BN最短,此時BN為△ABC底邊AC上的高,則BN的長度為PM+PN的最小值,根據(jù)正方形的性質(zhì)知,BN==BD=AC,因此PM+PN≥AC,故D正確.【詳解】解:∵四邊形ABCD是正方形∴AB=BC,∠BAF=∠CBE=90°在△BAF和△CBE中∴△BAF≌△CBE(SAS)∴∠BAF=∠ECB∵∠CBE=90°∴∠BEC+∠BCE=90°∴∠BEC+∠FBA=90°∴∠BGE=180°-(∠BEC+∠FBA)=90°∴EG⊥BG,即CE⊥BF,故A正確;∵CE平分∠ACB∴∠BCE=∠MCG∵CE⊥BF∴∠MGC=∠BGC=90°在△BCG和△MCG中∴△BCG≌△MCG(ASA)∴∠CBG=∠CMG∵正方形ABCD∴AD∥BC∴∠CBG=∠AFM∵∠AMF=∠CMG∴∠AFM=∠AMF∴AM=AF∵AF=BE∴BE=AM,故B正確;∵AB=AE+BE,BE=AM∴AE+AM=AB,故C不正確;連接BP,如圖,∵△BCG≌△MVG∴BG=GM∵CE⊥BF∴CG垂直平分BM∴MP=BP當(dāng)PN⊥MC時,PM+PN=BP+PN=BN最短,此時BN為△ABC底邊AC上的高,則BN的長度為PM+PN的最小值,根據(jù)正方形的性質(zhì)知,BN==BD=AC∴PM+PN≥AC,故D正確綜上所述,一定成立的是ABD,故選:ABD.【考點】本題考查了全等三角形的判定與性質(zhì),正方形的性質(zhì),線段的垂直平分線,解題的關(guān)鍵是熟練掌握全等三角形的判定與性質(zhì).三、填空題1、
3x2+5x-3=0
3
5【解析】【分析】將方程展開,化簡后即可求解.【詳解】將,開展為一般形式為:;則可知一次項系數(shù)為5,二次項系數(shù)為3,故答案為:,3,5.【考點】本題主要考查了將一元二次方程化為最簡式以及判斷方程各項系數(shù)的知識,熟記相關(guān)考點概念是解答本題的關(guān)鍵.2、60【解析】【分析】首先根據(jù)題意構(gòu)造出相似三角形,然后根據(jù)相似三角形的對應(yīng)邊成比例求得端點A向下壓的長度.【詳解】解:如圖;AM、BN都與水平線垂直,即AM∥BN;易知:△ACM∽△BCN;∴,∵AC與BC之比為6:1,∴,即AM=6BN;∴當(dāng)BN≥10cm時,AM≥60cm;故要使這塊石頭滾動,至少要將杠桿的端點A向下壓60cm.故答案為:60.【考點】本題考查相似三角形的判定與性質(zhì)的實際應(yīng)用,正確的構(gòu)造相似三角形是解題的關(guān)鍵.3、【解析】【分析】根據(jù)線段HF與HD也恰好關(guān)于某條直線對稱,可得HF=HD,由折疊和同角的余角相等得,然后證明,再利用設(shè)元法即可解決問題.【詳解】解:∵線段HF與HD也恰好關(guān)于某條直線對稱,∴HF=HD,∴∠HFD=∠FDH,∴∠BHF=2∠HFD由折疊可知:GF=CF,HG=CE=EG,,∠BHG=∠BEG,∠CEF=∠GEF,∵∠BEG+∠CEF+∠GEF=180°,∴2∠HFD+2∠CEF=180°∴∠HFD+∠CEF=90°,又∵∠CFE+∠CEF=90°∴,又∵HF=HD,∴△DHF是等邊三角形,∴∠CBD=∠CEF=30°,∴,設(shè)GF=CF=x,HF=DF=y,則HG=CE=EG=,HF=HG+GF=GE+CF,即y=x+,∵,∴.【考點】本題主要考查折疊的性質(zhì)、軸對稱的性質(zhì)、相似三角形的判定與性質(zhì).解決本題的關(guān)鍵是掌握翻折的性質(zhì).4、0【解析】【分析】直接利用反比例函數(shù)的定義得出答案.【詳解】∵函數(shù)是反比例函數(shù),∴k2﹣3k﹣1=﹣1且3﹣k≠0,解得:k1=0,k2=3,(不合題意舍去)∴k=0.故答案為:0.【考點】本題主要考查反比例函數(shù)的定義,掌握反比例函數(shù)的定義,是解題的關(guān)鍵.5、【解析】【分析】由一元二次方程根與系數(shù)的關(guān)鍵可得:從而列不等式可得答案.【詳解】解:關(guān)于的一元二次方程有實數(shù)根,故答案為:【考點】本題考查的是一元二次方程根的判別式,掌握一元二次方程根的判別式是解題的關(guān)鍵.6、##【解析】【分析】根據(jù)點E是AB的黃金分割點,可得,代入數(shù)值得出答案.【詳解】∵點E是AB的黃金分割點,∴.∵AB=2米,∴米.故答案為:().【考點】本題主要考查了黃金分割的應(yīng)用,掌握黃金比是解題的關(guān)鍵.7、8【解析】【分析】根據(jù)正方形的面積等于對角線乘積的一半列式計算即可得解.【詳解】解:∵正方形的一條對角線的長為4,∴這個正方形的面積=×42=8.故答案為:8.【考點】本題考查了正方形的性質(zhì),熟練掌握正方形的面積的兩種求法是解題的關(guān)鍵.8、1【解析】【分析】證明四邊形DEPF是矩形得PE=DF,證明△PFC是等腰直角三角形得PF=CF便可求得結(jié)果.【詳解】解:∵四邊形ABCD是正方形,∴∠ADC=90°,∠ACD=,∵PE⊥AD,PF⊥CD,∴四邊形DEPF是矩形,∴PE=DF,∵∠ACD=45°,∠PFC=90°,∴PF=CF,∴PE+PF=DF+CF=CD=1,故答案為:1.【考點】本題主要考查了正方形的性質(zhì),矩形的性質(zhì)與判定,等腰直角三角形的判定,關(guān)鍵是證明PE=DF,PF=CF.四、解答題1、(1)m>5;(2)m=13.【解析】【分析】(1)由反比例函數(shù)圖象位于第一象限得到m﹣5大于0,即可求出m的范圍;(2)根據(jù)反比例函數(shù)系數(shù)k的幾何意義得出(m﹣5)=4,解得即可.【詳解】解:(1)∵這個反比例函數(shù)的圖象分布在第一、第三象限,∴m﹣5>0,解得m>5;(2)∵S△OAB=|k|,△OAB的面積為4,∴(m﹣5)=4,∴m=13.【考點】此題考查了反比例函數(shù)系數(shù)k的幾何意義,反比例函數(shù)的圖象與性質(zhì),根據(jù)系數(shù)k的幾何意義得出(m?5)=4是解題的關(guān)鍵.2、(1);(2)或;(3)在x軸上是否存在點P,見解析.【解析】【分析】(1)設(shè)反比例函數(shù)的解析式為y=(k>0),然后根據(jù)條件求出A點坐標(biāo),再求出k的值,進(jìn)而求出反比例函數(shù)的解析式;(2)直接由圖象得出正比例函數(shù)值小于反比例函數(shù)值時自變量x的取值范圍;(3)首先證明四邊形OABC是菱形,然后求出AC、OB的長度,計算出菱形OABC的面積,從而得到△OCP的面積,列方程求解即可..【詳解】解:(1)設(shè)反比例函數(shù)的解析式為y=(k>0),∵A(m,?2)在y=2x上,∴?2=2m,∴m=?1,∴A(?1,?2),又∵點A在y=上,∴k=2,∴反比例函數(shù)的解析式為y=2x;
(2)由反比例函數(shù)的對稱性可知,與一次函數(shù)再第一象限內(nèi)的交點坐標(biāo)為:(1,2),觀察圖像可知:正比例函數(shù)值小于反比例函數(shù)值時自變量的取值范圍:或;(3)在上,
即,,四邊形為菱形
的解析式為y=2x-3,
的解析式,
假設(shè)在軸上存在使,,假設(shè)成立,在軸上存在點使【考點】本題主要考查了反比例函數(shù)的綜合,解答本題的關(guān)鍵是熟練掌握反比例函數(shù)的性質(zhì)以及菱形的判定定理,此題難度不大,是一道不錯的中考試題.3、(1);(2)【解析】【分析】(1)作DM⊥BC,A
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 中學(xué)學(xué)生食堂食品安全管理制度
- 養(yǎng)老院工作人員服務(wù)態(tài)度規(guī)范制度
- 企業(yè)內(nèi)部保密責(zé)任追究制度
- 公共交通車輛駕駛?cè)藛T培訓(xùn)考核制度
- 2026年機(jī)器人技術(shù)與未來應(yīng)用趨勢考核題
- 2026年現(xiàn)代企業(yè)管理知識測試題庫企業(yè)戰(zhàn)略與組織管理
- 2026年化工原理與工藝流程模擬練習(xí)題
- 2026年法律職業(yè)資格考試專題訓(xùn)練憲法與行政法
- 2026年祠堂修繕捐款協(xié)議
- 古田會議永放光芒課件
- 戶外領(lǐng)隊培訓(xùn)課件
- 2026年深圳市離婚協(xié)議書規(guī)范范本
- 2026年及未來5年中國飼料加工設(shè)備行業(yè)發(fā)展前景預(yù)測及投資戰(zhàn)略研究報告
- 2026年自動駕駛政策法規(guī)報告
- 醫(yī)療數(shù)據(jù)倫理治理的國際經(jīng)驗借鑒
- 浙江省《檢驗檢測機(jī)構(gòu)技術(shù)負(fù)責(zé)人授權(quán)簽字人》考試題及答案
- 子午流注在護(hù)理中的應(yīng)用
- 新媒體評論管理制度規(guī)范(3篇)
- 劑量反應(yīng)曲線的統(tǒng)計分析方法-洞察及研究
- 2025年高職室內(nèi)藝術(shù)設(shè)計(室內(nèi)設(shè)計)試題及答案
- 2025課堂懲罰 主題班會:馬達(dá)加斯加企鵝課堂懲罰 課件
評論
0/150
提交評論