綜合解析人教版8年級數(shù)學(xué)上冊《全等三角形》定向訓(xùn)練練習(xí)題(詳解)_第1頁
綜合解析人教版8年級數(shù)學(xué)上冊《全等三角形》定向訓(xùn)練練習(xí)題(詳解)_第2頁
綜合解析人教版8年級數(shù)學(xué)上冊《全等三角形》定向訓(xùn)練練習(xí)題(詳解)_第3頁
綜合解析人教版8年級數(shù)學(xué)上冊《全等三角形》定向訓(xùn)練練習(xí)題(詳解)_第4頁
綜合解析人教版8年級數(shù)學(xué)上冊《全等三角形》定向訓(xùn)練練習(xí)題(詳解)_第5頁
已閱讀5頁,還剩23頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

人教版8年級數(shù)學(xué)上冊《全等三角形》定向訓(xùn)練考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計20分)1、如圖,在中,,,,平分交于D點(diǎn),E,F(xiàn)分別是,上的動點(diǎn),則的最小值為(

)A. B. C.3 D.2、如圖,在ABC和BDE中,點(diǎn)C在邊BD上,邊AC交邊BE于點(diǎn)F.若AC=BD,AB=ED,BC=BE,則∠ACB等于(

)A.∠EDB B.∠BED C.∠AFB D.2∠ABF3、已知圖中的兩個三角形全等,AD與CE是對應(yīng)邊,則A的對應(yīng)角是()A. B. C. D.4、如圖,,點(diǎn)在邊上,則下列結(jié)論中一定成立的是(

)A. B.C. D.5、如圖,△ABC的三邊AB,BC,CA長分別是20,30,40,其三條角平分線將△ABC分為三個三角形,則S△ABO:S△BCO:S△CAO等于()A.1:1:1 B.1:2:3 C.2:3:4 D.3:4:5第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計30分)1、如圖,在平面直角坐標(biāo)系中,將沿軸向右平移后得到,點(diǎn)A的坐標(biāo)為,點(diǎn)A的對應(yīng)點(diǎn)在直線上,點(diǎn)在的角平分線上,若四邊形的面積為4,則點(diǎn)的坐標(biāo)為________.2、如圖,在與中,,,,若,則的度數(shù)為________.3、如圖,在和中,,,直線交于點(diǎn)M,連接.以下結(jié)論:①;②;③;④平分.其中正確的是___________(填序號).4、如圖,在四邊形中,,,,的延長線與、相鄰的兩個角的平分線交于點(diǎn)E,若,則的度數(shù)為___________.5、如圖是由九個邊長為1的小正方形拼成的大正方形,圖中∠1+∠2+∠3+∠4+∠5的度數(shù)為______.三、解答題(5小題,每小題10分,共計50分)1、(1)閱讀理解:問題:如圖1,在四邊形中,對角線平分,.求證:.思考:“角平分線+對角互補(bǔ)”可以通過“截長、補(bǔ)短”等構(gòu)造全等去解決問題.方法1:在上截取,連接,得到全等三角形,進(jìn)而解決問題;方法2:延長到點(diǎn),使得,連接,得到全等三角形,進(jìn)而解決問題.結(jié)合圖1,在方法1和方法2中任選一種,添加輔助線并完成證明.(2)問題解決:如圖2,在(1)的條件下,連接,當(dāng)時,探究線段,,之間的數(shù)量關(guān)系,并說明理由;(3)問題拓展:如圖3,在四邊形中,,,過點(diǎn)D作,垂足為點(diǎn)E,請直接寫出線段、、之間的數(shù)量關(guān)系.2、如圖,已知,.求證:.3、小明和小亮在學(xué)習(xí)探索三角形全等時,碰到如下一題:如圖1,若AC=AD,BC=BD,則△ACB與△ADB有怎樣的關(guān)系?(1)請你幫他們解答,并說明理由.(2)細(xì)心的小明在解答的過程中,發(fā)現(xiàn)如果在AB上任取一點(diǎn)E,連接CE、DE,則有CE=DE,你知道為什么嗎?(如圖2)(3)小亮在小明說出理由后,提出如果在AB的延長線上任取一點(diǎn)P,也有第2題類似的結(jié)論.請你幫他畫出圖形,并證明結(jié)論.4、如圖,已知:正方形,點(diǎn),分別是,上的點(diǎn),連接,,,且,求證:.5、在中,,,為直線上一點(diǎn),連接,過點(diǎn)作交于點(diǎn),交于點(diǎn),在直線上截取,連接.(1)當(dāng)點(diǎn),都在線段上時,如圖①,求證:;(2)當(dāng)點(diǎn)在線段的延長線上,點(diǎn)在線段的延長線上時,如圖②;當(dāng)點(diǎn)在線段的延長線上,點(diǎn)在線段的延長線上時,如圖③,直接寫出線段,,之間的數(shù)量關(guān)系,不需要證明.-參考答案-一、單選題1、D【解析】【分析】利用角平分線構(gòu)造全等,使兩線段可以合二為一,則EC+EF的最小值即為點(diǎn)C到AB的垂線段長度.【詳解】在AB上取一點(diǎn)G,使AG=AF.∵在Rt△ABC中,∠ACB=90°,AC=3,BC=4∴AB=5,∵∠CAD=∠BAD,AE=AE,∴△AEF≌△AEG(SAS)∴FE=GE,∴要求CE+EF的最小值即為求CE+EG的最小值,故當(dāng)C、E、G三點(diǎn)共線時,符合要求,此時,作CH⊥AB于H點(diǎn),則CH的長即為CE+EG的最小值,此時,,∴CH==,即:CE+EF的最小值為,故選:D.【考點(diǎn)】本題考查了角平分線構(gòu)造全等以及線段和差極值問題,靈活構(gòu)造輔助線是解題關(guān)鍵.2、C【解析】【分析】根據(jù)全等三角形的判定與性質(zhì)可得=,再根據(jù)三角形外角的性質(zhì)即可求得答案.【詳解】解:在和中,,,,是的外角,,∴,故選:C.【考點(diǎn)】本題考查了全等三角形的判定與性質(zhì)以及三角形的外角性質(zhì),熟練掌握全等三角形的判定與性質(zhì)是解決本題的關(guān)鍵.3、A【解析】【分析】觀察圖形,AD與CE是對應(yīng)邊,根據(jù)對應(yīng)邊去找對應(yīng)角.【詳解】觀察圖形知,AD與CE是對應(yīng)邊∴∠B與∠ACD是對應(yīng)角又∠D與∠E是對應(yīng)角∴∠A與∠BCE是對應(yīng)角.故選:A.【考點(diǎn)】本題考查了全等三角形的性質(zhì),正確的識別圖形是解題的關(guān)鍵.4、C【解析】【分析】根據(jù)全等三角形的性質(zhì)可直接進(jìn)行排除選項.【詳解】解:∵,∴AB=AD,BC=DE,AC=AE,∠B=∠ADE,∠C=∠E,∴∠ABD=∠ADB,故A、B、D都是錯誤的,C選項正確;故選C.【考點(diǎn)】本題主要考查全等三角形的性質(zhì),熟練掌握全等三角形的性質(zhì)是解題的關(guān)鍵.5、C【解析】【分析】過點(diǎn)作于點(diǎn),作于點(diǎn),作于點(diǎn),先根據(jù)角平分線的性質(zhì)可得,再根據(jù)三角形的面積公式即可得.【詳解】解:如圖,過點(diǎn)作于點(diǎn),作于點(diǎn),作于點(diǎn),是的三條角平分線,,,故選:C.【考點(diǎn)】本題考查了角平分線的性質(zhì),熟練掌握角平分線的性質(zhì)是解題關(guān)鍵.二、填空題1、【解析】【分析】先求出點(diǎn)坐標(biāo),由此可知平移的距離,根據(jù)四邊形的面積為4,可求出點(diǎn)坐標(biāo)和平移的方向、距離,則可求B′點(diǎn)坐標(biāo).【詳解】解:∵沿軸向右平移后得到,∴點(diǎn)與點(diǎn)是縱坐標(biāo)相同,是4,把代入中,得到,∴點(diǎn)坐標(biāo)為(4,4),∴點(diǎn)是沿軸向右平移4個單位,過點(diǎn)作,,∵點(diǎn)在的角平分線上,且,四邊形的面積為4,∴∴∴∴點(diǎn)坐標(biāo)為(1,3),根據(jù)平移的性質(zhì)可知點(diǎn)B也是向右平移4個單位得到.∵點(diǎn)(1,3),∴B′(5,3).故答案為:(5,3).【考點(diǎn)】本題主要考查了一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征、平移性質(zhì),通過求平移后的坐標(biāo)得到平移的距離是解決本題的的關(guān)鍵.2、40°【解析】【分析】先利用HL定理證明Rt△ABC≌Rt△DEF,得出∠D的度數(shù),再根據(jù)直角三角形兩銳角互余即可得出的度數(shù).【詳解】解:在Rt△ABC與Rt△DEF中,∵∠B=∠E=90°,AC=DF,AB=DE,∴Rt△ABC≌Rt△DEF(HL)∴∠D=∠A=50°,∴∠DFE=90°-∠D=90°-50°=40°.故答案為:40°.【考點(diǎn)】此題主要考查直角三角形全等的HL定理.理解斜邊和一組直角邊對應(yīng)相等的兩個直角三角形全等是解題關(guān)鍵.3、①②③【解析】【分析】由SAS證明△AOC≌△BOD得出∠OAC=∠OBD,AC=BD,①②正確;由全等三角形的性質(zhì)得出∠OAC=∠OBD,由三角形的外角性質(zhì)得:∠AMB+∠OBD=∠OAC+∠AOB,得出∠AMB=∠AOB=α,可得③正確;作OG⊥AM于G,OH⊥DM于H,利用全等三角形的對應(yīng)高相等得出OG=OH,由角平分線的判定方法得∠AMO=∠DMO,假設(shè)OM平分∠BOC,則可求出∠AOM=∠DOM,由全等三角形的判定定理可得△AMO≌△DMO,得AO=OD,而OC=OD,所以O(shè)A=OC,而OA<OC,故④錯誤;即可得出結(jié)論.【詳解】解:∵∠AOB=∠COD=α,∴∠AOB+∠BOC=∠COD+∠BOC,即∠AOC=∠BOD,在△AOC和△BOD中,,∴△AOC≌△BOD(SAS),∴∠OAC=∠OBD,AC=BD,故①②正確;由三角形的內(nèi)角和定理得:∠AMB+∠OBD=∠OAC+∠AOB,∵∠OAC=∠OBD,∴∠AMB=∠AOB=α,,故③正確;作OG⊥AM于G,OH⊥DM于H,如圖所示,△AOC≌△BOD,∴結(jié)合全等三角形的對應(yīng)高可得:OG=OH,∴MO平分∠AMD,∴∠AMO=∠DMO,假設(shè)OM平分∠BOC,則∠BOM=∠COM,∵∠AOB=∠COD,∴∠AOB+∠BOM=∠COD+∠COM,即∠AOM=∠DOM,在△AMO與△DMO中,,∴△AMO≌△DMO(ASA),∴OA=OD,∵OC=OD,∴OA=OC,而OA<OC,故④錯誤;正確的個數(shù)有3個;故答案為:①②③.【考點(diǎn)】本題屬于三角形的綜合題,是中考填空題的壓軸題,本題考查了全等三角形的判定與性質(zhì)、三角形的外角性質(zhì)、角平分線的判定等知識,證明三角形全等是解題的關(guān)鍵.4、【解析】【分析】先證明Rt△CDA≌Rt△CBA得到,再由角平分線的定義求出∠EDC=45°,最后根據(jù)三角形內(nèi)角和定理求解即可.【詳解】解:∵,,∴∠CDA=∠CBA=90°,在Rt△CDA和Rt△CBA中,,∴Rt△CDA≌Rt△CBA(HL),∴,∵DE平分與∠ADC相鄰的角,∠ADC=90°,∴∠EDC=45°,∴∠CED=180°-∠DAE-∠ADC-∠EDC=15°,故答案為:15°.【考點(diǎn)】本題主要考查了全等三角形的性質(zhì)與判定,三角形內(nèi)角和定理,角平分線的定義,熟知全等三角形的性質(zhì)與判定條件是解題的關(guān)鍵.5、225°【解析】【分析】首先判定△ABC≌△AEF,△ABD≌△AEH,可得∠5=∠BCA,∠4=∠BDA,然后可得∠1+∠5=∠1+∠BCA=90°,∠2+∠4=∠2+∠BDA=90°,即可求得∠1+∠2+∠3+∠4+∠5的值.【詳解】解:如圖所示:在△ABC和△AEF中,∴△ABC≌△AEF(SAS),∴∠5=∠BCA,∴∠1+∠5=∠1+∠BCA=90°,在Rt△ABD和Rt△AEH中,∴Rt△ABD≌Rt△AEH(HL),∴∠4=∠BDA,∴∠2+∠4=∠2+∠BDA=90°,∵∠3=45°,∴∠1+∠2+∠3+∠4+∠5=90°+90°+45°=225°.故答案為:225°.【考點(diǎn)】此題主要考查了全等三角形的判定和性質(zhì),關(guān)鍵是掌握全等三角形的性質(zhì):全等三角形對應(yīng)角相等即可求解.三、解答題1、(1)證明見解析;(2);理由見解析;(3).【解析】【分析】(1)方法1:在上截取,連接,得到全等三角形,進(jìn)而解決問題;方法2:延長到點(diǎn),使得,連接,得到全等三角形,進(jìn)而解決問題;(2)延長到點(diǎn),使,連接,證明,可得,即(3)連接,過點(diǎn)作于,證明,,進(jìn)而根據(jù)即可得出結(jié)論.【詳解】解:(1)方法1:在上截,連接,如圖.平分,.在和中,,,,.,..,.方法2:延長到點(diǎn),使得,連接,如圖.平分,.在和中,,.,.,.,,.(2)、、之間的數(shù)量關(guān)系為:.(或者:,).延長到點(diǎn),使,連接,如圖2所示.由(1)可知,.為等邊三角形.,.,..,為等邊三角形.,.,,即.在和中,,.,,.(3),,之間的數(shù)量關(guān)系為:.(或者:,)解:連接,過點(diǎn)作于,如圖3所示.,..在和中,,,,.在和中,,.,,.【考點(diǎn)】本題考查了三角形全等的性質(zhì)與判定,正確的添加輔助線是解題的關(guān)鍵.2、見詳解.【解析】【分析】根據(jù)SSS定理推出△ADB≌△BCA即可證明.【詳解】證明:在△ADB和△BCA中,∴△ADB≌△BCA(SSS),∴.【考點(diǎn)】本題考查了全等三角形的性質(zhì)和判定,能正確進(jìn)行推理證明全等是解此題的關(guān)鍵.3、(1),理由見解析;(2)見解析;(3)見解析【解析】【分析】(1)根據(jù)全等三角形的判定定理證得;(2)由(1)中的全等三角形的對應(yīng)角相等證得,則由全等三角形的判定定理證得,則對應(yīng)邊;(3)同(2),利用全等三角形的對應(yīng)邊相等證得結(jié)論.【詳解】解:(1),理由如下:如圖1,在與中,,;(2)如圖2,由(1)知,,則.在與中,,,;(3)如圖3,.理由同(2),,則.【考點(diǎn)】本題考查了全等三角形的判定與性質(zhì).在應(yīng)用全等三角形的判定時,要注意三角形間的公共邊和公共角,必要時添加適當(dāng)輔助線構(gòu)造三角形.4、見解析.【解析】【分析】將△ABE繞點(diǎn)A逆時針旋轉(zhuǎn)90°得到△ADG,根據(jù)旋轉(zhuǎn)的性質(zhì)可得GD=BE,AG=AE,∠DAG=∠BAE,然后求出∠FAG=∠EAF,再利用“邊角邊”證明△AEF和△AGF全等,根據(jù)全等三角形對應(yīng)邊相等可得EF=FG,即可得出結(jié)論.【詳解】如解圖,將繞點(diǎn)逆時針旋轉(zhuǎn)至的位置,使與重合.∴,.∵.∴,∴.在和中,,∴.∴.∵,∴.【考點(diǎn)】本題考查了正方形的性質(zhì),旋轉(zhuǎn)的性質(zhì),全等三角形的判定與性質(zhì),難點(diǎn)在于利用旋轉(zhuǎn)變換作出全等三角形.5、(1)見解析;(2)圖②:;圖③:【解析】【分析】(1)過點(diǎn)作交的延長線于點(diǎn).證明,根據(jù)全等三角形的性質(zhì)可得,.再證,由此即可證得結(jié)論;(2)圖②:,類比(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論