綜合解析北師大版9年級數(shù)學(xué)上冊期末試卷含完整答案詳解【奪冠】_第1頁
綜合解析北師大版9年級數(shù)學(xué)上冊期末試卷含完整答案詳解【奪冠】_第2頁
綜合解析北師大版9年級數(shù)學(xué)上冊期末試卷含完整答案詳解【奪冠】_第3頁
綜合解析北師大版9年級數(shù)學(xué)上冊期末試卷含完整答案詳解【奪冠】_第4頁
綜合解析北師大版9年級數(shù)學(xué)上冊期末試卷含完整答案詳解【奪冠】_第5頁
已閱讀5頁,還剩29頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

北師大版9年級數(shù)學(xué)上冊期末試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題24分)一、單選題(6小題,每小題2分,共計12分)1、已知(a≠0,b≠0),下列變形正確的是()A. B. C.2a=3b D.3a=2b2、在一次酒會上,每兩人都只碰一次杯,如果一共碰杯55次,則參加酒會的人數(shù)為(

)A.9人 B.10人 C.11人 D.12人3、如圖所示,雙曲線y=上有一動點(diǎn)A,連接OA,以O(shè)為頂點(diǎn)、OA為直角邊,構(gòu)造等腰直角三角形OAB,則△OAB面積的最小值為(

)A. B. C.2 D.24、直角三角形的面積為,斜邊上的中線為,則這個三角形周長為(

)A. B.C. D.5、在正方形網(wǎng)格中,每個小正方形的頂點(diǎn)稱為格點(diǎn),以格點(diǎn)為頂點(diǎn)的三角形叫做格點(diǎn)三角形.如圖,△ABC是格點(diǎn)三角形,在圖中的6×6正方形網(wǎng)格中作出格點(diǎn)三角形△ADE(不含△ABC),使得△ADE∽△ABC(同一位置的格點(diǎn)三角形△ADE只算一個),這樣的格點(diǎn)三角形一共有()A.4個 B.5個 C.6個 D.7個6、揚(yáng)帆中學(xué)有一塊長,寬的矩形空地,計劃在這塊空地上劃出四分之一的區(qū)域種花,小禹同學(xué)設(shè)計方案如圖所示,求花帶的寬度.設(shè)花帶的寬度為,則可列方程為()A. B.C. D.二、多選題(6小題,每小題2分,共計12分)1、用一個2倍的放大鏡照一個△ABC,下列命題中不正確的是(

)A.△ABC放大后角是原來的2倍 B.△ABC放大后周長是原來的2倍C.△ABC放大后面積是原來的2倍 D.以上的命題都不對2、如圖,在邊長為4的正方形ABCD中,點(diǎn)E,F(xiàn)分別是邊BC,AB的中點(diǎn),連接AE,DF交于點(diǎn)N,將△ABE沿AE翻折,得到△AGE,AG交DF于點(diǎn)M,延長EG交AD的延長線于點(diǎn)H,連接CG,ME,取ME的中點(diǎn)為點(diǎn)O,連接NO,GO.則以下結(jié)論正確的有(

)A. B.C.△GEC為等邊三角形 D.3、兩個關(guān)于的一元二次方程和,其中,,是常數(shù),且.如果是方程的一個根,那么下列各數(shù)中,一定是方程的根的是()A. B. C.2 D.-24、平行四邊形ABCD的對角線相交于點(diǎn)O,分別添加下列條件使得四邊形ABCD是矩形的條件有(

)是菱形的條件有(

)A.∠ABC=90° B.AC⊥BD C.AB=BC D.AC平分∠BAD E.AO=DO5、如圖,在△ABC中,點(diǎn)D,E分別在邊AB、AC上,下列條件中能判斷△AED∽△ABC的是()A.∠AED=∠ABC B.∠ADE=∠ACBC. D.6、如圖,在矩形、銳角三角形、正五邊形、直角三角形的外邊加一個寬度一樣的外框,保證外框的邊與原圖形的對應(yīng)邊平行,則外框與原圖一定相似的有()A. B.C. D.第Ⅱ卷(非選擇題76分)三、填空題(8小題,每小題2分,共計16分)1、如圖,正方形ABCO的邊長為,OA與x軸正半軸的夾角為15°,點(diǎn)B在第一象限,點(diǎn)D在x軸的負(fù)半軸上,且滿足∠BDO=15°,直線y=kx+b經(jīng)過B、D兩點(diǎn),則b﹣k=_____.2、如圖,在平面直角坐標(biāo)系中,長方形OABC的邊OA在x軸上,OC在y軸上,OA=1,OC=2,對角線AC的垂直平分線交AB于點(diǎn)E,交AC于點(diǎn)D.若y軸上有一點(diǎn)P(不與點(diǎn)C重合),能使△AEP是以為AE為腰的等腰三角形,則點(diǎn)P的坐標(biāo)為____.3、在20世紀(jì)70年代,我國著名數(shù)學(xué)家華羅庚教授將黃金分割法作為一種“優(yōu)選法”,在全國大規(guī)模推廣,取得了很大成果.如圖,利用黃金分割法,所做將矩形窗框分為上下兩部分,其中E為邊的黃金分割點(diǎn),即.已知為2米,則線段的長為______米.4、如圖,點(diǎn)E、F分別是矩形ABCD邊BC和CD上的點(diǎn),把△CEF沿直線EF折疊得到△GEF,再把△BEG沿直線BG折疊,點(diǎn)E的對應(yīng)點(diǎn)H恰好落在對角線BD上,若此時F、G、H三點(diǎn)在同一條直線上,且線段HF與HD也恰好關(guān)于某條直線對稱,則的值為______.5、如圖,已知DC為∠ACB的平分線,DE∥BC.若AD=8,BD=10,BC=15,求EC的長=_____.6、要利用一面很長的圍墻和100米長的隔離欄建三個如圖所示的矩形羊圈,若計劃建成的三個羊圈總面積為400平方米,則羊圈的邊長AB為多少米?設(shè)AB=x米,根據(jù)題意可列出方程的為_________.7、袋中有五顆球,除顏色外全部相同,其中紅色球三顆,標(biāo)號分別為1,2,3,綠色球兩顆,標(biāo)號分別為1,2,若從五顆球中任取兩顆,則兩顆球的標(biāo)號之和不小于4的概率為__.8、若代數(shù)式有意義,則x的取值范圍是_____.四、解答題(6小題,每小題10分,共計60分)1、某商店如果將進(jìn)價8元的商品按每件10元出售,那么每天可銷售200件,現(xiàn)采用提高售價,減少進(jìn)貨量的方法增加利潤,如果這種商品的售價每漲1元,那么每天的進(jìn)貨量就會減少20件,要想每天獲得640元的利潤,則每件商品的售價定為多少元最為合適?2、用適當(dāng)?shù)姆椒ń夥匠蹋?1).(2).3、如圖,已知正方形點(diǎn)在邊上,以為邊在左側(cè)作正方形;以為鄰邊作平行四邊形連接.(1)判斷和的數(shù)量及位置關(guān)系,并說明理由;(2)將繞點(diǎn)順時針旋轉(zhuǎn),在旋轉(zhuǎn)過程中,和的數(shù)量及位置關(guān)系是否發(fā)生變化?請說明理由.4、已知a、b、c是△ABC的三邊,且滿足,且a+b+c=12,請你探索△ABC的形狀.5、如圖,平行四邊形的對角線、相較于點(diǎn)O,且,,.求證:四邊形是矩形.6、如圖所示,直線y=x+2與坐標(biāo)軸交于A、B兩點(diǎn),與反比例函數(shù)y=(x>0)交于點(diǎn)C,已知AC=2AB.(1)求反比例函數(shù)解析式;(2)若在點(diǎn)C的右側(cè)有一平行于y軸的直線,分別交一次函數(shù)圖象與反比例函數(shù)圖象于D、E兩點(diǎn),若CD=CE,求點(diǎn)D坐標(biāo).-參考答案-一、單選題1、C【解析】【分析】根據(jù)比例的性質(zhì)“兩內(nèi)項之積等于兩外項之積”對各選項分析判斷即可得.【詳解】解:A、∵,∴,∴,選項說法錯誤,不符合題意;B、∵,∴,∴,選項說法錯誤,不符合題意;C、∵,∴,選項說法正確,符合題意;D、∵,∴,選項說法錯誤,不符合題意;故選C.【考點(diǎn)】本題考查了比例的性質(zhì),解題的關(guān)鍵是熟記比例的性質(zhì).2、C【解析】【分析】設(shè)參加酒會的人數(shù)為x人,每人碰杯次數(shù)為次,如果一共碰杯55次,列出一元二次方程,解之即可得出答案.【詳解】設(shè)參加酒會的人數(shù)為x人,依題可得:x(x-1)=55,化簡得:x2-x-110=0,解得:x1=11,x2=-10(舍去),故答案為C.【考點(diǎn)】考查了一元二次方程的應(yīng)用,解題的關(guān)鍵是根據(jù)題中的等量關(guān)系列出方程.3、C【解析】【分析】根據(jù)等腰直角三角形性質(zhì)得出S△OAB=OA?OB=OA2,先求得OA取最小值時A的坐標(biāo),即可求得OA的長,從而求得△OAB面積的最小值.【詳解】解:∵△AOB是等腰直角三角形,∴OA=OB,∴S△OAB=OA?OB=OA2,∴OA取最小值時,△OAB面積的值最小,∵當(dāng)直線OA為y=x時,OA最小,解得或,∴此時A的坐標(biāo)為(,),∴OA=2,∴,∴△OAB面積的最小值為2,故選:C.【考點(diǎn)】本題考查了反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征,等腰直角三角形的性質(zhì),三角形的面積,求得OA取最小值時A的坐標(biāo)是解題的關(guān)鍵.4、D【解析】【分析】根據(jù)直角三角形的性質(zhì)求出斜邊長,根據(jù)勾股定理、完全平方公式計算即可.【詳解】解:設(shè)直角三角形的兩條直角邊分別為x、y,∵斜邊上的中線為d,∴斜邊長為2d,由勾股定理得,x2+y2=4d2,∵直角三角形的面積為S,∴,則2xy=4S,即(x+y)2=4d2+4S,∴∴這個三角形周長為:,故選D.【考點(diǎn)】本題考查的是勾股定理的應(yīng)用,直角三角形的兩條直角邊長分別是a,b,斜邊長為c,那么a2+b2=c2.5、C【解析】【分析】根據(jù)題意,得出ABC的三邊之比,并在直角坐標(biāo)系中找出與ABC各邊長成比例的相似三角形,并在直角坐標(biāo)系中無一遺漏地表示出來.【詳解】解:ABC的三邊之比為,如圖所示,可能出現(xiàn)的相似三角形共有以下六種情況:所以使得△ADE∽△ABC的格點(diǎn)三角形一共有6個,故選:C.【考點(diǎn)】本題考察了在直角坐標(biāo)系中畫出與已知三角形相似的圖形,解題的關(guān)鍵在于找出與已知三角形各邊長成比例的三角形,并在直角坐標(biāo)系中無一遺漏地表示出來.6、D【解析】【分析】根據(jù)空白區(qū)域的面積矩形空地的面積可得.【詳解】設(shè)花帶的寬度為,則可列方程為,故選D.【考點(diǎn)】本題主要考查由實(shí)際問題抽象出一元二次方程,解題的關(guān)鍵是根據(jù)圖形得出面積的相等關(guān)系.二、多選題1、ACD【解析】【分析】用2倍的放大鏡放大一個△ABC,得到一個與原三角形相似的三角形;根據(jù)相似三角形的性質(zhì):相似三角形的面積比等于相似比的平方,周長比等于相似比.可知:放大后三角形的面積是原來的4倍,邊長和周長是原來的2倍,而內(nèi)角的度數(shù)不會改變.【詳解】解:A、錯誤,△ABC放大后角不變,故該選項符合題意;B、正確,△ABC放大后周長是原來的2倍,故該選項不符合題意;C、錯誤,△ABC放大后面積是相似比的平方,放大后面積是原來的4倍,故該選項符合題意;D、錯誤,故該選項符合題意.故選:ACD.【考點(diǎn)】本題考查對相似三角形性質(zhì)的理解.(1)相似三角形周長的比等于相似比;(2)相似三角形面積的比等于相似比的平方;(3)相似三角形對應(yīng)高的比、對應(yīng)中線的比、對應(yīng)角平分線的比都等于相似比.2、ABD【解析】【分析】由正方形的性質(zhì)可得,則易證,然后可判定A選項,由折疊的性質(zhì)及平行線的性質(zhì)可得B選項,由題意易得,進(jìn)而根據(jù)三角形中線及等積法可判定D選項.【詳解】解:∵四邊形ABCD是正方形,∴,AD∥BC,∴,∵點(diǎn)E,F(xiàn)分別是邊BC,AB的中點(diǎn),∴,∴(SAS),∴,∵,∴,∴,由折疊性質(zhì)可得,∴,∴,假設(shè)△GEC為等邊三角形成立,則有,∴,∴,∴,∴與AB=2BE相矛盾,故假設(shè)不成立;由折疊的性質(zhì)可知,∴,∴,∵M(jìn)E的中點(diǎn)為點(diǎn)O,∴,∴;綜上所述:正確的有ABD;故選ABD.【考點(diǎn)】本題主要考查全等三角形的性質(zhì)與判定、正方形的性質(zhì)、折疊性質(zhì)及等積法,熟練掌握全等三角形的性質(zhì)與判定、正方形的性質(zhì)、折疊性質(zhì)及等積法是解題的關(guān)鍵.3、AD【解析】【分析】利用方程根的定義去驗(yàn)證判斷即可.【詳解】∵,,∴,∴,,∴,,∵是方程的一個根,∴是方程的一個根,∴是方程的一個根,即時方程的一個根.∵是方程的一個根,∴,當(dāng)x=時,,∴是方程的根.故選:A,D.【考點(diǎn)】本題考查了一元二次方程根的定義即使得方程兩邊相等的未知數(shù)的值,正確理解定義是解題的關(guān)鍵.4、AEBCD【解析】【分析】因?yàn)樗倪呅蜛BCD是平行四邊形,要成為矩形加上一個角為直角或?qū)蔷€相等即可;要使其成為菱形,加上一組鄰邊相等或?qū)蔷€垂直均可.【詳解】A選項:∵∠ABC=90°,四邊形ABCD是平行四邊形,∴四邊形ABCD是矩形.(有一個角是直角的平行四邊形是矩形)B選項:∵AC⊥BD,四邊形ABCD是平行四邊形,∴四邊形ABCD是菱形.(對角線互相垂直的平行四邊形是菱形)C選項:∵AB=BC,四邊形ABCD是平行四邊形,∴四邊形ABCD是菱形.(鄰邊相等的平行四邊形是菱形)D選項:如圖:∵四邊形ABCD是平行四邊形,∴AD∥BC,∴∠DAC=∠ACB,∵AC平分∠BAD,∴∠DAC=∠BAC,∴∠BAC=∠ACB,∴AB=BC,∴?ABCD是菱形;E選項:∵AO=DO,四邊形ABCD是平行四邊形,∴AC=BD,∴四邊形ABCD是矩形.(對角線互相平分且相等的平行四邊形是矩形)故選:AE,BCD.【考點(diǎn)】考查了菱形和矩形的判定,解題關(guān)鍵是掌握平行四邊形的性質(zhì)和菱形、矩形的判定方法.5、ABD【解析】【分析】根據(jù)三角形相似的判斷方法判斷即可.【詳解】解:A、∵∠AED=∠ABC,∠A=∠A,∴△AED∽△ABC,符合題意;B、∵∠ADE=∠AC,∠A=∠A,∴△AED∽△ABC,符合題意;C、,不能判定△AED∽△ABC,不符合題意;D、∵,∠A=∠A,∴△AED∽△ABC,符合題意.故選:ABD.【考點(diǎn)】此題考查了三角形相似的判斷方法,解題的關(guān)鍵是熟練掌握三角形相似的判定方法.6、BCD【解析】【分析】根據(jù)相似多邊形的判定定理對各個選項進(jìn)行分析,從而確定最后答案.【詳解】解:矩形不相似,因?yàn)槠鋵?yīng)角的度數(shù)一定相同,但對應(yīng)邊的比值不一定相等,不符合相似的條件,故A不符合題意;銳角三角形、正五邊形、直角三角形的原圖與外框相似,因?yàn)槠鋵?yīng)角均相等,對應(yīng)邊均對應(yīng)成比例,符合相似的條件,故B、C、D符合題意.故選BCD.【考點(diǎn)】此題主要考查了相似圖形判定,注意邊數(shù)相同、各角對應(yīng)相等、各邊對應(yīng)成比例的兩個多邊形是相似多邊形.三、填空題1、2﹣.【解析】【分析】連接OB,過點(diǎn)B作BE⊥x軸于點(diǎn)E,根據(jù)正方形的性質(zhì)可得出∠AOB的度數(shù)及OB的長,結(jié)合三角形外角的性質(zhì)可得出∠BDO=∠DBO,利用等角對等邊可得出OD=OB,進(jìn)而可得出點(diǎn)D的坐標(biāo),在Rt△BOE中,通過解直角三角形可得出點(diǎn)B的坐標(biāo),由點(diǎn)B,D的坐標(biāo),利用待定系數(shù)法可求出k,b的值,再將其代入(b﹣k)中即可求出結(jié)論.【詳解】解:連接OB,過點(diǎn)B作BE⊥x軸于點(diǎn)E,如圖所示.∵正方形ABCO的邊長為,∴∠AOB=45°,OB=OA=2.∵OA與x軸正半軸的夾角為15°,∴∠BOE=45°﹣15°=30°.又∵∠BDO=15°,∴∠DBO=∠BOE﹣∠BDO=15°,∴∠BDO=∠DBO,∴OD=OB=2,∴點(diǎn)D的坐標(biāo)為(﹣2,0).在Rt△BOE中,OB=2,∠BOE=30°,∴BE=OB=1,OE==,∴點(diǎn)B的坐標(biāo)為(,1).將B(,1),D(﹣2,0)代入y=kx+b,得:,解得:,∴b﹣k=4﹣2﹣(2﹣)=2﹣.故答案為:2﹣.【考點(diǎn)】此題考查的是正方形的性質(zhì)、等腰三角形的判定、直角三角形的性質(zhì)和求一次函數(shù)的解析式,掌握正方形的性質(zhì)、等角對等邊、30°所對的直角邊是斜邊的一半、勾股定理和利用待定系數(shù)法求一次函數(shù)解析式是解決此題的關(guān)鍵.2、,或【解析】【分析】設(shè)AE=m,根據(jù)勾股定理求出m的值,得到點(diǎn)E(1,),設(shè)點(diǎn)P坐標(biāo)為(0,y),根據(jù)勾股定理列出方程,即可得到答案.【詳解】∵對角線AC的垂直平分線交AB于點(diǎn)E,∴AE=CE,∵OA=1,OC=2,∴AB=OC=2,BC=OA=1,∴設(shè)AE=m,則BE=2-m,CE=m,∴在Rt?BCE中,BE2+BC2=CE2,即:(2-m)2+12=m2,解得:m=,∴E(1,),設(shè)點(diǎn)P坐標(biāo)為(0,y),∵△AEP是以為AE為腰的等腰三角形,當(dāng)AP=AE,則(1-0)2+(0-y)2=(1-1)2+(0-)2,解得:y=,當(dāng)EP=AE,則(1-0)2+(-y)2=(1-1)2+(0-)2,解得:y=,∴點(diǎn)P的坐標(biāo)為,,,故答案是:,,.【考點(diǎn)】本題主要考查等腰三角形的定義,勾股定理,矩形的性質(zhì),垂直平分線的性質(zhì),掌握勾股定理,列出方程,是解題的關(guān)鍵.3、##【解析】【分析】根據(jù)點(diǎn)E是AB的黃金分割點(diǎn),可得,代入數(shù)值得出答案.【詳解】∵點(diǎn)E是AB的黃金分割點(diǎn),∴.∵AB=2米,∴米.故答案為:().【考點(diǎn)】本題主要考查了黃金分割的應(yīng)用,掌握黃金比是解題的關(guān)鍵.4、【解析】【分析】根據(jù)線段HF與HD也恰好關(guān)于某條直線對稱,可得HF=HD,由折疊和同角的余角相等得,然后證明,再利用設(shè)元法即可解決問題.【詳解】解:∵線段HF與HD也恰好關(guān)于某條直線對稱,∴HF=HD,∴∠HFD=∠FDH,∴∠BHF=2∠HFD由折疊可知:GF=CF,HG=CE=EG,,∠BHG=∠BEG,∠CEF=∠GEF,∵∠BEG+∠CEF+∠GEF=180°,∴2∠HFD+2∠CEF=180°∴∠HFD+∠CEF=90°,又∵∠CFE+∠CEF=90°∴,又∵HF=HD,∴△DHF是等邊三角形,∴∠CBD=∠CEF=30°,∴,設(shè)GF=CF=x,HF=DF=y,則HG=CE=EG=,HF=HG+GF=GE+CF,即y=x+,∵,∴.【考點(diǎn)】本題主要考查折疊的性質(zhì)、軸對稱的性質(zhì)、相似三角形的判定與性質(zhì).解決本題的關(guān)鍵是掌握翻折的性質(zhì).5、【解析】【分析】先由角平分線的定義及平行線的性質(zhì)求得∠EDC=∠ECD,從而EC=DE;再DE∥BC,證得△ADE∽△ABC,然后根據(jù)相似三角形的性質(zhì)列出比例式,求得DE的長,即為EC的長.【詳解】解:∵DC為∠ACB的平分線∴∠BCD=∠ECD∵DE∥BC∴∠EDC=∠BCD∴∠EDC=∠ECD∴EC=DE∵AD=8,BD=10∴AB=18∵DE∥BC∴△ADE∽△ABC∴,∵AD=8,AB=18,BC=15∴,∴∴故答案為:【考點(diǎn)】本題考查了角平分線的定義、平行線的性質(zhì)、等腰三角形的判定及相似三角形的判定與性質(zhì),熟練掌握相關(guān)性質(zhì)與定理是解題的關(guān)鍵.6、x(100-4x)=400【解析】【分析】由題意,得BC的長為(100-4x)米,根據(jù)矩形面積列方程即可.【詳解】解:設(shè)AB為x米,則BC的長為(100-4x)米由題意,得x(100-4x)=400故答案為:x(100-4x)=400.【考點(diǎn)】本題主要考查了一元二次方程的實(shí)際問題,解決問題的關(guān)鍵是通過圖形找到對應(yīng)關(guān)系量,根據(jù)等量關(guān)系式列方程.7、##0.5【解析】【分析】畫樹狀圖,共有20個等可能的結(jié)果,兩顆球的標(biāo)號之和不小于4的結(jié)果有10個,再由概率公式求解即可.【詳解】畫樹狀圖如圖:共有20個等可能的結(jié)果,兩顆球的標(biāo)號之和不小于4的結(jié)果有10個,兩顆球的標(biāo)號之和不小于4的概率為,故答案為:.【考點(diǎn)】本題考查了列表法與樹狀圖法以及概率公式,正確畫出樹狀圖是解題的關(guān)鍵.8、﹣3≤x≤且x≠.【解析】【分析】根據(jù)二次根式的性質(zhì),被開方數(shù)大于等于0;分母中有字母,分母不為0.【詳解】解:若代數(shù)式有意義,必有,解①得解②移項得兩邊平方得整理得解得③∴解集為﹣3≤x≤且x≠.故答案為:﹣3≤x≤且x≠.【考點(diǎn)】本題考查了二次根式的概念:式子(a≥0)叫二次根式,(a≥0)是一個非負(fù)數(shù).注意:二次根式中的被開方數(shù)必須是非負(fù)數(shù),否則二次根式無意義;當(dāng)二次根式在分母上時還要考慮分母不等于零,此時被開方數(shù)大于0.四、解答題1、每件商品的售價定為16元最為合適.【解析】【分析】設(shè)每件商品的售價定為x元,則每件商品的銷售利潤為(x-8)元,每天的進(jìn)貨量為200-20(x-10)=(400-20x)件,利用每天銷售這種商品的利潤=每件的銷售利潤×日銷售量(日進(jìn)貨量),即可得出關(guān)于x的一元二次方程,解之即可得出x的值,再結(jié)合“現(xiàn)采用提高售價,減少進(jìn)貨量的方法增加利潤”,即可得出每件商品的售價定為16元最為合適..【詳解】解:設(shè)每件商品的售價定為x元,則每件商品的銷售利潤為(x-8)元,每天的進(jìn)貨量為200-20(x-10)=(400-20x)件,依題意得:(x-8)(400-20x)=640,整理得:x2-28x+192=0,解得:x1=12,x2=16.又∵現(xiàn)采用提高售價,減少進(jìn)貨量的方法增加利潤,∴x=16.答:每件商品的售價定為16元最為合適.【考點(diǎn)】本題考查了一元二次方程的應(yīng)用,找準(zhǔn)等量關(guān)系,正確列出一元二次方程是解題的關(guān)鍵.2、(1),;(2),【解析】【分析】將左邊利用十字相乘法因式分解,繼而可得兩個關(guān)于的一元一次方程,分別求解即可得出答案;先移項,再將左邊利用提公因式法因式分解,繼而可得兩個關(guān)于的一元一次方程,分別求解即可得出答案.(1)解:,,則或,解得,,所以,原方程的解為,;(2)解:,則,或,解得,.所以,原方程的解為,.【考點(diǎn)】本題考查了一元二次方程的解法,熟練掌握和運(yùn)用一元二次方程的解法是解決本題的關(guān)鍵.3、(1);;理由見解析;(2)與的數(shù)量及位置關(guān)系都不變;答案見解析.【解析】【分析】(1)證明,由全等三角形的性質(zhì)得出,,得出,則可得出結(jié)論;(2)證明,由全等三角形的性質(zhì)得出,,由平行線的性質(zhì)證出,則可得出結(jié)論.【詳解】解:(1),.由題意可得,平行四邊形為矩形,,,,,,,,,設(shè)與交于點(diǎn),則,即.(2)與的數(shù)量及位置關(guān)系都不變.如圖,延長到點(diǎn),四邊形為平行四邊形,,,,,,,,,,又,,,,,,,,,即.【考點(diǎn)】本題考查了旋轉(zhuǎn)的性質(zhì),全等三角形的判定和性質(zhì),正方形的性質(zhì),解題的關(guān)鍵是:熟練掌握正方形的性質(zhì).4、△ABC是直角三角形,理由見解析【解析】【分析】根據(jù),可以設(shè)=k,然后根據(jù)a+b+c=12,可以求得k的值,進(jìn)而求得a、b、c的值,再根據(jù)勾股定理的逆定理,即可判斷△ABC的形狀.【詳解】解:令=k,∴a+4=3k,b+3=2k,c+8=4k,∴a=3k﹣4,b=2k﹣3,c=4k﹣8,又∵a+b+

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論