綜合解析人教版8年級數(shù)學上冊《軸對稱》章節(jié)訓練試卷(詳解版)_第1頁
綜合解析人教版8年級數(shù)學上冊《軸對稱》章節(jié)訓練試卷(詳解版)_第2頁
綜合解析人教版8年級數(shù)學上冊《軸對稱》章節(jié)訓練試卷(詳解版)_第3頁
綜合解析人教版8年級數(shù)學上冊《軸對稱》章節(jié)訓練試卷(詳解版)_第4頁
綜合解析人教版8年級數(shù)學上冊《軸對稱》章節(jié)訓練試卷(詳解版)_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

人教版8年級數(shù)學上冊《軸對稱》章節(jié)訓練考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計20分)1、如圖所示,線段AC的垂直平分線交線段AB于點D,∠A=50°,則∠BDC=(

)A.50° B.100° C.120° D.130°2、已知的周長是,,則下列直線一定為的對稱軸的是A.的邊的中垂線 B.的平分線所在的直線C.的邊上的中線所在的直線 D.的邊上的高所在的直線3、如圖,已知△ABC,AB<BC,用尺規(guī)作圖的方法在BC上取一點P,使得PA+PC=BC,則下列選項正確的是(

)A. B.C. D.4、如圖是以正方形的邊長為直徑,在正方形內(nèi)畫半圓得到的圖形,則此圖形的對稱軸有()A.2條 B.4條 C.6條 D.8條5、如圖,是由大小一樣的小正方形組成的網(wǎng)格,△ABC的三個頂點均落在小正方形的頂點上.在網(wǎng)格上能畫出的三個頂點都落在小正方形的頂點上,且與△ABC成軸對稱的三角形共有(

)A.5個 B.4個 C.3個 D.2個第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計30分)1、點P關于x軸對稱點是,點P關于y軸對稱點是,則__________.2、如圖,已知△ABC≌△ADE,且點B與點D對應,點C與點E對應,點D在BC上,∠BAE=114°,∠BAD=40°,則∠E的度數(shù)是______°.3、如圖,在△ABC中,∠ACB的平分線交AB于點D,

DE⊥AC于點E,F為BC上一點,若DF=AD,△ACD與△CDF的面積分別為10和4,則△AED的面積為______4、如圖,是內(nèi)一定點,點,分別在邊,上運動,若,,則的周長的最小值為___________.5、已知:如圖,在中,點在邊上,,則_______度.三、解答題(5小題,每小題10分,共計50分)1、已知,平分,點分別在上.(1)如圖1,若于點,于點.①利用等腰三角形“三線合一”,將補成一個等邊三角形,可得的數(shù)量關系為________.②請問:是否等于呢?如果是,請予以證明.(2)如圖2,若,則(1)中的結論是否仍然成立?若成立,請予以證明;若不成立,請說明理由.2、如圖,是邊長為2的等邊三角形,是頂角為120°的等腰三角形,以點為頂點作,點、分別在、上.(1)如圖①,當時,則的周長為______;(2)如圖②,求證:.3、如圖,△ABC與△DEF都是等腰直角三角形,AC=BC,DE=DF.邊AB,EF的中點重合于點O,連接BF,CD.(1)如圖①,當FE⊥AB時,易證BF=CD(不需證明);(2)當△DEF繞點O旋轉(zhuǎn)到如圖②位置時,猜想BF與CD之間的數(shù)量關系,并證明;(3)當△ABC與△DEF均為等邊三角形時,其他條件不變,如圖③,猜想BF與CD之間的數(shù)量關系,直接寫出你的猜想,不需證明.4、已知:如圖,AD是等腰三角形ABC的底邊BC上的中線,DE∥AB,交AC于點E.求證:△AED是等腰三角形.5、在△ABC中,DE垂直平分AB,分別交AB、BC于點D、E,MN垂直平分AC,分別交AC,BC于點M、N.(1)如圖1,若∠BAC=112°,求∠EAN的度數(shù);(2)如圖2,若∠BAC=82°,求∠EAN的度數(shù);(3)若∠BAC=α(α≠90°),直接寫出用α表示∠EAN大小的代數(shù)式.-參考答案-一、單選題1、B【解析】【分析】根據(jù)線段垂直平分線的性質(zhì)得到DA=DC,根據(jù)等腰三角形的性質(zhì)得到∠DCA=∠A,根據(jù)三角形的外角的性質(zhì)計算即可.【詳解】解:∵DE是線段AC的垂直平分線,∴DA=DC,∴∠DCA=∠A=50°,∴∠BDC=∠DCA+∠A=100°,故選:B.【考點】本題考查的是線段垂直平分線的性質(zhì)和三角形的外角的性質(zhì),掌握線段的垂直平分線上的點到線段的兩個端點的距離相等是解題的關鍵.2、C【解析】【分析】首先判斷出是等腰三角形,AB是底邊,然后根據(jù)等腰三角形的性質(zhì)和對稱軸的定義判斷即可.【詳解】解:∵,,∴,∴是等腰三角形,AB是底邊,∴一定為的對稱軸的是的邊上的中線所在的直線,故選:C.【考點】本題考查了等腰三角形的判定和性質(zhì)以及對稱軸的定義,判斷出是等腰三角形,AB是底邊是解題的關鍵.3、B【解析】【詳解】解:∵PB+PC=BC,PA+PC=BC,∴PA=PB,根據(jù)線段垂直平分線定理的逆定理可得,點P在線段AB的垂直平分線上,故可判斷B選項正確.故選B.4、B【解析】【分析】根據(jù)軸對稱的性質(zhì)即可畫出對稱軸進而可得此圖形的對稱軸的條數(shù).【詳解】解:如圖,因為以正方形的邊長為直徑,在正方形內(nèi)畫半圓得到的圖形,所以此圖形的對稱軸有4條.故選:B.【考點】本題考查了正方形的性質(zhì)、軸對稱的性質(zhì)、軸對稱圖形,解決本題的關鍵是掌握軸對稱的性質(zhì).5、A【解析】【分析】認真讀題,觀察圖形,根據(jù)圖形特點先確定對稱軸,再根據(jù)對稱軸找出相應的三角形.【詳解】解:如圖:與△ABC成軸對稱的三角形有:①△FCD關于CG對稱;②△GAB關于EH對稱;③△AHF關于AD對稱;④△EBD關于BF對稱;⑤△BCG關于AG的垂直平分線對稱.共5個.故選A.【考點】本題考查軸對稱的基本性質(zhì),結合了圖形的常見的變化,要根據(jù)直角三角形的特點從圖中找到有關的直角三角形再判斷是否為對稱圖形.二、填空題1、1【解析】【分析】根據(jù)關于坐標軸的對稱點的坐標特征,求出a,b的值,即可求解.【詳解】∵點P關于x軸對稱點是,∴P(a,-2),∵點P關于y軸對稱點是,∴b=-2,a=3,∴1,故答案是:1.【考點】本題主要考查關于坐標軸對稱的點的坐標特征,熟練掌握“關于x軸對稱的兩點,橫坐標相等,縱坐標互為相反數(shù);關于y軸對稱的兩點,橫坐標互為相反數(shù),縱坐標相等”是解題的關鍵.2、36【解析】【分析】根據(jù)全等三角形的性質(zhì)得出AB=AD,∠ABD=∠ADE,根據(jù)等腰三角形的性質(zhì)和三角形內(nèi)角和定理求出∠ABD=70°,求出∠DAE和∠ADE,再根據(jù)三角形內(nèi)角和定理求出∠E即可.【詳解】解:∵△ABC≌△ADE,∴AB=AD,∴∠ABD=∠ADB,∵∠BAD=40°,∴∠ABD=∠ADB=(180°-∠BAD)=70°,∵△ABC≌△ADE,∴∠ADE=∠ABD=70°,∵∠BAE=114°,∠BAD=40°,∴∠DAE=∠BAE-∠BAD=114°-40°=74°,∴∠E=180°-∠ADE-∠DAE=180°-70°-74°=36°,故答案為:36.【考點】本題考查了全等三角形的性質(zhì),等腰三角形的性質(zhì),三角形內(nèi)角和定理等知識點,能熟記全等三角形的對應邊相等和全等三角形的對應角相等是解此題的關鍵.3、3【解析】【分析】如圖(見解析),過點D作,根據(jù)角平分線的性質(zhì)可得,再利用三角形全等的判定定理得出,從而有,最后根據(jù)三角形面積的和差即可得出答案.【詳解】如圖,過點D作平分,又則解得故答案為:3.【考點】本題考查了角平分線的性質(zhì)、直角三角形全等的判定定理等知識點,通過作輔助線,構造兩個全等的三角形是解題關鍵.4、3【解析】【分析】如圖,作P關于OA,OB的對稱點C,D.連接OC,OD.則當M,N是CD與OA,OB的交點時,△PMN的周長最短,最短的值是CD的長.根據(jù)對稱的性質(zhì)可以證得:△COD是等邊三角形,據(jù)此即可求解.【詳解】如圖,作P關于OA,OB的對稱點C,D.連接OC,OD.則當M,N是CD與OA,OB的交點時,△PMN的周長最短,最短的值是CD的長.∵點P關于OA的對稱點為C,∴PM=CM,OP=OC,∠COA=∠POA;∵點P關于OB的對稱點為D,∴PN=DN,OP=OD,∠DOB=∠POB,∴OC=OD=OP=3,∠COD=∠COA+∠POA+∠POB+∠DOB=2∠POA+2∠POB=2∠AOB=60°,∴△COD是等邊三角形,∴CD=OC=OD=3.∴△PMN的周長的最小值=PM+MN+PN=CM+MN+DN≥CD=3.【考點】此題主要考查軸對稱--最短路線問題,綜合運用了等邊三角形的知識.正確作出圖形,理解△PMN周長最小的條件是解題的關鍵.5、40【解析】【分析】根據(jù)等邊對等角得到,再根據(jù)三角形外角的性質(zhì)得到,故,由三角形的內(nèi)角和即可求解的度數(shù).【詳解】解:∵,∴,∴,∵,∴,∴,故答案為:40.【考點】本題考查等腰三角形的性質(zhì)、三角形外角的性質(zhì)、三角形的內(nèi)角和,熟練掌握幾何知識并靈活運用是解題的關鍵.三、解答題1、(1)①(或),理由見解析;②,理由見解析;(2)仍成立,理由見解析【解析】【分析】(1)①由題意利用角平分線的性質(zhì)以及含角的直角三角形性質(zhì)進行分析即可;②根據(jù)題意利用①的結論進行等量代換求解即可;(2)根據(jù)題意過點分別作的垂線,垂足分別為,進而利用全等三角形判定得出,以此進行分析即可.【詳解】解:(1)①(或)平分,,又,利用等腰三角形“三線合一”,將補成一個等邊三角形,可知②證明:由①知,同理,平分,,又,,(2)仍成立證明:過點分別作的垂線,垂足分別為平分,又由(1)中②知.【考點】本題考查等腰三角形性質(zhì)以及全等三角形判定,熟練掌握角平分線的性質(zhì)以及含角的直角三角形性質(zhì)和全等三角形判定定理是解題的關鍵.2、(1)4;(2)見解析【解析】【分析】(1)首先證明△BDM≌△CDN,進而得出△DMN是等邊三角形,∠BDM=∠CDN=30°,NC=BM=DM=MN,即可解決問題;(2)延長至點,使得,連接,首先證明,再證明,得出,進而得出結果即可.【詳解】解:(1)∵是等邊三角形,,,∴是等邊三角形,,則,∵是頂角的等腰三角形,,,在和中,,,,∵,∴是等邊三角形,,,,∴的周長.(2)如圖,延長至點,使得,連接,∵是等邊三角形,是頂角的等腰三角形,,,,,在和中,,,,,∵,,在和中,.,又∵,.【考點】本題考查了全等三角形的判定與性質(zhì)及等邊三角形的性質(zhì)及等腰三角形的性質(zhì),掌握全等三角形的性質(zhì)與判定,等邊三角形及等腰三角形的性質(zhì)是解題的關鍵.3、(1)見解析(2)BF=CD;證明見解析(3)【解析】【分析】(1)如圖①,連接,先證、、三點共線,再證,即可得出結論;(2)如圖②,連接、,證明,即可得出結論;(3)如圖③,連接、,證明,相似比為,即可得出結論.(1)證明:如圖①,連接,與都是等腰直角三角形,,.邊,的中點重合于點,,,,,于,、、三點共線,在與中,,,;(2)解:猜想,理由如下:如圖②,連接、,與都是等腰直角三角形,,.邊,的中點重合于點,,,,,,,.在與中,,,;(3)解:猜想,理由如下:如圖③,連接、.為等邊三角形,點為邊的中點,,,,為等邊三角形,點為邊的中點,,,,,,,,,,.【考點】本題是幾何變換綜合題,考查了旋轉(zhuǎn)變換的性質(zhì)、等腰直角三角形的性質(zhì)、全等三角形的判定與性質(zhì)、等邊三角形的性質(zhì)、相似三角形的判定與性質(zhì)等知識,本題綜合性強,熟練掌握等腰直角三角形的性質(zhì)和等邊三角形的性質(zhì),證明三角形全等和三角形相似是解題的關鍵,屬于中考??碱}型.4、見解析【解析】【分析】根據(jù)等腰三角形的性質(zhì)得到∠BAD=∠CAD,根據(jù)平行線的性質(zhì)得到∠ADE=∠BAD,等量代換得到∠ADE=∠CAD于是得到結論.【詳解】解:∵△ABC是等腰三角形,AB=AC,AD是底邊BC上的中線,∴∠BAD=∠CAD,∵DE∥AB,∴∠ADE=∠BAD,∴∠ADE=∠CAD,∴AE=ED,∴△AED是等腰三角形.【考點】本題主要考查等腰三角形的判定與性質(zhì)以及平行線的性質(zhì),熟練掌握等腰三角形的判定和性質(zhì)定理是解題的關鍵.5、(1)∠EAN=44°;(2)∠EAN=16°;(3)當0°<α<90°時,∠EAN=180°﹣2α;當180°>α>90°時,∠EAN=2α﹣180°.【解析】【分析】(1)根據(jù)線段垂直平分線上的點到線段兩端點的距離相等可得AE=BE,再根據(jù)等邊對等角可得∠BAE=∠B,同理可得,∠CAN=∠C,然后利用三角形的內(nèi)角和定理求出∠B+∠C,再根據(jù)∠EAN=∠BAC﹣(∠BAE+∠CAN)代入數(shù)據(jù)進行計算即可得解;(2)同(1)的思路,最后根據(jù)∠EAN=∠BAE+∠CAN﹣∠BAC代入數(shù)據(jù)進行計算即可得解;(3)根據(jù)前兩問的求解方法,分0°<α<90°與180°>α>90°兩種情況解答.【詳解】解:(1)∵DE垂直平分AB,∴AE=BE,∴∠BAE=∠B,同理可得:∠CAN=∠C,∴∠EAN=∠BAC﹣∠BAE﹣∠CAN,=∠BAC﹣(∠B+∠C),在△ABC中,∠B+∠C=180°﹣∠BAC=68°,∴∠EAN=∠BAC﹣(∠BAE+∠CAN)=112°﹣68°=44°;(2)∵DE垂直平分AB,∴AE=BE,∴∠BAE=∠B,同理可得:∠CAN=∠C,∴∠EAN=∠BAE+∠CAN﹣∠BAC,=(∠B+∠C)﹣∠BAC,在△ABC中,∠B+∠C=180°﹣∠

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論