版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
人教版8年級數(shù)學(xué)下冊《平行四邊形》同步測評考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計20分)1、已知三角形三邊長分別為7cm,8cm,9cm,作三條中位線組成一個新的三角形,同樣方法作下去,一共做了五個新的三角形,則這五個新三角形的周長之和為()A.46.5cm B.22.5cm C.23.25cm D.以上都不對2、在銳角△ABC中,∠BAC=60°,BN、CM為高,P為BC的中點,連接MN、MP、NP,則結(jié)論:①NP=MP;②AN:AB=AM:AC;③BN=2AN;④當(dāng)∠ABC=60°時,MN∥BC,一定正確的有()A.①②③ B.②③④ C.①②④ D.①④3、如圖,在四邊形中,,,面積為21,的垂直平分線分別交于點,若點和點分別是線段和邊上的動點,則的最小值為()A.5 B.6 C.7 D.84、如圖,在矩形ABCD中,點E是BC的中點,連接AE,點F是AE的中點,連接DF,若AB=9,AD,則四邊形CDFE的面積是()A. B. C. D.545、在平面直角坐標(biāo)系中,平行四邊形ABCD的頂點A、B、D的坐標(biāo)分別是(0,0),(5,0),(2,3),則頂點C的坐標(biāo)是()A.(7,3) B.(8,2) C.(3,7) D.(5,3)第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計30分)1、如圖,在?ABCD中,BC=3,CD=4,點E是CD邊上的中點,將△BCE沿BE翻折得△BGE,連接AE,A、G、E在同一直線上,則AG=______,點G到AB的距離為______.2、如圖,在長方形ABCD中,.在DC上找一點E,沿直線AE把折疊,使D點恰好落在BC上,設(shè)這一點為F,若的面積是54,則的面積=______________.3、如圖,O為坐標(biāo)原點,△ABO的兩個頂點A(6,0),B(6,6),點D在邊AB上,點C在邊OA上,且BD=AC=1,點P為邊OB上的動點,則PC+PD的最小值為_____.4、如圖中,分別是由個、個、個正方形連接成的圖形,在圖中,;在圖中,;通過以上計算,請寫出圖中______(用含的式子表示)5、若一個菱形的兩條對角線的長為3和4,則菱形的面積為___________.三、解答題(5小題,每小題10分,共計50分)1、如圖,在中,,D是邊上的一點,過D作交于點E,,連接交于點F.(1)求證:是的垂直平分線;(2)若點D為的中點,且,求的長.2、已知:如圖,在中,,,.求證:互相平分.如圖,將矩形紙片ABCD沿對角線AC折疊,使點B落在點E處,AE交CD于點F,且已知AB=8,BC=4(1)判斷△ACF的形狀,并說明理由;(2)求△ACF的面積;3、如圖,在長方形ABCD中,AB=3,BC=4,點E是BC邊上一點,連接AE,將∠B沿直線AE折疊,使點B落在點處.
(1)如圖1,當(dāng)點E與點C重合時,與AD交于點F,求證:FA=FC;(2)如圖2,當(dāng)點E不與點C重合,且點在對角線AC上時,求CE的長.4、已知矩形ABCD,AB=6,BC=10,以BC所在直線為x軸,AB所在直線為y軸,建立如圖所示的平面直角坐標(biāo)系,在CD邊上取一點E,將△ADE沿AE翻折,點D恰好落在BC邊上的點F處.(1)求線段EF長;(2)在平面內(nèi)找一點G,①使得以A、B、F、G為頂點的四邊形是平行四邊形,請直接寫出點G的坐標(biāo);②如圖2,將圖1翻折后的矩形沿y軸正半軸向上平移m(m>0)個單位,若以A、O、F、G為頂點的四邊形為菱形,請求出m的值并寫出點G的坐標(biāo).5、如圖,△AOB是等腰直角三角形.(1)若A(﹣4,1),求點B的坐標(biāo);(2)AN⊥y軸,垂足為N,BM⊥y軸,垂足為點M,點P是AB的中點,連PM,求∠PMO度數(shù);(3)在(2)的條件下,點Q是ON的中點,連PQ,求證:PQ⊥AM.
-參考答案-一、單選題1、C【解析】【分析】如圖所示,,,,DE,DF,EF分別是三角形ABC的中位線,GH,GI,HI分別是△DEF的中位線,則,,,即可得到△DEF的周長,由此即可求出其他四個新三角形的周長,最后求和即可.【詳解】解:如圖所示,,,,DE,DF,EF分別是三角形ABC的中位線,GH,GI,HI分別是△DEF的中位線,∴,,,∴△DEF的周長,同理可得:△GHI的周長,∴第三次作中位線得到的三角形周長為,∴第四次作中位線得到的三角形周長為∴第三次作中位線得到的三角形周長為∴這五個新三角形的周長之和為,故選C.【點睛】本題主要考查了三角形中位線定理,解題的關(guān)鍵在于能夠熟練掌握三角形中位線定理.2、C【解析】【分析】利用直角三角形斜邊上的中線的性質(zhì)即可判定①正確;利用含30度角的直角三角形的性質(zhì)即可判定②正確,由勾股定理即可判定③錯誤;由等邊三角形的判定及性質(zhì)、三角形中位線定理即可判定④正確.【詳解】∵CM、BN分別是高∴△CMB、△BNC均是直角三角形∵點P是BC的中點∴PM、PN分別是兩個直角三角形斜邊BC上的中線∴故①正確∵∠BAC=60゜∴∠ABN=∠ACM=90゜?∠BAC=30゜∴AB=2AN,AC=2AM∴AN:AB=AM:AC=1:2即②正確在Rt△ABN中,由勾股定理得:故③錯誤當(dāng)∠ABC=60゜時,△ABC是等邊三角形∵CM⊥AB,BN⊥AC∴M、N分別是AB、AC的中點∴MN是△ABC的中位線∴MN∥BC故④正確即正確的結(jié)論有①②④故選:C【點睛】本題考查了直角三角形斜邊上中線的性質(zhì),含30度角的直角三角形的性質(zhì),等邊三角形的判定及性質(zhì),勾股定理,三角形中位線定理等知識,掌握這些知識并正確運用是解題的關(guān)鍵.3、C【解析】【分析】連接AQ,過點D作,根據(jù)垂直平分線的性質(zhì)得到,再根據(jù)計算即可;【詳解】連接AQ,過點D作,∵,面積為21,∴,∴,∵M(jìn)N垂直平分AB,∴,∴,∴當(dāng)AQ的值最小時,的值最小,根據(jù)垂線段最短可知,當(dāng)時,AQ的值最小,∵,∴,∴的值最小值為7;故選C.【點睛】本題主要考查了四邊形綜合,垂直平分線的性質(zhì),準(zhǔn)確分析計算是解題的關(guān)鍵.4、C【解析】【分析】過點F作,分別交于M、N,由F是AE中點得,根據(jù),計算即可得出答案.【詳解】如圖,過點F作,分別交于M、N,∵四邊形ABCD是矩形,∴,,∵點E是BC的中點,∴,∵F是AE中點,∴,∴.故選:C.【點睛】本題考查矩形的性質(zhì)與三角形的面積公式,掌握是解題的關(guān)鍵.5、A【解析】【分析】利用平行四邊形的對邊平行且相等的性質(zhì),先利用對邊平行,得到D點和C點的縱坐標(biāo)相等,再求出CD=AB=5,得到C點橫坐標(biāo),最后得到C點的坐標(biāo).【詳解】解:四邊形ABCD為平行四邊形。且。C點和D的縱坐標(biāo)相等,都為3.A點坐標(biāo)為(0,0),B點坐標(biāo)為(5,0),.D點坐標(biāo)為(2,3),C點橫坐標(biāo)為,點坐標(biāo)為(7,3).故選:A.【點睛】本題主要是考察了平行四邊形的性質(zhì)、利用線段長求點坐標(biāo),其中,熟練應(yīng)用平行四邊形對邊平行且相等的性質(zhì),是解決與平行四邊形有關(guān)的坐標(biāo)題的關(guān)鍵.二、填空題1、2##【解析】【分析】根據(jù)折疊性質(zhì)和平行四邊形的性質(zhì)可以證明△ABG≌△EAD,可得AG=DE=2,然后利用勾股定理可得求出AF的長,進(jìn)而可得GF的值.【詳解】解:如圖,GF⊥AB于點F,∵點E是CD邊上的中點,∴CE=DE=2,由折疊可知:∠BGE=∠C,BC=BG=3,CE=GE=2,在?ABCD中,BC=AD=3,BC∥AD,∴∠D+∠C=180°,BG=AD,∵∠BGE+∠AGB=180°,∴∠AGB=∠D,∵AB∥CD,∴∠BAG=∠AED,在△ABG和△EAD中,,∴△ABG≌△EAD(AAS),∴AG=DE=2,∴AB=AE=AG+GE=4,∵GF⊥AB于點F,∴∠AFG=∠BFG=90°,在Rt△AFG和△BFG中,根據(jù)勾股定理,得AG2-AF2=BG2-BF2,即22-AF2=32-(4-AF)2,解得AF=,∴GF2=AG2-AF2=4-=,∴GF=,故答案為2,.【點睛】本題考查了折疊的性質(zhì)、平行四邊形的性質(zhì)、勾股定理等知識,證明△ABG≌△EAD是解題的關(guān)鍵.2、6【解析】【分析】根據(jù)三角形的面積求出BF,利用勾股定理列式求出AF,再根據(jù)翻折變換的性質(zhì)可得AD=AF,然后求出CF,設(shè)DE=x,表示出EF、EC,然后在Rt△CEF中,利用勾股定理列方程求解和三角形的面積公式解答即可.【詳解】解:∵四邊形ABCD是矩形∴AB=CD=9,BC=AD∵?AB?BF=54,∴BF=12.在Rt△ABF中,AB=9,BF=12,由勾股定理得,.∴BC=AD=AF=15,∴CF=BC-BF=15-12=3.設(shè)DE=x,則CE=9-x,EF=DE=x.則x2=(9-x)2+32,解得,x=5.∴DE=5.∴EC=DC-DE=9-5=4.∴△FCE的面積=×4×3=6.【點睛】本題考查了翻折變換的性質(zhì),矩形的性質(zhì),三角形的面積,勾股定理,熟記各性質(zhì)并利用勾股定理列出方程是解題的關(guān)鍵.3、6【解析】【分析】過點D作DE⊥AB交y軸于點E,交BO于點P,得矩形ACPD,正方形OCPE,此時PC+PD的值最?。驹斀狻拷猓骸逜(6,0),B(6,6),∴OA=AB=6,∴∠B=∠COP=45°,如圖,過點D作DE⊥AB交y軸于點E,交BO于點P,∴∠PDA=∠DAC=∠PCA=90°,∴四邊形ACPD是矩形,∴AC=DP,PC=AD,同理可得四邊形OCPE是矩形,∵∠COP=45°,∴PC=OC,∴四邊形OCPE是正方形,∵BD=AC=1,∴DP=BD=1,∴PC=AD=5,∴PC+PD=6,此時PC+PD的值最小,為6.故答案為:6.【點睛】本題考查了矩形的判定與性質(zhì),正方形的判定以及垂線段最短問題.4、90n【解析】【分析】連接各小正方形的對角線,由圖1中四邊形內(nèi)角和定理化簡可得:;由圖2中四邊形內(nèi)角和定理化簡可得:;結(jié)合圖形即可發(fā)現(xiàn)規(guī)律,求得結(jié)果.【詳解】解:連接各小正方形的對角線,如下圖:圖中,,即,圖中,,即,,以此類推,,故答案為:.【點睛】題目主要考查根據(jù)規(guī)律列出相應(yīng)代數(shù)式,正方形性質(zhì)等,理解題意,探索發(fā)現(xiàn)規(guī)律是解題關(guān)鍵.5、6【解析】【分析】由題意直接由菱形的面積等于對角線乘積的一半進(jìn)行計算即可.【詳解】解:菱形的面積.故答案為:6.【點睛】本題考查菱形的性質(zhì),熟練掌握菱形的面積等于對角線乘積的一半是解題的關(guān)鍵.三、解答題1、(1)見解析;(2)6【分析】(1)由BC=BD,可得∠BCD=∠BDC,再由及,可得∠ECD=∠EDC,則有EC=ED,從而可得點B、E在線段CD的垂直平分線上,從而可得結(jié)論;(2)由D點是AB的中點及BC=BD,可得△BDC是等邊三角形,從而由30度的直角三角形的性質(zhì)可分別求得EC、BE,由AE=BE,即可求得AC的長.【詳解】(1)∵BC=BD∴∠BCD=∠BDC,點B在線段CD的垂直平分線上∵,∴∠BCD+∠ECD=∠EDC+∠BDC∴∠ECD=∠EDC∴EC=ED∴點E在線段CD的垂直平分線上∴BE是線段CD的垂直平分線(2)D點是AB的中點,∠ACB=90゜∴CD是Rt△ABC斜邊上的中線∴CD=BD∴CD=BC=BD∴△BDC是等邊三角形∴∠BCD=∠DBC=60゜∴∠ECF=90゜-60゜=30゜由(1)知,BF⊥CD∴EC=2EF=2,∴BE=2EC=4∵DE⊥AB,點D為AB的中點∴AE=BE=4∴AC=AE+EC=4+2=6【點睛】本題考查了線段垂直平分線的性質(zhì)定理和判定定理,直角三角形斜邊上的中線的性質(zhì),30度角的直角三角形的性質(zhì),等邊三角形的判定與性質(zhì);題目雖不難,但涉及的知識點比較多,靈活運用這些知識是解題的關(guān)鍵.2、證明見解析【分析】連接,由三角形中位線定理可得,,可證四邊形ADEF是平行四邊形,由平行四邊形的性質(zhì)可得AE,DF互相平分;【詳解】
證明:連接,∵AD=DB,BE=EC,∴,∵BE=EC,AF=FC,∴,∴四邊形ADEF是平行四邊形,∴AE,DF互相平分.【點睛】本題考查了平行四邊形的性質(zhì)判定和性質(zhì)及三角形中位線定理,靈活運用這些性質(zhì)是解題的關(guān)鍵.(1)△ACF是等腰三角形,理由見解析;(2)10;(3)3、(1)見解析;(2)CE=.【分析】(1)根據(jù)平行線的性質(zhì)及折疊性質(zhì)證明∠FAC=∠FCA即可.(2)由題意可得,根據(jù)勾股定理求出AC=5,進(jìn)而求出B'C=2,設(shè)CE=x.然后在Rt△中,根據(jù)勾股定理EC2=2+2列方程求解即可;【詳解】解:(1)如圖1,
∵四邊形ABCD是矩形,∴ADBC,∴∠FAC=∠ACB,∵∠ACB=∠ACF,∴∠FAC=∠FCA,∴FA=FC.(2)∵,如圖2,設(shè)CE=x,
∵四邊形ABCD是矩形,∴∠B=90°,∴AC2=AB2+BC2=32+42=25,∴AC=5,由折疊可知:,,,∴=5-3=2,在Rt△中,EC2=2+2∴x2=(4-x)2+22,∴x=,∴CE=.【點睛】本題屬于矩形折疊問題,考查了矩形的性質(zhì),勾股定理,直角三角形的判定和性質(zhì),等腰三角形的判定和性質(zhì)等知識,解題的關(guān)鍵是學(xué)會利用參數(shù)構(gòu)建方程解決問題,屬于中考??碱}型.4、(1)103;(2)①點G的坐標(biāo)為(﹣8,6)或(8,6)或(8,﹣6);②m=4,G(8,?6)或m=6,G(?8,6).或m=【分析】(1)由矩形的性質(zhì)得AD=BC=OC=10,CD=AB=OA=6,∠AOC=∠ECF=90°,由折疊性質(zhì)得EF=DE,AF=AD=10,則CE=6﹣EF,由勾股定理求出BF=OF=8,則FC=OC﹣OF=2,在Rt△ECF中,由勾股定理得出方程,解方程即可;(2)①分三種情況,當(dāng)AB為平行四邊形的對角線時;當(dāng)AF為平行四邊形的對角線時;當(dāng)BF為平行四邊形的對角線時,分別求解點G的坐標(biāo)即可;②分三種情況討論,當(dāng)OF為對角線時,由菱形的性質(zhì)得OA=AF=10,則矩形ABCD平移距離m=OA﹣AB=4,即OB=4,設(shè)FG交x軸于H,證出四邊形OBFH是矩形,得FH=OB=4,OH=BF=8,則HG=6,如圖,當(dāng)AO為菱形的對角線時,當(dāng)AF為菱形的對角線時,結(jié)合矩形與菱形的性質(zhì)同理可得出答案.【詳解】解:(1)∵四邊形ABCD是矩形,∴AD=BC=OC=10,CD=AB=OA=6,∠AOC=∠ECF=90°,由折疊性質(zhì)得:EF=DE,AF=AD=10,∴CE=CD﹣DE=CD﹣EF=6﹣EF,由勾股定理得:BF=OF=A∴FC=OC﹣OF=10﹣8=2,在Rt△ECF中,由勾股定理得:EF2=CE2+FC2,即:EF2=(6﹣EF)2+22,解得:EF=103(2)①如圖所示:當(dāng)AB為平行四邊形的對角線時,AG=BF=8,AG∥∴點G的坐標(biāo)為:(﹣8,6);當(dāng)AF為平行四邊形的對角線時,AG'=BF=8,AG'∥∴點G'的坐標(biāo)為:(8,6);當(dāng)BF為平行四邊形的對角線時,F(xiàn)G''=AB=6,F(xiàn)G''∥∴點G''的坐標(biāo)為:(8,﹣6);綜上所述,點G的坐標(biāo)為(﹣8,6)或(8,6)或(8,﹣6);②如圖,當(dāng)OF為菱形的對角線時,∵四邊形AOGF為菱形,∴OA=AF=10,∴矩形ABCD平移距離m=OA﹣AB=10﹣6=4,即OB=4,設(shè)FG交x軸于H,如圖所示:∵OA∥FG,∴∠FBO=∠BOH=∠OHF=90°,∴四邊形OBFH是矩形,∴FH=OB=4,OH=BF=8,∴HG=10﹣4=6,∴點G的坐標(biāo)為:(8,﹣6).如圖,當(dāng)AO為菱形的對角線時,則AB=OB=6,GB=BF=8,AO⊥GF,∴m=6,G(?8,6).如圖,當(dāng)AF為菱形的對角線時,同理可得:OA=OF,OA=m+6,且GF∥∴A(0,m+6),F(8,m),∴(m+6)解得:m=7∴A(0,25所以∴G(8,73+綜上:平移距離m與G的坐標(biāo)分別為:m=4,G(8,?6)或m=6,G(?8,6)或m=7【點睛】本題是四邊形綜合題目,考查了矩形的判定與性質(zhì)、菱形的判定與性質(zhì),坐標(biāo)與圖形性質(zhì)、平行四邊形的性質(zhì)、勾股定理、折疊變換的性質(zhì)、平移的性質(zhì)等知識;熟練掌握矩形的性質(zhì)和折疊的性質(zhì)是解題的關(guān)鍵.5、(1)(1,4);(2)45°;(3)見解析
【分析】(1)過點A作AE⊥x軸于E,過點B作BF⊥x軸于F,證明△OAE≌△BOF得到OF=AE,BF=OE,再由點A的坐標(biāo)為(-4,1),得到OF=AE=1,BF=OE=4,則點B的坐標(biāo)為(1,4);(2)延長MP與AN交于H,證明△APH≌△BPM得到AH=BM,再由A點坐標(biāo)為(-4,1),B點坐標(biāo)為(1,4),得到AN=4,OM=4,BM=1,ON=1,則HN=AN-AH=AN-BM=3,MN=OM-ON=3,瑞出HN=MN,即可得到∠NHM=∠NMH=45°,即∠PMO=45°;(3)連接OP,AM,取BM中點G,連接GP,則GP是△ABM的中位線,AM∥GP,證明△PQO≌△PGB得到∠OPQ=∠BPG,再由∠OPQ+∠BPQ=90°,得到∠BPG+∠BPQ=90°,即∠GPQ=90°,則PQ⊥PG,即PG⊥AM;【詳解】解:(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 生物可吸收支架臨床應(yīng)用進(jìn)展
- XX單位2025年冬季安全生產(chǎn)隱患排查整治工作情況報告
- 生物制品長期穩(wěn)定性試驗方案制定規(guī)范
- 生物制劑臨床試驗中期療效預(yù)測模型構(gòu)建
- 深度解析(2026)《GBT 20501.3-2017公共信息導(dǎo)向系統(tǒng) 導(dǎo)向要素的設(shè)計原則與要求 第3部分:平面示意圖》
- 物聯(lián)網(wǎng)技術(shù)人才招聘面試題集與解析
- 生活質(zhì)量改善為目標(biāo)的兒童癥狀控制方案設(shè)計
- 金融科技合規(guī)官面試題及反洗錢措施含答案
- 游戲行業(yè)運營策劃經(jīng)理面試題及答案
- 面試題解析渤海銀行政助理崗位
- 胎膜早破的診斷與處理指南
- 被壓迫者的教育學(xué)
- 2025年科研倫理與學(xué)術(shù)規(guī)范期末考試試題及參考答案
- 2025年國家開放電大行管本科《公共政策概論》期末考試試題及答案
- 四川省教育考試院2025年公開招聘編外聘用人員筆試考試參考試題及答案解析
- 超市商品陳列學(xué)習(xí)培訓(xùn)
- 2025年中級煤礦綜采安裝拆除作業(yè)人員《理論知識》考試真題(含解析)
- 2025年電機(jī)與拖動基礎(chǔ)期末考試題庫及答案
- 防噴演練及硫化氫防護(hù)流程
- 隧道通風(fēng)機(jī)操作規(guī)程及維護(hù)指南
- 全國大學(xué)生職業(yè)規(guī)劃大賽《城市軌道交通運營管理》專業(yè)生涯發(fā)展展示【高職(??疲?/a>
評論
0/150
提交評論