版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
京改版數(shù)學(xué)9年級(jí)上冊(cè)期末試題考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題26分)一、單選題(6小題,每小題2分,共計(jì)12分)1、為了美觀,在加工太陽鏡時(shí)將下半部分輪廓制作成拋物線的形狀(如圖所示),對(duì)應(yīng)的兩條拋物線關(guān)于軸對(duì)稱,軸,,最低點(diǎn)在軸上,高,,則右輪廓所在拋物線的解析式為(
)A. B. C. D.2、如圖,在正方形網(wǎng)格上有5個(gè)三角形(三角形的頂點(diǎn)均在格點(diǎn)上):①△ABC,②△ADE,③△AEF,④△AFH,⑤△AHG,在②至⑤中,與①相似的三角形是(
)A.②④ B.②⑤ C.③④ D.④⑤3、如圖所示,某校數(shù)學(xué)興趣小組利用標(biāo)桿測(cè)量建筑物的高度,已知標(biāo)桿高,測(cè)得,,則建筑物的高是()A. B. C. D.4、如圖A、B、C在⊙O上,連接OA、OB、OC,若∠BOC=3∠AOB,劣弧AC的度數(shù)是120o,OC=.則圖中陰影部分的面積是(
)A. B. C. D.5、如圖,△ABC內(nèi)接于⊙O,∠A=50°.E是邊BC的中點(diǎn),連接OE并延長,交⊙O于點(diǎn)D,連接BD,則∠D的大小為()A.55° B.65° C.60° D.75°6、二次函數(shù)的頂點(diǎn)坐標(biāo)為,圖象如圖所示,有下列四個(gè)結(jié)論:①;②;③④,其中結(jié)論正確的個(gè)數(shù)為(
)A.個(gè) B.個(gè) C.個(gè) D.個(gè)二、多選題(7小題,每小題2分,共計(jì)14分)1、如圖,□ABCD中,E是AD延長線上一點(diǎn),BE交AC于點(diǎn)F,交DC于點(diǎn)G,則下列結(jié)論中正確的是()A.△ABE∽△DGE B.△CGB∽△DGEC.△BCF∽△EAF D.△ACD∽△GCF2、對(duì)于實(shí)數(shù)a,b,定義運(yùn)算“※”:,例如:4※2,因?yàn)?,所以,若函?shù),則下列結(jié)論正確的是(
)A.方程的解為,;B.當(dāng)時(shí),y隨x的增大而增大;C.若關(guān)于x的方程有三個(gè)解,則;D.當(dāng)時(shí),函數(shù)的最大值為1.3、下列多邊形中,一定不相似的是(
)A.兩個(gè)矩形 B.兩個(gè)菱形 C.兩個(gè)正方形 D.兩個(gè)平行四邊形4、△ABC和△A′B′C′符合下列條件,其中使△ABC和△A′B′C′相似的是(
)A.∠A=∠A′=45°,∠B=26°,∠B′=109°B.AB=1,AC=1.5,BC=2,A′B′=4,A′C′=2,B′C′=3C.∠A=∠B′,AB=2,AC=2.4,A′B′=3.6,B′C′=3D.AB=3,AC=5,BC=7,A′B′=,A′C′=,B′C′=5、如圖,在邊長為4的正方形ABCD中,E、F是AD邊上的兩個(gè)動(dòng)點(diǎn),且AE=FD,連接BE、CF、BD,CF與BD交于點(diǎn)G,連接AG交BE于點(diǎn)H,連接DH,下列結(jié)論中正確的是(
)
A.△ABG∽△FDG B.HD平分∠EHG C.AG⊥BED.S△HDG:S△HBG=tan∠DAGE.線段DH的最小值是2﹣26、下列命題中,不正確的是(
)A.三點(diǎn)可確定一個(gè)圓B.三角形的外心是三角形三邊中線的交點(diǎn)C.一個(gè)三角形有且只有一個(gè)外接圓D.三角形的外心必在三角形的內(nèi)部或外部7、已知蓄電池的電壓為定值,使用蓄電池時(shí),電流I(單位:A)與電阻R(單位:Ω)是反比例函數(shù)關(guān)系,它的圖象如圖所示.下列說法正確的是(
)A.函數(shù)解析式為I= B.當(dāng)R=9Ω時(shí),I=4AC.蓄電池的電壓是13V D.當(dāng)I≤10A時(shí),R≥3.6Ω第Ⅱ卷(非選擇題74分)三、填空題(7小題,每小題2分,共計(jì)14分)1、某圓的周長是12.56米,那么它的半徑是______________,面積是__________.2、如圖,在RT△ABC中,,點(diǎn)D是的中點(diǎn),過點(diǎn)D作,垂足為點(diǎn)E,連接,若,,則________.3、寫出一個(gè)滿足“當(dāng)時(shí),隨增大而減小”的二次函數(shù)解析式______.4、二次函數(shù)y=ax2+bx+c圖象上部分點(diǎn)的橫坐標(biāo)x與縱坐標(biāo)y的對(duì)應(yīng)值如表格所示,那么它的圖象與x軸的另一個(gè)交點(diǎn)坐標(biāo)是_____.5、一個(gè)橫斷面是拋物線的渡槽如圖所示,根據(jù)圖中所給的數(shù)據(jù)求出水面的寬度是____cm.6、在每個(gè)小正方形的邊長為1的網(wǎng)格圖形中,每個(gè)小正方形的頂點(diǎn)稱為格點(diǎn),頂點(diǎn)都是格點(diǎn)的三角形稱為格點(diǎn)三角形.如圖,已知Rt△ABC是6×6網(wǎng)格圖形中的格點(diǎn)三角形,則該圖中所有與Rt△ABC相似的格點(diǎn)三角形中.面積最大的三角形的斜邊長是_____.7、如果二次函數(shù)的圖像在它的對(duì)稱軸右側(cè)部分是上升的,那么的取值范圍是__________.四、解答題(6小題,每小題10分,共計(jì)60分)1、(1)閱讀理解如圖,點(diǎn),在反比例函數(shù)的圖象上,連接,取線段的中點(diǎn).分別過點(diǎn),,作軸的垂線,垂足為,,,交反比例函數(shù)的圖象于點(diǎn).點(diǎn),,的橫坐標(biāo)分別為,,.小紅通過觀察反比例函數(shù)的圖象,并運(yùn)用幾何知識(shí)得出結(jié)論:AE+BG=2CF,CF>DF,由此得出一個(gè)關(guān)于,,之間數(shù)量關(guān)系的命題:若,則______.(2)證明命題小東認(rèn)為:可以通過“若,則”的思路證明上述命題.小晴認(rèn)為:可以通過“若,,且,則”的思路證明上述命題.請(qǐng)你選擇一種方法證明(1)中的命題.2、如圖所示,在銳角中,,,所對(duì)的邊分別是a,b,c,求證:.3、如圖,AB為⊙O直徑,AC為弦,過⊙O外的點(diǎn)D作DE⊥OA于點(diǎn)E,交AC于點(diǎn)F,連接DC并延長交AB的延長線于點(diǎn)H,且∠D=2∠A.(1)求證:DC與⊙O相切;(2)若⊙O半徑為4,,求AC的長.4、已知==,求的值.5、某商品的進(jìn)價(jià)為每件40元,如果售價(jià)為每件50元,每個(gè)月可賣出210件;如果售價(jià)超過50元但不超過80元,每件商品的售價(jià)每上漲1元,則每個(gè)月少賣1件,如果售價(jià)超過80元后,若再漲價(jià),則每漲1元每月少賣3件.設(shè)每件商品的售價(jià)x元(x為整數(shù)),每個(gè)月的銷售量為y件.(1)求y與x的函數(shù)關(guān)系式并直接寫出自變量x的取值范圍;(2)設(shè)每月的銷售利潤為W,請(qǐng)直接寫出W與x的函數(shù)關(guān)系式.6、小明和小麗先后從A地出發(fā)同一直道去B地,設(shè)小麗出發(fā)第時(shí),小麗、小明離B地的距離分別為、,與x之間的數(shù)表達(dá)式,與x之間的函數(shù)表達(dá)式是.(1)小麗出發(fā)時(shí),小明離A地的距離為.(2)小麗發(fā)至小明到達(dá)B地這段時(shí)間內(nèi),兩人何時(shí)相距最近?最近距離是多少?-參考答案-一、單選題1、B【解析】【分析】利用B、D關(guān)于y軸對(duì)稱,CH=1cm,BD=2cm可得到D點(diǎn)坐標(biāo)為(1,1),由AB=4cm,最低點(diǎn)C在x軸上,則AB關(guān)于直線CH對(duì)稱,可得到左邊拋物線的頂點(diǎn)C的坐標(biāo)為(-3,0),于是得到右邊拋物線的頂點(diǎn)C的坐標(biāo)為(3,0),然后設(shè)頂點(diǎn)式利用待定系數(shù)法求拋物線的解析式.【詳解】∵高CH=1cm,BD=2cm,且B、D關(guān)于y軸對(duì)稱,∴D點(diǎn)坐標(biāo)為(1,1),∵AB∥x軸,AB=4cm,最低點(diǎn)C在x軸上,∴AB關(guān)于直線CH對(duì)稱,∴左邊拋物線的頂點(diǎn)C的坐標(biāo)為(-3,0),∴右邊拋物線的頂點(diǎn)F的坐標(biāo)為(3,0),設(shè)右邊拋物線的解析式為y=a(x-3)2,把D(1,1)代入得1=a×(1-3)2,解得a=,∴右邊拋物線的解析式為y=(x-3)2,故選:B.【考點(diǎn)】本題考查了二次函數(shù)的應(yīng)用:利用實(shí)際問題中的數(shù)量關(guān)系與直角坐標(biāo)系中線段對(duì)應(yīng)起來,再確定某些點(diǎn)的坐標(biāo),然后利用待定系數(shù)法確定拋物線的解析式,再利用拋物線的性質(zhì)解決問題.2、A【解析】【分析】根據(jù)兩邊成比例夾角相等兩三角形相似即可判斷.【詳解】解:由題意:①②④中,∠ABC=∠ADE=∠AFH=135°,又∵,∴,,∴△ABC∽△ADE∽△HFA,故選:A.【考點(diǎn)】本題考查相似三角形的判定,解題的關(guān)鍵是理解題意,靈活運(yùn)用所學(xué)知識(shí)解決問題.3、A【解析】【分析】先求得AC,再說明△ABE∽△ACD,最后根據(jù)相似三角形的性質(zhì)列方程解答即可.【詳解】解:∵,∴AC=1.2m+12.8m=14m∵標(biāo)桿和建筑物CD均垂直于地面∴BE//CD∴△ABE∽△ACD∴,即,解得CD=17.5m.故答案為A.【考點(diǎn)】本題考查了相似三角形的應(yīng)用,正確判定相似三角形并利用相似三角形的性質(zhì)列方程計(jì)算是解答本題的關(guān)鍵.4、C【解析】【分析】首先根據(jù)∠BOC=3∠AOB,劣弧AC的度數(shù)是120o得到∠AOB=30°,從而得到∠COB為直角,然后利用S陰影=S扇形OBC-S△OEC求解即可.【詳解】解:設(shè)OB與AC相交于點(diǎn)E,如圖∵劣弧AC的度數(shù)是120o∴∠AOC=120°∵OA=OC∴∠OCA=∠OAC=30°∵∠BOC=3∠AOB又∵∠AOC=∠AOB+∠BOC∴∠AOC=∠AOB+3∠AOB=120°∴∠AOB=30°∴∠BOC=3∠AOB=90°在Rt△OCE中,OC=2∴OE=OCtan∠OCE=2tan30°=2×=2∴S△OEC=×2×2=2S扇形OBC=∴用S陰影=S扇形OBC-S△OEC=-2故選C.【考點(diǎn)】本題考查了扇形面積的計(jì)算,解直角三角形等知識(shí).在求不規(guī)則的陰影部分的面積時(shí)常常轉(zhuǎn)化為幾個(gè)規(guī)則幾何圖形的面積的和或差.5、B【解析】【分析】連接CD,根據(jù)圓內(nèi)接四邊形的性質(zhì)得到∠CDB=180°﹣∠A=130°,根據(jù)垂徑定理得到OD⊥BC,求得BD=CD,根據(jù)等腰三角形的性質(zhì)即可得到結(jié)論.【詳解】解:連接CD,∵∠A=50°,∴∠CDB=180°﹣∠A=130°,∵E是邊BC的中點(diǎn),∴OD⊥BC,∴BD=CD,∴∠ODB=∠ODC=∠BDC=65°,故選:B.【考點(diǎn)】本題考查了圓內(nèi)接四邊形的性質(zhì),垂徑定理,等腰三角形的性質(zhì)等知識(shí).正確理解題意是解題的關(guān)鍵.6、A【解析】【分析】根據(jù)二次函數(shù)的性質(zhì)和已知條件,對(duì)每一項(xiàng)逐一進(jìn)行判斷即可.【詳解】解:由圖像可知a<0,c>0,∵對(duì)稱軸在正半軸,∴>0,∴b>0,∴,故①正確;當(dāng)x=2時(shí),y>0,故,故③正確;函數(shù)解析式為:y=a(x-1)2+2=ax2-2ax+a+2假設(shè)成立,結(jié)合解析式則有a+2<,解得a<,故②,④正確;故選:A.【考點(diǎn)】本題考查了二次函數(shù)圖象與系數(shù)的關(guān)系,結(jié)合圖象,運(yùn)用所學(xué)知識(shí)是解題關(guān)鍵.二、多選題1、ABC【解析】【分析】本題中可利用平行四邊形ABCD中兩對(duì)邊平行的特殊條件來進(jìn)行求解.【詳解】解:∵四邊形ABCD是平行四邊形,∴AB∥CD,∴∠EDG=∠EAB,∵∠E=∠E,∴△ABE∽△DGE,故選項(xiàng)A正確;∵AE∥BC,∴∠EDC=∠BCG,∠E=∠CBG,∴△CGB∽△DGE,故選項(xiàng)B正確;∵AE∥BC,∴∠E=∠FBC,∠EAF=∠BCF,∴△BCF∽△EAF,故選項(xiàng)C正確;無法證得△ACD∽△GCF,故選:ABC.【考點(diǎn)】本題考查了相似三角形的判定定理,平行四邊形的性質(zhì),正確的識(shí)別圖形是解題的關(guān)鍵.2、ABD【解析】【分析】根據(jù)題干定義求出y=(2x)※(x+1)的解析式,根據(jù)2x≥x+1及2x<x+1可得x≥1時(shí)y=2x2﹣2x,x<1時(shí),y=﹣x2+1,進(jìn)而求解.【詳解】解:根據(jù)題意得:當(dāng)2x≥x+1,即x≥1時(shí),y=(2x)2﹣2x(x+1)=2x2﹣2x,當(dāng)2x<x+1,即x<1時(shí),y=(x+1)2﹣2x(x+1)=﹣x2+1,∴當(dāng)x≥1時(shí),2x2﹣2x=0,解得x=0(舍去)或x=1,當(dāng)x<1時(shí),﹣x2+1=0,解得x=1(舍去)或x=﹣1,∴(2x)※(x+1)=0的解是x1=﹣1,x2=1;故A正確,B、當(dāng)x>1時(shí),y=2x2﹣2x,拋物線開口向上,對(duì)稱軸是直線x=,∴x>1時(shí),y隨x的增大而增大,∴B選項(xiàng)正確.當(dāng)x≥1時(shí),y=2x2﹣2x=2(x﹣)2﹣,∴x=1時(shí),y取最小值為y=0,當(dāng)x<1時(shí),y=﹣x2+1=0,當(dāng)x=0時(shí),y取最大值為y=1,如圖,當(dāng)0<m<1時(shí),方程(2x)※(x+1)=m有三個(gè)解,∴選項(xiàng)C錯(cuò)誤,選項(xiàng)D正確.故答案為:ABD.【考點(diǎn)】本題考查二次函數(shù)的新定義問題,解題關(guān)鍵是掌握二次函數(shù)的性質(zhì),掌握二次函數(shù)與方程的關(guān)系.3、ABD【解析】【分析】利用相似多邊形的對(duì)應(yīng)邊的比相等,對(duì)應(yīng)角相等分析.【詳解】解:要判斷兩個(gè)多邊形是否相似,需要看對(duì)應(yīng)角是否相等,對(duì)應(yīng)邊的比是否相等.矩形、菱形、平行四邊形都屬于形狀不唯一確定的圖形,即對(duì)應(yīng)角、對(duì)應(yīng)邊的比不一定相等,故不一定相似,選項(xiàng)A、B、D符合題意;而兩個(gè)正方形,對(duì)應(yīng)角都是90°,對(duì)應(yīng)邊的比也都相等,故一定相似,選項(xiàng)C不符合題意.故選:ABD.【考點(diǎn)】本題考查了相似多邊形的識(shí)別.判定兩個(gè)圖形相似的依據(jù)是:對(duì)應(yīng)邊的比相等,對(duì)應(yīng)角相等.兩個(gè)條件必須同時(shí)具備.4、ABC【解析】【分析】根據(jù)三角形相似的判定定理逐項(xiàng)排查即可.【詳解】解:A:∵∠A=∠A′=45°,∠B=26°,∠B′=109°,∴∠C=109°,∠C′=26°,∴∠B=∠C,∴△ABC∽△A′C′B′,B:∵AB=1,AC=1.5,BC=2,A′B′=4,A′C′=2,B′C′=3,∴,∴△ABC∽△C′A′B′;C:∵∠A=∠B′,AB=2,AC=2.4,A′B′=3.6,B′C′=3,∴AB:B′C′=AC:A′B′=2:3,∴△ABC∽△B′C′A′;D:∵AB=3,AC=5,BC=7,A′B′=,A′C′=
B′C′=,∴,∴不相似.故選ABC.【考點(diǎn)】本題主要考查了相似三角形的判定,相似三角形的判定方法主要有:①有兩個(gè)對(duì)應(yīng)角相等的三角形相似;②有兩個(gè)對(duì)應(yīng)邊的比相等,且其夾角相等,則兩個(gè)三角形相似;③三組對(duì)應(yīng)邊的比相等,則兩個(gè)三角形相似.5、ACDE【解析】【分析】首先證明△ABE≌△DCF,△ADG≌△CDG(SAS),△AGB≌△CGB,利用全等三角形的性質(zhì),相似三角形的判定與性質(zhì),等高模型、三邊關(guān)系一一判斷即可.【詳解】解:∵四邊形ABCD是正方形,∴AB=CD,∠BAD=∠ADC=90°,∠ADB=∠CDB=45°,在△ABE和△DCF中,,∴△ABE≌△DCF(SAS),∴∠ABE=∠DCF,在△ADG和△CDG中,,‘∴△ADG≌△CDG(SAS),∴∠DAG=∠DCF,∴∠ABE=∠DAG,∵∠DAG+∠BAH=90°,∴∠ABE+∠BAH=90°,∴∠AHB=90°,∴AG⊥BE,故選項(xiàng)C正確;同法可證:△AGB≌△CGB,∵DF∥CB,∴△CBG∽△FDG,∴△ABG∽△FDG,故選項(xiàng)A正確;∵S△HDG:S△HBG=DG:BG=DF:BC=DF:CD=tan∠FCD,又∵∠DAG=∠FCD,∴S△HDG:S△HBG=tan∠FCD=tan∠DAG,故選項(xiàng)D正確;取AB的中點(diǎn)O,連接OD、OH,∵正方形的邊長為4,∴AO=OH=×4=2,由勾股定理得,OD==2,∵DH≥OD-OH,∴O、D、H三點(diǎn)共線時(shí),DH最小,∴DH最小=2-2.故選項(xiàng)E正確,無法證明DH平分∠EHG,故選項(xiàng)B錯(cuò)誤,故選項(xiàng)ACDE正確,故選:ACDE.【考點(diǎn)】本題考查了正方形的性質(zhì),相似三角形的判定與性質(zhì),全等三角形的判定與性質(zhì),三角形的三邊關(guān)系,三角函數(shù),勾股定理、等高模型等知識(shí),解題的關(guān)鍵是靈活運(yùn)用所學(xué)知識(shí)解決問題,難點(diǎn)在于選項(xiàng)E作輔助線并確定出DH最小時(shí)的情況.6、ABD【解析】【分析】根據(jù)圓的性質(zhì)定理逐項(xiàng)排查即可.【詳解】解:A.不在同一條直線上的三點(diǎn)確定一個(gè)圓,故本選項(xiàng)錯(cuò)誤;B.三角形的外心是三角形三邊垂直平分線的交點(diǎn),所以本選項(xiàng)是錯(cuò)誤;C.三角形的外接圓是三條垂直平分線的交點(diǎn),有且只有一個(gè)交點(diǎn),所以任意三角形一定有一個(gè)外接圓,并且只有一個(gè)外接圓,所以本選項(xiàng)是正確的;D.直角三角形的外心在斜邊中點(diǎn)處,故本選項(xiàng)錯(cuò)誤.故選:ABD.【考點(diǎn)】考查確定圓的條件以及三角形外接圓的知識(shí),掌握三角形的外接圓是三條垂直平分線的交點(diǎn)是解題的關(guān)鍵.7、BD【解析】【分析】設(shè)函數(shù)解析式為,將點(diǎn)(4,9)代入判斷A錯(cuò)誤;將R=9Ω代入判斷B正確;由解析式判斷C錯(cuò)誤;由函數(shù)性質(zhì)判斷D正確.【詳解】解:設(shè)函數(shù)解析式為,將點(diǎn)(4,9)代入,得,∴函數(shù)解析式為,故A錯(cuò)誤;當(dāng)R=9Ω時(shí),I=4A,故B正確;蓄電池的電壓是36V,故C錯(cuò)誤;∵39>0,∴I隨R的增大而減小,∴當(dāng)I≤10A時(shí),R≥3.6Ω,故D正確;故選:BD.【考點(diǎn)】此題考查了求反比例函數(shù)解析式,反比例函數(shù)的增減性,已知自變量求函數(shù)值的大小,正確掌握反比例函數(shù)的綜合知識(shí)是解題的關(guān)鍵.三、填空題1、
2米
12.56平方米【解析】【分析】根據(jù)周長公式轉(zhuǎn)化為,將C=12.56代入進(jìn)行計(jì)算得到半徑,繼續(xù)利用面積公式,代入半徑的值求出面積的結(jié)果.【詳解】因?yàn)镃=2πr,所以==2,所以r=2(米),因?yàn)镾=πr2=3.14×22=12.56(平方米).故答案為:2米
12.56平方米.【考點(diǎn)】考查圓的面積和周長與半徑之間的關(guān)系,學(xué)生必須熟練掌握?qǐng)A的面積和周長的求解公式,選擇相應(yīng)的公式進(jìn)行計(jì)算,利用公式是解題的關(guān)鍵.2、3【解析】【分析】根據(jù)直角三角形的性質(zhì)得到AB=10,利用勾股定理求出AC,再說明DE∥AC,得到,即可求出DE.【詳解】解:∵∠ACB=90°,點(diǎn)D為AB中點(diǎn),∴AB=2CD=10,∵BC=8,∴AC==6,∵DE⊥BC,AC⊥BC,∴DE∥AC,∴,即,∴DE=3,故答案為:3.【考點(diǎn)】本題考查了直角三角形的性質(zhì),勾股定理,平行線分線段成比例,解題的關(guān)鍵是通過平行得到比例式.3、(答案不唯一)【解析】【分析】先根據(jù)二次函數(shù)的圖象和性質(zhì)取對(duì)稱軸x=2,設(shè)拋物線的解析式為y=a(x-2)2,由于在拋物線對(duì)稱軸的右邊,y隨x增大而減小,得出a<0,于是去a=-1,即可解答.【詳解】解:設(shè)拋物線的解析式為y=a(x-2)2,∵在拋物線對(duì)稱軸的右邊,y隨x增大而減小,∴a<0,符合上述條件的二次函數(shù)均可,可取a=-1,則y=-(x-2)2.故答案為:y=-(x-2)2.【考點(diǎn)】本題考查了二次函數(shù)的圖象和性質(zhì),解題的關(guān)鍵是掌握二次函數(shù)的圖象和性質(zhì).4、(1,0)【解析】【分析】根據(jù)表中數(shù)據(jù)得到點(diǎn)(-2,-3)和(0,-3)對(duì)稱點(diǎn),從而得到拋物線的對(duì)稱軸為直線x=-1,再利用表中數(shù)據(jù)得到拋物線與x軸的一個(gè)交點(diǎn)坐標(biāo)為(-3,0),然后根據(jù)拋物線的對(duì)稱性就看得到拋物線與x軸的一個(gè)交點(diǎn)坐標(biāo).【詳解】∵x=-2,y=-3;x=0時(shí),y=-3,∴拋物線的對(duì)稱軸為直線x=-1,∵拋物線與x軸的一個(gè)交點(diǎn)坐標(biāo)為(-3,0),∴拋物線與x軸的一個(gè)交點(diǎn)坐標(biāo)為(1,0).故答案為(1,0).【考點(diǎn)】本題考查了拋物線與x軸的交點(diǎn):把求二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)與x軸的交點(diǎn)坐標(biāo)問題轉(zhuǎn)化解關(guān)于x的一元二次方程即可求得交點(diǎn)橫坐標(biāo).也考查了二次函數(shù)的性質(zhì).5、2【解析】【分析】首先建立平面直角坐標(biāo)系,然后根據(jù)圖中數(shù)據(jù)確定點(diǎn)A和點(diǎn)B的坐標(biāo),從而利用待定系數(shù)法確定二次函數(shù)的解析式,然后求得C、D兩點(diǎn)的坐標(biāo),從而求得水面的寬度.【詳解】如圖建立直角坐標(biāo)系.則點(diǎn)A的坐標(biāo)為(-2,8),點(diǎn)B的坐標(biāo)為(2,8),設(shè)拋物線的解析式為y=ax2,代入點(diǎn)A的坐標(biāo)得8=4a,解得:a=2,所以拋物線的解析式為y=2x2,令y=6得:6=2x2,解得:x=±,所以CD=-(-)=2(cm).故答案為:2.【考點(diǎn)】本題考查了二次函數(shù)的應(yīng)用,解題的關(guān)鍵是從實(shí)際問題中整理出二次函數(shù)模型,并建立正確的平面直角坐標(biāo)系.6、5【解析】【分析】根據(jù)相似三角形的性質(zhì)確定兩直角邊的比值為1:2,以及6×6網(wǎng)格圖形中,最長線段為6,進(jìn)行嘗試,可確定、、為邊的這樣一組三角形滿足條件.【詳解】解:∵在Rt△ABC中,AC=1,BC=2,∴AB=,AC:BC=1:2,∴與Rt△ABC相似的格點(diǎn)三角形的兩直角邊的比值為1:2,若該三角形最短邊長為4,則另一直角邊長為8,但在6×6網(wǎng)格圖形中,最長線段為6,但此時(shí)畫出的直角三角形為等腰直角三角形,從而畫不出端點(diǎn)都在格點(diǎn)且長為8的線段,故最短直角邊長應(yīng)小于4,在圖中嘗試,可畫出DE=,EF=2,DF=5的三角形,∵===,∴△ABC∽△DEF,∴∠DEF=∠C=90°,∴此時(shí)△DEF的面積為:×2÷2=10,△DEF為面積最大的三角形,其斜邊長為:5.故答案為:5.【考點(diǎn)】本題考查了作圖-應(yīng)用與設(shè)計(jì)、相似三角形的判定和性質(zhì)、勾股定理等知識(shí),解題的關(guān)鍵是學(xué)會(huì)利用數(shù)形結(jié)合的思想解決問題,屬于中考填空題中的壓軸題.7、【解析】【分析】由題意得:二次函數(shù)的圖像開口向上,進(jìn)而,可得到答案.【詳解】∵二次函數(shù)的圖像在它的對(duì)稱軸右側(cè)部分是上升的,∴二次函數(shù)的圖像開口向上,∴.故答案是:【考點(diǎn)】本題主要考查二次函數(shù)圖象和二次函數(shù)的系數(shù)之間的關(guān)系,掌握二次函數(shù)的系數(shù)的幾何意義,是解題的關(guān)鍵.四、解答題1、(1);(2)證明見解析.【解析】【分析】(1)求出AE,BG,DF,利用AE+BG=2CF,可得.(2)利用求差法比較大小.【詳解】(1)∵,,,,,∴.(2)∵,∵,∴,∴,∴.【考點(diǎn)】本題考查反比例函數(shù)圖形上的點(diǎn)的坐標(biāo)特征,反比例函數(shù)的圖象等知識(shí),解題的關(guān)鍵是理解題意,靈活運(yùn)用所學(xué)知識(shí)解決問題.2、見解析【解析】【分析】方法1:過點(diǎn)A作于點(diǎn)D,根據(jù),可得,由此可得,由此可得結(jié)論;方法2:過點(diǎn)A作于點(diǎn)D,根據(jù)可得,由此可表示三角形的面積,根據(jù)面積相等可得相應(yīng)等式,由此可得結(jié)論;方法3:作的外接圓,設(shè)的半徑為r,作直徑BD,連接CD,根據(jù)圓周角定理可得,由此可得結(jié)論.【詳解】解:方法1如圖所示,過點(diǎn)A作于點(diǎn)D,則,在中,,∴,在中,,∴,∴,∴.同理可證,.∴.方法2如圖所示,過點(diǎn)A作于點(diǎn)D,則,在中,在中,,∴,∴,同理可得,∴,∴,∴,∴.方法3如圖所示,作的外接圓,設(shè)的半徑為r,作直徑BD,連接CD.∵BD是的直徑,∴.∴,∴,同理可得,.∴.3、(1)證明見解析(2)【解析】【分析】(1)連接OC,由圓周角定理和已知條件得出∠BOC=∠D,證出∠OCH=90°,得出DC⊥OC,即可得出結(jié)論;(2)作AG⊥CD于G,則AG∥OC,由三角函數(shù)定義求出OH=OC=5,得出AH=OA+OH=9,由勾股定理得出CH==3,證△OCH∽△AGH,求出AG=OC=,GH=CH=,得出CG=GH﹣CH=,再由勾股定理即可得出答案.【詳解】(1)證明:連接OC,如圖1所示:∵DE⊥OA,∴∠HED=90°,∴∠H+∠D=90°,∵∠BOC=2∠A,∠D=2∠A,∴∠BOC=∠D,∴∠H+∠BOC=90°,∴∠OCH=90°,∴DC⊥OC,∴DC與⊙O相切;(2)作AG⊥
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 《GB-T 28878.1-2012空間科學(xué)實(shí)驗(yàn)轉(zhuǎn)動(dòng)部件規(guī)范 第1部分:設(shè)計(jì)總則》專題研究報(bào)告
- GBT 28446.1-2012手持和身體佩戴使用的無線通信設(shè)備對(duì)人體的電磁照射 人體模型、儀器和規(guī)程 第1部分:靠近耳邊使用的手持式無線通信設(shè)備的SAR評(píng)估規(guī)程(頻率范圍300MHz~3GHz)專題
- 《GB-T 20969.4-2021特殊環(huán)境條件 高原機(jī)械 第4部分:高原自然環(huán)境試驗(yàn)導(dǎo)則 內(nèi)燃動(dòng)力機(jī)械》專題研究報(bào)告
- 云原生應(yīng)用運(yùn)維合同
- 智能窗簾維修技師(中級(jí))考試試卷及答案
- 腫瘤專科陪診顧問崗位招聘考試試卷及答案
- 2025年8月份門診部理論培訓(xùn)考核題及答案
- 2025年移動(dòng)通訊用數(shù)字程控交換機(jī)項(xiàng)目發(fā)展計(jì)劃
- 2025年UV無影膠水項(xiàng)目發(fā)展計(jì)劃
- 2025年P(guān)U系列水乳型聚氨酯皮革涂飾劑項(xiàng)目發(fā)展計(jì)劃
- 電子承兌支付管理辦法
- 學(xué)堂在線 知識(shí)產(chǎn)權(quán)法 章節(jié)測(cè)試答案
- 全檢員考試試題及答案
- 提高住院患者圍手術(shù)期健康宣教知曉率品管圈活動(dòng)報(bào)告
- 應(yīng)急救援個(gè)體防護(hù)
- 黨建陣地日常管理制度
- 車間醫(yī)藥箱管理制度
- 食葉草種植可行性報(bào)告
- 落葉清掃壓縮機(jī)設(shè)計(jì)答辯
- 《高血壓、2型糖尿病、高脂血癥、肥胖癥膳食運(yùn)動(dòng)基層指導(dǎo)要點(diǎn)》解讀課件
- 和解協(xié)議書限高模板
評(píng)論
0/150
提交評(píng)論