版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
北師大版9年級數(shù)學上冊期末試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題24分)一、單選題(6小題,每小題2分,共計12分)1、關于x的方程x(x﹣1)=3(x﹣1),下列解法完全正確的是()ABCD兩邊同時除以(x﹣1)得,x=3整理得,x2﹣4x=﹣3∵a=1,b=﹣4,c=﹣3,b2﹣4ac=28∴x==2±整理得,x2﹣4x=﹣3配方得,x2﹣4x+2=﹣1∴(x﹣2)2=﹣1∴x﹣2=±1∴x1=1,x2=3移項得,(x﹣3)(x﹣1)=0∴x﹣3=0或x﹣1=0∴x1=1,x2=3A.A B.B C.C D.D2、如圖,以點O為位似中心,把△ABC放大為原圖形的2倍得到,以下說法中錯誤的是(
)A. B.點C,O,在同一直線上C. D.3、如圖,點A是反比例函數(shù)圖象上的一點,過點A作軸,垂足為點C,D為AC的中點,若的面積為1,則k的值為()A. B. C.3 D.44、如圖所示,雙曲線y=上有一動點A,連接OA,以O為頂點、OA為直角邊,構造等腰直角三角形OAB,則△OAB面積的最小值為(
)A. B. C.2 D.25、下列四組線段中,是成比例線段的是()A.0.5,3,2,10 B.3,4,6,2C.5,6,15,18 D.1.5,4,1.2,56、如圖,菱形ABCD的兩條對角線長分別為AC=6,BD=8,點P是BC邊上的一動點,則AP的最小值為(
)A.4 B.4.8 C.5 D.5.5二、多選題(6小題,每小題2分,共計12分)1、(多選)如圖,正方形ABCD的對角線AC,BD相交于D于點O,點P為線段AC上一點,連接BP,過點P作交AD于點E,連接BE,若,,下列說法正確的有(
)A. B. C. D.2、如圖,正方形ABCD中,CE平分∠ACB,點F在邊AD上,且AF=BE.連接BF交CE于點G,交AC于點M,點P是線段CE上的動點,點N是線段CM上的動點,連接PM,PN.下列四個結論一定成立的是(
)A.CE⊥BF B.BE=AM C.AE+FM=AB D.PM+PN≥AC3、如圖,在矩形、銳角三角形、正五邊形、直角三角形的外邊加一個寬度一樣的外框,保證外框的邊與原圖形的對應邊平行,則外框與原圖一定相似的有()A. B.C. D.4、如圖,在直角坐標系中,直線y1=2x﹣2與坐標軸交于A、B兩點,與雙曲線y2=(x>0)交于點C,過點C作CD⊥x軸,垂足為D,且OA=AD,則以下結論中正確的是(
)A.S△ADB=S△ADC;B.當0<x<3時,y1<y2;C.如圖,當x=3時,EF=;D.當x>0時,y1隨x的增大而增大,y2隨x的增大而減?。?、下列方程中是一元二次方程的有(
)A.B.C.D.E.F.6、如圖,在四邊形ABCD中,∠B=∠C,AB=3,CD=2,BC=6,點P是邊BC上的動點,若△ABP與△CDP相似,則BP=(
)A.3.6 B.C. D.2.4第Ⅱ卷(非選擇題76分)三、填空題(8小題,每小題2分,共計16分)1、舉出一個生活中應用反比例函數(shù)的例子:______.2、如圖,已知DC為∠ACB的平分線,DE∥BC.若AD=8,BD=10,BC=15,求EC的長=_____.3、在等腰△ABC中,AB=AC,AD⊥BC于D,G是重心,若AG=9cm,則GD=_______cm.4、袋子中裝有除顏色外完全相同的n個黃色乒乓球和3個白色乒乓球,從中隨機抽取1個,若選中白色乒乓球的概率是,則n的值是_____.5、布袋中有紅、黃、藍三個球,它們除顏色不同以外,其他都相同,從袋中隨機取出一個球后再放回袋中,這樣取出球的順序依次是“紅—黃—藍”的概率是__________.6、如圖,在△ABC中,∠A=30°,∠B=90°,D為AB中點,E在線段AC上,,則_____.7、如果關于的一元二次方程有實數(shù)根,那么的取值范圍是___.8、如圖,一塊飛鏢游戲板由大小相等的小等邊三角形構成,向游戲板隨機投擲一枚飛鏢(飛鏢每次都落在游戲板上),則擊中黑色區(qū)域的概率是____________.四、解答題(6小題,每小題10分,共計60分)1、如圖所示,AD、BC為兩路燈,身高相同的小明、小亮站在兩路燈桿之間,兩人相距6.5m,小明站在P處,小亮站在Q處,小明在路燈C下的影長為2m,已知小明身高1.8m,路燈BC高9m.①計算小亮在路燈D下的影長;②計算建筑物AD的高.2、用指定方法解下列方程:(1)2x2-5x+1=0(公式法);(2)x2-8x+1=0(配方法).3、關于x的方程有實數(shù)根,且m為正整數(shù),求m的值及此時方程的根.4、已知:a:b:c=3:4:5(1)求代數(shù)式的值;(2)如果3a﹣b+c=10,求a、b、c的值.5、如圖是由一些棱長都為的小正方體組合成的簡單幾何體.(1)畫出該幾何體的主視圖、左視圖和俯視圖;(2)如果在這個幾何體上再添加一些小正方體,并保持主視圖和左視圖不變,最多可以再添加__________塊小正方體.6、關于x的一元二次方程kx2+(k+1)x+=0.(1)當k取何值時,方程有兩個不相等的實數(shù)根?(2)若其根的判別式的值為3,求k的值及該方程的根.-參考答案-一、單選題1、D【解析】【分析】A.不能兩邊同時除以(x﹣1),會漏根;B.化為一般式,利用公式法解答;C.利用配方法解答;D.利用因式分解法解答【詳解】解:A.不能兩邊同時除以(x﹣1),會漏根,故A錯誤;B.化為一般式,a=l,b=﹣4,c=3,故B錯誤;C.利用配方法解答,整理得,x2﹣4x=﹣3,配方得,x2﹣4x+22=1,故C錯誤;D.利用因式分解法解答,完全正確,故選:D【考點】本題考查解一元二次方程,涉及公式法、配方法、因式分解法等知識,是重要考點,掌握相關知識是解題關鍵.2、C【解析】【分析】根據(jù)位似圖形的性質(zhì)進行判斷即可得.【詳解】解:以點為位似中心,把放大為原圖形的2倍得到,、點在同一直線上、、,,即選項A、B、D說法正確,選項C說法錯誤,故選:C.【考點】本題考查了位似圖形,熟練掌握位似圖形的性質(zhì)是解題關鍵.3、D【解析】【分析】先設出點A的坐標,進而表示出點D的坐標,利用△ADO的面積建立方程求出,即可得出結論.【詳解】點A的坐標為(m,2n),∴,∵D為AC的中點,∴D(m,n),∵AC⊥軸,△ADO的面積為1,∴,∴,∴,故選:D.【考點】本題考查反比例函數(shù)系數(shù)k的幾何意義、反比例函數(shù)圖象上點的坐標特征,解答本題的關鍵是明確題意,找出所求問題需要的條件,利用反比例函數(shù)的性質(zhì)解答.4、C【解析】【分析】根據(jù)等腰直角三角形性質(zhì)得出S△OAB=OA?OB=OA2,先求得OA取最小值時A的坐標,即可求得OA的長,從而求得△OAB面積的最小值.【詳解】解:∵△AOB是等腰直角三角形,∴OA=OB,∴S△OAB=OA?OB=OA2,∴OA取最小值時,△OAB面積的值最小,∵當直線OA為y=x時,OA最小,解得或,∴此時A的坐標為(,),∴OA=2,∴,∴△OAB面積的最小值為2,故選:C.【考點】本題考查了反比例函數(shù)圖象上點的坐標特征,等腰直角三角形的性質(zhì),三角形的面積,求得OA取最小值時A的坐標是解題的關鍵.5、C【解析】【分析】根據(jù)各個選項中的數(shù)據(jù)可以判斷哪個選項中的四條線段不成比例,本題得以解決.【詳解】解:∵,故選項A中的線段不成比例,不符合題意;∵,故選項B中的線段不成比例,不符合題意;∵,故選項C中的線段成比例,符合題意;∵,故選項D中的線段不成比例,不符合題意,故選:C【考點】本題考查比例線段,解題的關鍵是明確題意,找出所求問題需要的條件.6、B【解析】【分析】由垂線段最短,可得AP⊥BC時,AP有最小值,由菱形的性質(zhì)和勾股定理可求BC的長,由菱形的面積公式可求解.【詳解】如圖,設AC與BD的交點為O,∵點P是BC邊上的一動點,∴AP⊥BC時,AP有最小值,∵四邊形ABCD是菱形,∴AC⊥BD,AO=CO=AC=3,BO=DO=BD=4,∴BC=,∵S菱形ABCD=×AC×BD=BC×AP,∴AP==4.8,故選:B.【考點】本題考查了菱形的性質(zhì),勾股定理,確定當AP⊥BC時,AP有最小值是本題關鍵.二、多選題1、ABC【解析】【分析】由∠DBP+∠BPO=90°,∠APE+∠BPO=90°,可判斷結論A正確;過P作PK⊥AD于K,PT⊥AB于T,證明△PKE≌△PTB(ASA),可判定結論B正確;延長KP交BC于M,可得△CPM是等腰直角三角形,CP=PM=CP=1,即可得AE=AD-DK-KE=4,判斷結論C正確;在Rt△BPM中,BP=,可得S△PBE=BP?PE=13,可判斷結論D錯誤.【詳解】解:∵四邊形ABCD是正方形,∴∠BOP=90°,∴∠DBP+∠BPO=90°,∵PE⊥PB,∴∠APE+∠BPO=90°,∴∠APE=∠DBP,故結論A正確;過P作PK⊥AD于K,PT⊥AB于T,如圖:∵四邊形ABCD是正方形,∴∠DAC=∠BAC,又PK⊥AD,PT⊥AB∴PK=PT,∵∠KPT=90°=∠EPB,∴∠KPE=∠BPT,∵∠PKE=90°=∠PTB,∴△PKE≌△PTB(ASA),∴PE=PB,故結論B正確;延長KP交BC于M,如圖:∵四邊形ABCD是正方形,∴AD∥BC,∠ACB=45°,∴PM⊥BC,∴△CPM是等腰直角三角形,∴CP=PM=CP=1,∴DK=CM=1,KE=PM=1,∴AE=AD-DK-KE=4,故結論C正確;∵BC=6,CM=1,∴BM=5,在Rt△BPM中,BP==,∴PE=BP=,∴S△PBE=BP?PE=13,故結論D錯誤,故選:ABC.【考點】本題考查正方形的性質(zhì)及應用,涉及全等三角形的判定與性質(zhì),等腰直角三角形的性質(zhì)及應用等知識,解題的關鍵是作輔助線,證明△PKE≌△PTB.2、ABD【解析】【分析】由SAS可證△BAF≌△CBE,進而可證EG⊥BG,即CE⊥BF,故A正確;根據(jù)ASA可證△BCG≌△MCG,知∠CBG=∠CMG,因為∠CBG=∠AFM,∠AMF=∠CMG,可得∠AFM=∠AMF,即AM=AF,可證BE=AM,故B正確;因AB=AE+BE=AE+AM,故C不正確;當PN⊥MC時,PM+PN=BP+PN=BN最短,此時BN為△ABC底邊AC上的高,則BN的長度為PM+PN的最小值,根據(jù)正方形的性質(zhì)知,BN==BD=AC,因此PM+PN≥AC,故D正確.【詳解】解:∵四邊形ABCD是正方形∴AB=BC,∠BAF=∠CBE=90°在△BAF和△CBE中∴△BAF≌△CBE(SAS)∴∠BAF=∠ECB∵∠CBE=90°∴∠BEC+∠BCE=90°∴∠BEC+∠FBA=90°∴∠BGE=180°-(∠BEC+∠FBA)=90°∴EG⊥BG,即CE⊥BF,故A正確;∵CE平分∠ACB∴∠BCE=∠MCG∵CE⊥BF∴∠MGC=∠BGC=90°在△BCG和△MCG中∴△BCG≌△MCG(ASA)∴∠CBG=∠CMG∵正方形ABCD∴AD∥BC∴∠CBG=∠AFM∵∠AMF=∠CMG∴∠AFM=∠AMF∴AM=AF∵AF=BE∴BE=AM,故B正確;∵AB=AE+BE,BE=AM∴AE+AM=AB,故C不正確;連接BP,如圖,∵△BCG≌△MVG∴BG=GM∵CE⊥BF∴CG垂直平分BM∴MP=BP當PN⊥MC時,PM+PN=BP+PN=BN最短,此時BN為△ABC底邊AC上的高,則BN的長度為PM+PN的最小值,根據(jù)正方形的性質(zhì)知,BN==BD=AC∴PM+PN≥AC,故D正確綜上所述,一定成立的是ABD,故選:ABD.【考點】本題考查了全等三角形的判定與性質(zhì),正方形的性質(zhì),線段的垂直平分線,解題的關鍵是熟練掌握全等三角形的判定與性質(zhì).3、BCD【解析】【分析】根據(jù)相似多邊形的判定定理對各個選項進行分析,從而確定最后答案.【詳解】解:矩形不相似,因為其對應角的度數(shù)一定相同,但對應邊的比值不一定相等,不符合相似的條件,故A不符合題意;銳角三角形、正五邊形、直角三角形的原圖與外框相似,因為其對應角均相等,對應邊均對應成比例,符合相似的條件,故B、C、D符合題意.故選BCD.【考點】此題主要考查了相似圖形判定,注意邊數(shù)相同、各角對應相等、各邊對應成比例的兩個多邊形是相似多邊形.4、ACD【解析】【分析】對于直線解析式,分別令x與y為0求出y與x的值,確定出A與B坐標,利用AAS得到三角形OBA與三角形CDA全等,利用全等三角形對應邊相等得到,確定出C坐標,代入反比例解析式求出k的值,確定出反比例解析式,由圖象判斷時x的范圍,以及與的增減性,把分別代入直線與反比例解析式,相減求出EF的長,即可做出判斷.【詳解】解:對于直線,令,得到;令,得到,,,即,,在和中,,,,(同底等高三角形面積相等),選項A正確;,把C點坐標代入反比例解析式得:,即,由函數(shù)圖象得:當時,,選項B錯誤;當時,,,即,選項C正確;當時,隨x的增大而增大,隨x的增大而減小,選項D正確.故選:ACD.【考點】此題考查了反比例函數(shù)與一次函數(shù)的交點,涉及的知識有:一次函數(shù)與坐標系的交點,待定系數(shù)法確定反比例函數(shù)解析式,坐標與圖形性質(zhì)以及反比例函數(shù)的性質(zhì),熟練掌握函數(shù)的性質(zhì)是解本題的關鍵.5、BCD【解析】【分析】根據(jù)一元二次方程的定義對6個選項逐一進行分析.【詳解】A中最高次數(shù)是3不是2,故本選項錯誤;B符合一元二次方程的定義,故本選項正確;C原式可化為4x2—=0,符合一元二次方程的定義,故本選項正確;D原式可化為2x2十x-1=0,符合一元二次方程的定義,故本選項正確;E原式可化為2x+1=0,不符合一元二次方程的定義,故本選項錯誤;Fax2+bx+c=0,只有在滿足a≠0的條件下才是一元二次方程,故本選項錯誤.故答案為:BCD【考點】本題考查了一元二次方程的概念,只有一個未知數(shù)且未知數(shù)最高次數(shù)為2的整式方程叫做一元二次方程,一般形式是ax2+bx+c=0(且a≠0)特別要注意a≠0的條件,這是在做題過程中容易忽視的知識點.6、ABC【解析】【分析】根據(jù)相似求出相似比,根據(jù)相似比分類討論計算出結果即可.【詳解】解:∠B=∠C,根據(jù)題意:或,則:或,則:或,故答案為:或,故選:ABC.【考點】本題考查相似三角形得的性質(zhì)與應用,能夠熟練掌握相似三角形的性質(zhì)是解決本題的關鍵.三、填空題1、路程s一定,速度v與時間t之間的關系(答案不唯一).【解析】【分析】利用反比例函數(shù)的定義并結合生活中的實例來解答此題即可【詳解】根據(jù)路程=速度時間,速度v則可以用反比例函數(shù)來表示.故答案可以為路程s一定,速度v與時間t之間的關系(答案不唯一).【考點】本題主要考查了反比例函數(shù)的定義形式如(k為常數(shù),)的函數(shù)稱為反比例函數(shù).其中x是自變量,y是函數(shù),自變量x的取值范圍是不等于0的一切實數(shù).2、【解析】【分析】先由角平分線的定義及平行線的性質(zhì)求得∠EDC=∠ECD,從而EC=DE;再DE∥BC,證得△ADE∽△ABC,然后根據(jù)相似三角形的性質(zhì)列出比例式,求得DE的長,即為EC的長.【詳解】解:∵DC為∠ACB的平分線∴∠BCD=∠ECD∵DE∥BC∴∠EDC=∠BCD∴∠EDC=∠ECD∴EC=DE∵AD=8,BD=10∴AB=18∵DE∥BC∴△ADE∽△ABC∴,∵AD=8,AB=18,BC=15∴,∴∴故答案為:【考點】本題考查了角平分線的定義、平行線的性質(zhì)、等腰三角形的判定及相似三角形的判定與性質(zhì),熟練掌握相關性質(zhì)與定理是解題的關鍵.3、4.5【解析】【分析】由三角形的重心的性質(zhì)即可得出答案.【詳解】解:∵AB=AC,AD⊥BC于D,∴AD是△ABC的中線,∵G是△ABC的重心,∴AG=2GD,∵AG=9cm,∴GD=4.5cm,故答案為:4.5.【考點】本題考查了三角形的重心,三角形三條中線的交點叫做三角形的重心,三角形的重心到一個頂點的距離等于它到對邊中點距離的兩倍.4、6.【解析】【分析】根據(jù)隨機事件的概率等于所求情況數(shù)與總數(shù)之比列出方程,解方程即可求出n的值.【詳解】解:根據(jù)題意得:=,解得:n=6,經(jīng)檢驗,n=6是分式方程的解;故答案為:6.【考點】本題主要考查分式方程的應用和隨機事件的概率,掌握概率公式是解題的關鍵.5、【解析】【分析】列舉出所有情況,看球的順序依次是“紅黃藍”的情況數(shù)占所有情況數(shù)的多少即可.【詳解】解:畫出樹形圖:共有27種情況,球的順序依次是“紅黃藍”的情況數(shù)有1種,所以概率為.故答案為:.【考點】考查用列樹狀圖的方法解決概率問題;得到球的順序依次是“紅黃藍”的情況數(shù)是解決本題的關鍵;用到的知識點為:概率等于所求情況數(shù)與總情況數(shù)之比.6、或【解析】【分析】由題意可求出,取AC中點E1,連接DE1,則DE1是△ABC的中位線,滿足,進而可求此時,然后在AC上取一點E2,使得DE1=DE2,則,證明△DE1E2是等邊三角形,求出E1E2=,即可得到,問題得解.【詳解】解:∵D為AB中點,∴,即,取AC中點E1,連接DE1,則DE1是△ABC的中位線,此時DE1∥BC,,∴,在AC上取一點E2,使得DE1=DE2,則,∵∠A=30°,∠B=90°,∴∠C=60°,BC=,∵DE1∥BC,∴∠DE1E2=60°,∴△DE1E2是等邊三角形,∴DE1=DE2=E1E2=,∴E1E2=,∵,∴,即,綜上,的值為:或,故答案為:或.【考點】本題考查了三角形中位線的性質(zhì),平行線分線段成比例,等邊三角形的判定和性質(zhì)以及含30°角的直角三角形的性質(zhì)等,根據(jù)進行分情況求解是解題的關鍵.7、【解析】【分析】由一元二次方程根與系數(shù)的關鍵可得:從而列不等式可得答案.【詳解】解:關于的一元二次方程有實數(shù)根,故答案為:【考點】本題考查的是一元二次方程根的判別式,掌握一元二次方程根的判別式是解題的關鍵.8、【解析】【分析】根據(jù)幾何概率的求法:飛鏢落在陰影部分的概率就是陰影區(qū)域的面積與總面積的比值.【詳解】解:∵總面積為9個小等邊形的面積,其中陰影部分面積為3個小等邊形的面積,∴飛鏢落在陰影部分的概率是=,故答案為:.【考點】本題主要考查了概率求解問題,準確分析計算是解題的關鍵.四、解答題1、①;②.【解析】【分析】解此題的關鍵是找到相似三角形,利用相似三角形的性質(zhì),相似三角形的對應邊成比例求解.【詳解】①∵,,∴∵,∴∴∴∴;②∵,,∴∵,∴∴∴∴.【考點】本題考查了相似三角形,解題的關鍵是找到相似三角形利用相似三角形的對應邊成比例進行求解.2、(1)x1=,x2=(2)x1=4+,x2=4-【解析】【分析】(1)根據(jù)公式法,可得方程的解;(2)根據(jù)配方法,可得方程的解.(1)解:∵a=2,b=-5,c=1,∴Δ=b2﹣4ac=(-5)2-4×2×1=17,∴x=,∴x1=,x2=.(2)解:移項得,并配方,得,即(x-4)2=15,兩邊開平方,得x=4±,∴x1=4+,x2=4-.【考點】本題考查了解一元二次方程,配方法解一元二次方程的關鍵是配方,利用公式法解方程要利用根的判別式.3、,此時方程的根為【解析】【分析】直接利用根的判別式≥0得出m的取值范圍進而解
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《GB-T 39003.1-2020工業(yè)自動化系統(tǒng)工程用工程數(shù)據(jù)交換格式 自動化標識語言 第1部分:架構和通 用要求》專題研究報告
- 《GB-T 11322.1-2013射頻電纜 第0部分:詳細規(guī)范設計指南 第1篇 同軸電纜》專題研究報告
- 《GB-T 31181-2014假肢 踝足裝置和足部組件 要求和試驗方法》專題研究報告
- 《GB-T 38842-2020實 用超導線的分類和檢測方法 一般特性和指南》專題研究報告
- 《GBT 34475-2017 尿素級奧氏體不銹鋼棒》專題研究報告
- 《GB-T 7268-2015電力系統(tǒng)保護及其自動化裝置用插箱及插件面板基本尺寸系列》專題研究報告
- Tiamo-basical-method-1參考資料說明
- 《幼兒文學》課件-6.2幼兒圖畫故事特點
- 種子行業(yè)種子銷售經(jīng)理崗位招聘考試試卷及答案
- 2026年消防安全工作計劃(2篇)
- 學堂在線 雨課堂 文物精與文化中國 期末考試答案
- 關于印發(fā)《2026年度安全生產(chǎn)工作計劃》的通知
- 寬容和感恩的培訓
- 廣東省汕頭市金平區(qū)2024-2025學年七年級上學期期末考試數(shù)學試題
- 過敏性休克的搶救流程
- 常用機床電氣檢修課件 課題十一 T612 型臥式鏜床電氣檢修
- 全國人大機關直屬事業(yè)單位2026年度公開招聘工作人員考試模擬卷帶答案解析
- 云肩非遺模板
- 頭頸部腫瘤介紹
- 安全監(jiān)理工作總程序
- 2026年中國宏觀經(jīng)濟展望分析報告:底部夯實亮點引領未來方向
評論
0/150
提交評論