重難點(diǎn)解析四川遂寧市第二中學(xué)校7年級(jí)數(shù)學(xué)下冊(cè)第四章三角形難點(diǎn)解析試題(詳解)_第1頁(yè)
重難點(diǎn)解析四川遂寧市第二中學(xué)校7年級(jí)數(shù)學(xué)下冊(cè)第四章三角形難點(diǎn)解析試題(詳解)_第2頁(yè)
重難點(diǎn)解析四川遂寧市第二中學(xué)校7年級(jí)數(shù)學(xué)下冊(cè)第四章三角形難點(diǎn)解析試題(詳解)_第3頁(yè)
重難點(diǎn)解析四川遂寧市第二中學(xué)校7年級(jí)數(shù)學(xué)下冊(cè)第四章三角形難點(diǎn)解析試題(詳解)_第4頁(yè)
重難點(diǎn)解析四川遂寧市第二中學(xué)校7年級(jí)數(shù)學(xué)下冊(cè)第四章三角形難點(diǎn)解析試題(詳解)_第5頁(yè)
已閱讀5頁(yè),還剩28頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

四川遂寧市第二中學(xué)校7年級(jí)數(shù)學(xué)下冊(cè)第四章三角形難點(diǎn)解析考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來(lái)的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無(wú)效。第I卷(選擇題20分)一、單選題(10小題,每小題2分,共計(jì)20分)1、下列三角形與下圖全等的三角形是()A. B.C. D.2、三角形的外角和是()A.60° B.90° C.180° D.360°3、以長(zhǎng)為15cm,12cm,8cm、5cm的四條線段中的三條線段為邊,可以畫出三角形的個(gè)數(shù)是()A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)4、如圖,已知△ABC中,AB=AC,∠A=72°,D為BC上一點(diǎn),在AB上取BF=CD,AC上取CE=BD,則∠FDE的度數(shù)為()A.54° B.56° C.64° D.66°5、如圖,在正方形ABCD中,E、F分別為BC、CD的中點(diǎn),連接AE,BF交于點(diǎn)G,將△BCF沿BF對(duì)折,得到△BPF,延長(zhǎng)FP交BA延長(zhǎng)線于點(diǎn)Q,下列結(jié)論:①AE=BF;②AE⊥BF;③QF=QB;④S四邊形ECFG=S△ABG.正確的個(gè)數(shù)是()A.1 B.2 C.3 D.46、如果一個(gè)三角形的兩邊長(zhǎng)分別為5cm和8cm,則第三邊長(zhǎng)可能是()A.2cm B.3cm C.12cm D.13cm7、如圖,≌,和是對(duì)應(yīng)角,和是對(duì)應(yīng)邊,則下列結(jié)論中一定成立的是()A. B.C. D.8、如圖,ABC的面積為18,AD平分∠BAC,且AD⊥BD于點(diǎn)D,則ADC的面積是()A.8 B.10 C.9 D.169、如圖,E為線段BC上一點(diǎn),∠ABE=∠AED=∠ECD=90°,AE=ED,BC=20,AB=8,則BE的長(zhǎng)度為()A.12 B.10 C.8 D.610、定理:三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和.已知:如圖,∠ACD是△ABC的外角.求證:∠ACD=∠A+∠B.證法1:如圖,∵∠A=70°,∠B=63°,且∠ACD=133°(量角器測(cè)量所得)又∵133°=70°+63°(計(jì)算所得)∴∠ACD=∠A+∠B(等量代換).證法2:如圖,∵∠A+∠B+∠ACB=180°(三角形內(nèi)角和定理),又∵∠ACD+∠ACB=180°(平角定義),∴∠ACD+∠ACB=∠A+∠B+∠ACB(等量代換).∴∠ACD=∠A+∠B(等式性質(zhì)).下列說(shuō)法正確的是()A.證法1用特殊到一般法證明了該定理B.證法1只要測(cè)量夠100個(gè)三角形進(jìn)行驗(yàn)證,就能證明該定理C.證法2還需證明其他形狀的三角形,該定理的證明才完整D.證法2用嚴(yán)謹(jǐn)?shù)耐评碜C明了該定理第Ⅱ卷(非選擇題80分)二、填空題(10小題,每小題2分,共計(jì)20分)1、已知a,b,c是△ABC的三邊,化簡(jiǎn):|a+b-c|+|b-a-c|=________.2、如圖,∠ACD是△ABC的外角,∠ABC的平分線與∠ACD的平分線交于點(diǎn)A1,設(shè)∠A=.則∠A1=_______(用含的式子表示).3、如圖,在△AOB和△COD中,OA=OB,OC=OD,OA<OC,∠AOB=∠COD=50°,連接AC、BD交于點(diǎn)M,連接OM.下列結(jié)論:①AC=BD,②∠AMB=50°;③OM平分∠AOD;④MO平分∠AMD.其中正確的結(jié)論是_____.(填序號(hào))4、如圖,△ABC是一個(gè)等腰直角三角形,∠BAC=90°,BC分別與AF、AG相交于點(diǎn)D、E.不添加輔助線,使△ACE與△ABD全等,你所添加的條件是____.(填一個(gè)即可)5、如圖,,,、分別為線段和射線上的一點(diǎn),若點(diǎn)從點(diǎn)出發(fā)向點(diǎn)運(yùn)動(dòng),同時(shí)點(diǎn)從點(diǎn)出發(fā)向點(diǎn)運(yùn)動(dòng),二者速度之比為,運(yùn)動(dòng)到某時(shí)刻同時(shí)停止,在射線上取一點(diǎn),使與全等,則的長(zhǎng)為________.6、一副直角三角板,∠CAB=∠FDE=90°,∠F=45°,∠C=60°,按圖中所示位置擺放,點(diǎn)D在邊AB上,EFBC,則∠ADF的度數(shù)為_____度.7、如圖,與的頂點(diǎn)A、B、D在同一直線上,,,,延長(zhǎng)分別交、于點(diǎn)F、G.若,,則______.8、如圖,∠ABD=80°,∠C=38°,則∠D=___度.9、兩角和它們的夾邊分別相等的兩個(gè)三角形全等(可以簡(jiǎn)寫成_____).10、如圖,AC平分∠DAB,要使△ABC≌△ADC,需要增加的一個(gè)條件是____.三、解答題(6小題,每小題10分,共計(jì)60分)1、如圖,M是線段AB上的一點(diǎn),ED是過(guò)點(diǎn)M的一條線段,連接AE、BD,過(guò)點(diǎn)B作BF∥AE交ED于點(diǎn)F,且EM=FM.(1)求證:AE=BF.(2)連接AC,若∠AEC=90°,∠CAE=∠DBF,CD=4,求EM的長(zhǎng).2、如圖,(1),已知△ABC中,∠BAC=90°,,AE是過(guò)點(diǎn)A的一條直線,且B,C在A,E的異側(cè),于點(diǎn)D,于點(diǎn)E(1)試說(shuō)明:;(2)若直線AE繞點(diǎn)A旋轉(zhuǎn)到圖(2)位置時(shí),其余條件不變,問(wèn)BD與DE,CE的關(guān)系如何?請(qǐng)直接寫出結(jié)果;3、在中,,,點(diǎn)D是直線AC上一動(dòng)點(diǎn),連接BD并延長(zhǎng)至點(diǎn)E,使.過(guò)點(diǎn)E作于點(diǎn)F.(1)如圖1,當(dāng)點(diǎn)D在線段AC上(點(diǎn)D不與點(diǎn)A和點(diǎn)C重合)時(shí),此時(shí)DF與DC的數(shù)量關(guān)系是______.(2)如圖2,當(dāng)點(diǎn)D在線段AC的延長(zhǎng)線上時(shí),依題意補(bǔ)全圖形,并證明:.(3)當(dāng)點(diǎn)D在線段CA的延長(zhǎng)線上時(shí),直接用等式表示線段AD,AF,EF之間的數(shù)量關(guān)系是______.4、如圖,在△ABC中,AB=AC,∠BAC=30°,點(diǎn)D是△ABC內(nèi)一點(diǎn),DB=DC,∠DCB=30°,點(diǎn)E是BD延長(zhǎng)線上一點(diǎn),AE=AB.(1)求∠ADB的度數(shù);(2)線段DE,AD,DC之間有什么數(shù)量關(guān)系?請(qǐng)說(shuō)明理由.(提示:在線段DE上截取線段EM=BD,連接線段AM或者在線段DE上截取線段DM=AD連接線段AM).5、如圖,AD,BC相交于點(diǎn)O,AO=DO.(1)如果只添加一個(gè)條件,使得△AOB≌△DOC,那么你添加的條件是(要求:不再添加輔助線,只需填一個(gè)答案即可);(2)根據(jù)已知及(1)中添加的一個(gè)條件,證明AB=DC.6、如圖,中,,點(diǎn)P在AB上,點(diǎn)Q在線段AC的延長(zhǎng)線上,,PQ與BC相交于點(diǎn)D.點(diǎn)F在BC上,過(guò)點(diǎn)P作BC的垂線,垂足為E,.(1)求證:.(2)請(qǐng)猜測(cè):線段BE、DE、CD數(shù)量關(guān)系為____________.-參考答案-一、單選題1、C【分析】根據(jù)已知的三角形求第三個(gè)內(nèi)角的度數(shù),由全等三角形的判定定理即可得出答案.【詳解】由題可知,第三個(gè)內(nèi)角的度數(shù)為,A.只有兩邊,故不能判斷三角形全等,故此選項(xiàng)錯(cuò)誤;B.兩邊夾的角度數(shù)不相等,故兩三角形不全等,故此選項(xiàng)錯(cuò)誤;C.兩邊相等且夾角相等,故能判斷兩三角形全等,故此選項(xiàng)正確;D.兩邊夾的角度數(shù)不相等,故兩三角形不全等,故此選項(xiàng)錯(cuò)誤.故選:C.【點(diǎn)睛】本題考查全等三角形的判定,掌握全等三角形的判定定理是解題的關(guān)鍵.2、D【分析】根據(jù)三角形的內(nèi)角和定理、鄰補(bǔ)角的性質(zhì)即可得.【詳解】解:如圖,,,又,,即三角形的外角和是,故選:D.【點(diǎn)睛】本題考查了三角形的內(nèi)角和定理、鄰補(bǔ)角的性質(zhì),熟練掌握三角形的內(nèi)角和定理是解題關(guān)鍵.3、C【分析】從4條線段里任取3條線段組合,可有4種情況,看哪種情況不符合三角形三邊關(guān)系,舍去即可.【詳解】解:首先可以組合為15cm,12cm,8cm;15cm,12cm,5cm;15cm,8cm、5cm;12cm,8cm、5cm.再根據(jù)三角形的三邊關(guān)系,發(fā)現(xiàn)其中的12cm,8cm、5cm不符合,則可以畫出的三角形有3個(gè).故選:C.【點(diǎn)睛】本題考查了三角形的三邊關(guān)系:即任意兩邊之和大于第三邊,任意兩邊之差小于第三邊.這里一定要首先把所有的情況組合后,再看是否符合三角形的三邊關(guān)系.4、A【分析】由“SAS”可證△BDF≌△CED,可得∠BFD=∠CDE,由外角的性質(zhì)可求解.【詳解】解答:解:∵AB=AC,∠A=72°,∴∠B=∠C=54°,在△BDF和△CED中,,∴△BDF≌△CED(SAS),∴∠BFD=∠CDE,∵∠FDC=∠B+∠BFD=∠CDE+∠FDE,∴∠FDE=∠B=54°,故選:A.【點(diǎn)睛】本題考查全等三角形的判定與性質(zhì),掌握全等三角形的判定定理與性質(zhì)是解題的關(guān)鍵.5、D【分析】首先證明△ABE≌△BCF,再利用角的關(guān)系求得∠BGE=90°,即可得到①AE=BF;②AE⊥BF;△BCF沿BF對(duì)折,得到△BPF,利用角的關(guān)系求出QF=QB;由Rt△ABE≌Rt△BCF得S△ABE=S△BCF即可判定④正確.【詳解】解:∵E,F(xiàn)分別是正方形ABCD邊BC,CD的中點(diǎn),∴CF=BE,在△ABE和△BCF中,,∴Rt△ABE≌Rt△BCF(SAS),∴∠BAE=∠CBF,AE=BF,故①正確;又∵∠BAE+∠BEA=90°,∴∠CBF+∠BEA=90°,∴∠BGE=90°,∴AE⊥BF,故②正確;根據(jù)題意得,F(xiàn)P=FC,∠PFB=∠BFC,∠FPB=90°,∵CD∥AB,∴∠CFB=∠ABF,∴∠ABF=∠PFB,∴QF=QB,故③正確;∵Rt△ABE≌Rt△BCF,∴S△ABE=S△BCF,∴S△ABE﹣S△BEG=S△BCF﹣S△BEG,即S四邊形ECFG=S△ABG,故④正確.故選:D.【點(diǎn)睛】本題主要是考查了三角形全等、正方形的性質(zhì),熟練地綜合應(yīng)用全等三角形以及正方形的性質(zhì),證明邊相等和角相等,是解決本題的關(guān)鍵.6、C【分析】根據(jù)兩邊之和大于第三邊,兩邊之差小于第三邊可求得結(jié)果【詳解】解:設(shè)第三邊長(zhǎng)為c,由題可知,即,所以第三邊可能的結(jié)果為12cm故選C【點(diǎn)睛】本題主要考查了三角形的性質(zhì)中三角形的三邊關(guān)系知識(shí)點(diǎn)7、D【分析】根據(jù)全等三角形的性質(zhì)求解即可.【詳解】解:∵≌,和是對(duì)應(yīng)角,和是對(duì)應(yīng)邊,∴,,∴,∴選項(xiàng)A、B、C錯(cuò)誤,D正確,故選:D.【點(diǎn)睛】本題考查全等三角形的性質(zhì),熟練掌握全等三角形的性質(zhì)是解答的關(guān)鍵.8、C【分析】延長(zhǎng)BD交AC于點(diǎn)E,根據(jù)角平分線及垂直的性質(zhì)可得:,,依據(jù)全等三角形的判定定理及性質(zhì)可得:,,再根據(jù)三角形的面積公式可得:SΔABD=SΔADE,SΔBDC=S【詳解】解:如圖,延長(zhǎng)BD交AC于點(diǎn)E,∵AD平分,,∴,,在和中,,∴,∴,∴SΔABD=S∴SΔADC故選:C.【點(diǎn)睛】題目主要考查全等三角形的判定和性質(zhì),角平分線的定義等,熟練掌握基礎(chǔ)知識(shí),進(jìn)行邏輯推理是解題關(guān)鍵.9、A【分析】利用角相等和邊相等證明,利用全等三角形的性質(zhì)以及邊的關(guān)系,即可求出BE的長(zhǎng)度.【詳解】解:由題意可知:∠ABE=∠AED=∠ECD=90°,,,,在和中,,,,故選:A.【點(diǎn)睛】本題主要是考查了全等三角形的判定和性質(zhì),熟練通過(guò)已知條件證明三角形全等,利用全等性質(zhì)及邊的關(guān)系,來(lái)求解未知邊的長(zhǎng)度,這是解決本題的主要思路.10、D【分析】利用測(cè)量的方法只能是驗(yàn)證,用定理,定義,性質(zhì)結(jié)合嚴(yán)密的邏輯推理推導(dǎo)新的結(jié)論才是證明,再逐一分析各選項(xiàng)即可得到答案.【詳解】解:證法一只是利用特殊值驗(yàn)證三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和,證法2才是用嚴(yán)謹(jǐn)?shù)耐评碜C明了該定理,故A不符合題意,C不符合題意,D符合題意,證法1測(cè)量夠100個(gè)三角形進(jìn)行驗(yàn)證,也只是驗(yàn)證,不能證明該定理,故B不符合題意;故選D【點(diǎn)睛】本題考查的是三角形的外角的性質(zhì)的驗(yàn)證與證明,理解驗(yàn)證與證明的含義及證明的方法是解本題的關(guān)鍵.二、填空題1、【分析】首先利用三角形的三邊關(guān)系得出,然后根據(jù)求絕對(duì)值的法則進(jìn)行化簡(jiǎn)即可.【詳解】解:∵是的三條邊,∴,∴=.故答案為:.【點(diǎn)睛】熟悉三角形的三邊關(guān)系和求絕對(duì)值的法則,是解題的關(guān)鍵,注意,去絕對(duì)值后,要先添加括號(hào),再去括號(hào),這樣不容易出錯(cuò).|a+b-c|+|b-a-c|2、【分析】根據(jù)角平分線的定義、三角形的外角的性質(zhì)計(jì)算即可.【詳解】∵∠ABC與∠ACD的平分線交于A1點(diǎn),∴∠A1BC=∠ABC,∠A1CD=∠ACD,∵∠A=∠ACD-∠ABC=∴∠A1=∠A1CD-∠A1BC=(∠ACD-∠ABC)=∠A=,故答案為:.【點(diǎn)睛】本題考查的是三角形的外角的性質(zhì),掌握三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和是解題的關(guān)鍵.3、①②④【分析】由證明得出,,①正確;由全等三角形的性質(zhì)得出,由三角形的外角性質(zhì)得:,得出,②正確;作于,于,如圖所示:則,利用全等三角形對(duì)應(yīng)邊上的高相等,得出,由角平分線的判定方法得出平分,④正確;假設(shè)平分,則,由全等三角形的判定定理可得,得,而,所以,而,故③錯(cuò)誤;即可得出結(jié)論.【詳解】解:,,即,在和中,,,,,故①正確;,由三角形的外角性質(zhì)得:,,故②正確;作于,于,如圖所示,則,,,平分,故④正確;假設(shè)平分,則,在與中,,,,,,而,故③錯(cuò)誤;所以其中正確的結(jié)論是①②④.故答案為:①②④.【點(diǎn)睛】本題考查了全等三角形的判定與性質(zhì)、三角形的外角性質(zhì)、角平分線的判定等知識(shí);證明三角形全等是解題的關(guān)鍵.4、CD=BE(答案不唯一)【分析】△ABC是一個(gè)等腰直角三角形,可知,,使△ACE與△ABD全等,只需填加一組對(duì)應(yīng)角相等或的另一組邊相等即可.【詳解】解:①若所添加的條件是CD=BE,∵CD=BE,∴,∵△ABC是一個(gè)等腰直角三角形,∴,,在△ACE和△ABD中,,∴(SAS)故答案為:CD=BE,(答案不唯一)【點(diǎn)睛】本題主要考查了全等三角形的判定,掌握全等三角形判定方法并靈活運(yùn)用是解題關(guān)鍵.5、2或6或2【分析】設(shè)BE=t,則BF=2t,使△AEG與△BEF全等,由∠A=∠B=90°可知,分兩種情況:情況一:當(dāng)BE=AG,BF=AE時(shí),列方程解得t,可得AG;情況二:當(dāng)BE=AE,BF=AG時(shí),列方程解得t,可得AG.【詳解】解:設(shè)BE=t,則BF=2t,AE=6-t,因?yàn)椤螦=∠B=90°,使△AEG與△BEF全等,可分兩種情況:情況一:當(dāng)BE=AG,BF=AE時(shí),∵BF=AE,AB=6,∴2t=6-t,解得:t=2,∴AG=BE=t=2;情況二:當(dāng)BE=AE,BF=AG時(shí),∵BE=AE,AB=6,∴t=6-t,解得:t=3,∴AG=BF=2t=2×3=6,綜上所述,AG=2或AG=6.故答案為:2或6.【點(diǎn)睛】本題主要考查了全等三角形的性質(zhì),利用分類討論思想是解答此題的關(guān)鍵.6、75【分析】設(shè)CB與ED交點(diǎn)為G,依據(jù)平行線的性質(zhì),即可得到∠CGD的度數(shù),再根據(jù)三角形外角的性質(zhì),得到∠BDE的度數(shù),即可得∠ADF的度數(shù).【詳解】如圖所示,設(shè)CB與ED交點(diǎn)為G,∵∠CAB=∠FDE=90°,∠F=45°,∠C=60°,∴∠E=90°-∠F=45°,∠B=90°-∠C=30°,∵EF∥BC,∴∠E=∠CGD=45°,又∵∠CGD是△BDG的外角,∴∠CGD=∠B+∠BDE,∴∠BDE=45°-30°=15°,∴∠ADF=180°-90°-∠BDE=75°故答案為:75.【點(diǎn)睛】本題主要考查了平行線的性質(zhì)以及三角形外角性質(zhì),解題時(shí)注意:兩條平行線被第三條直線所截,同位角相等.7、【分析】先證明△ABC≌△EDB,可得∠E=,然后利用三角形外角的性質(zhì)求解.【詳解】解:∵,∴∠ABC=∠D,在△ABC和△EDB中,∴△ABC≌△EDB,∴∠E=,∴,,∴∠EGF=30°+50°=80°,∴80°+30°=110°,故答案為:110°.【點(diǎn)睛】本題考查了平行線的性質(zhì),全等三角形的判定與性質(zhì),以及三角形外角的性質(zhì),熟練掌握三角形的外角等于不相鄰的兩個(gè)內(nèi)角和是解答本題的關(guān)鍵.8、【分析】由三角形的外角的性質(zhì)可得代入數(shù)據(jù)即可得到答案.【詳解】解:故答案為:【點(diǎn)睛】本題考查的是三角形的外角的性質(zhì),掌握“三角形的外角等于與它不相鄰的兩個(gè)內(nèi)角之和”是解本題的關(guān)鍵.9、角邊角或【分析】根據(jù)全等三角形的判定定理得出即可.【詳解】解答:解:兩角和它們的夾邊分別相等的兩個(gè)三角形全等,簡(jiǎn)寫成角邊角或ASA,故答案為:角邊角或ASA.【點(diǎn)睛】本題考查了全等三角形的判定定理,掌握全等三角形的判定定理是解題的關(guān)鍵.10、AB=AD(答案不唯一)【分析】根據(jù)SAS即可證明△ABC≌△ADC.【詳解】添加AB=AD,∵AC平分∠DAB,∴∠BAC=∠DAC又AC=AC∴△ABC≌△ADC(SAS)故答案為:AB=AD(答案不唯一).【點(diǎn)睛】此題主要考查全等三角形的判定,解題的關(guān)鍵是熟知全等三角形的判定定理.三、解答題1、(1)見解析;(2)2【分析】(1)根據(jù)平行線的性質(zhì)和全等三角形的判定證明△AME≌△BMF即可證得結(jié)論;(2)由△AME≌△BMF證得AE=BF,EM=FM,∠BFM=∠AEC=90°,根據(jù)全等三角形的判定證明△AEC≌△BFD,則有EC=FD,即EF=CD=4,即可求解.【詳解】解:(1)∵BF∥AE,∴∠EAM=∠FBM,又∠AME=∠BMF,EM=FM,∴△AME≌△BMF(ASA),∴AE=BF;(2)∵△AME≌△BMF,∴AE=BF,EM=FM,∠BFM=∠AEC=90°,∴∠AEC=∠BFD=90°,又∠CAE=∠DBF,∴△AEC≌△BFD(ASA),∴EC=FD,即EF=CD=4,∴EM=EF=2.【點(diǎn)睛】本題考查平行線的性質(zhì)、全等三角形的判定與性質(zhì),熟練掌握全等三角形的判定與性質(zhì)是解答的關(guān)鍵.2、(1)證明見解析;(2)BD=DE-CE,理由見解析.【分析】(1)根據(jù)已知利用AAS判定△ABD≌△CAE從而得到BD=AE,AD=CE,因?yàn)锳E=AD+DE,所以BD=DE+CE;(2)根據(jù)已知利用AAS判定△ABD≌△CAE從而得到BD=AE,AD=CE,因?yàn)锳D+AE=BD+CE,所以BD=DE-CE.【詳解】解:(1)∵∠BAC=90°,BD⊥AE,CE⊥AE,∴∠BDA=∠AEC=90°,∵∠ABD+∠BAE=90°,∠CAE+∠BAE=90°∴∠ABD=∠CAE,∵AB=AC,在△ABD和△CAE中,∴△ABD≌△CAE(AAS),∴BD=AE,AD=CE,∵AE=AD+DE,∴BD=DE+CE;(2)與、的數(shù)量關(guān)系是BD=DE-CE,理由如下:∵∠BAC=90°,BD⊥AE,CE⊥AE,∴∠BDA=∠AEC=90°,∴∠ABD+∠DAB=∠DAB+∠CAE,∴∠ABD=∠CAE,∵AB=AC,在△ABD和△CAE中,∴△ABD≌△CAE(AAS),∴BD=AE,AD=CE,∴AD+AE=BD+CE,∵DE=BD+CE,∴BD=DE-CE.【點(diǎn)睛】此題主要考查全等三角形的判定和性質(zhì),常用的判定方法有SSS,SAS,AAS,HL等.這種類型的題目經(jīng)??嫉?,要注意掌握.3、(1)(2)見解析(3)【分析】(1)利用邊相等和角相等,直接證明,即可得到結(jié)論.(2)利用邊相等和角相等,直接證明,得到和,最后通過(guò)邊與邊之間的關(guān)系,即可證明結(jié)論成立.(3)要證明,先利用邊相等和角相等,直接證明,得到和,最后通過(guò)邊與邊之間的關(guān)系,即可證明結(jié)論成立.【詳解】(1)解:,,,在和中,,.(2)解:當(dāng)點(diǎn)D在線段AC的延長(zhǎng)線上時(shí),如下圖所示:,,,在和中,,,,.(

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論