中考數(shù)學總復習《 圓》達標測試附完整答案詳解【有一套】_第1頁
中考數(shù)學總復習《 圓》達標測試附完整答案詳解【有一套】_第2頁
中考數(shù)學總復習《 圓》達標測試附完整答案詳解【有一套】_第3頁
中考數(shù)學總復習《 圓》達標測試附完整答案詳解【有一套】_第4頁
中考數(shù)學總復習《 圓》達標測試附完整答案詳解【有一套】_第5頁
已閱讀5頁,還剩20頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

中考數(shù)學總復習《圓》達標測試考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計20分)1、如圖,是的內(nèi)接三角形,,是直徑,,則的長為()A.4 B. C. D.2、丁丁和當當用半徑大小相同的圓形紙片分別剪成扇形(如圖)做圓錐形的帽子,請你判斷哪個小朋友做成的帽子更高一些()A.丁丁 B.當當 C.一樣高 D.不確定3、如圖,在△ABC中,AG平分∠CAB,使用尺規(guī)作射線CD,與AG交于點E,下列判斷正確的是(

A.AG平分CDB.C.點E是△ABC的內(nèi)心D.點E到點A,B,C的距離相等4、如圖,△ABC內(nèi)接于⊙O,∠A=50°.E是邊BC的中點,連接OE并延長,交⊙O于點D,連接BD,則∠D的大小為()A.55° B.65° C.60° D.75°5、如圖,在等腰Rt△ABC中,AC=BC=,點P在以斜邊AB為直徑的半圓上,M為PC的中點.當點P沿半圓從點A運動至點B時,點M運動的路徑長是(

)A.π B.π C.π D.2第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計30分)1、已知在平面直角坐標系中,點的坐標為是拋物線對稱軸上的一個動點.小明經(jīng)探究發(fā)現(xiàn):當?shù)闹荡_定時,拋物線的對稱軸上能使為直角三角形的點的個數(shù)也隨之確定.若拋物線的對稱軸上存在3個不同的點,使為直角三角形,則的值是____.2、如圖,已知正六邊形ABCDEF的邊長為2,對角線CF和BE相交于點N,對角線DF與BE相交于點M,則MN=_____.3、如圖,直線、相交于點,半徑為1cm的⊙的圓心在直線上,且與點的距離為8cm,如果⊙以2cm/s的速度,由向的方向運動,那么_________秒后⊙與直線相切.4、如圖,⊙O是△ABC的外接圓,∠A=60°,BC=6,則⊙O的半徑是_____.5、如圖,△ABC是⊙O的內(nèi)接三角形,AB是⊙O的直徑,I是△ABC的內(nèi)心,則∠BIA的度數(shù)是_______°.三、解答題(5小題,每小題10分,共計50分)1、如圖,在平面直角坐標系中,拋物線過點,,與y軸交于點C,連接BC,點N是第一象限拋物線上一點,連接NA,交y軸于點E,.(1)求拋物線的解析式;(2)求線段AN的長;(3)若點M在第三象限拋物線上,連接MN,,則這時點M的坐標為______(直接寫出結(jié)果).2、已知:..求作:,使它經(jīng)過點和點,并且圓心在的平分線上,3、已知:如圖,在⊙O中,AB為弦,C、D兩點在AB上,且AC=BD.求證:.4、如圖,以Rt△ABC的AC邊為直徑作⊙O交斜邊AB于點E,連接EO并延長交BC的延長線于點D,點F為BC的中點,連接EF和AD.(1)求證:EF是⊙O的切線;(2)若⊙O的半徑為2,∠EAC=60°,求AD的長.5、如圖,在△ABC中,AB=AC,∠BAC=120°,點D在邊BC上,⊙O經(jīng)過點A和點B且與邊BC相交于點D.(1)判斷AC與⊙O的位置關系,并說明理由.(2)當CD=5時,求⊙O的半徑.-參考答案-一、單選題1、B【解析】【分析】連接BO,根據(jù)圓周角定理可得,再由圓內(nèi)接三角形的性質(zhì)可得OB垂直平分AC,再根據(jù)正弦的定義求解即可.【詳解】如圖,連接OB,∵是的內(nèi)接三角形,∴OB垂直平分AC,∴,,又∵,∴,∴,又∵AD=8,∴AO=4,∴,解得:,∴.故答案選B.【考點】本題主要考查了圓的垂徑定理的應用,根據(jù)圓周角定理求角度是解題的關鍵.2、B【解析】【分析】由圖形可知,丁丁扇形的弧長大于當當扇形的弧長,根據(jù)弧長與圓錐底面圓的周長相等,可得丁丁剪成扇形做圓錐形的帽子的底面半徑r大于當當剪成扇形做圓錐形的帽子的底面半徑r,由扇形的半徑相等,即母線長相等R,設圓錐底面圓半徑為r,母線為R,圓錐的高為h,根據(jù)勾股定理由即,可得丁丁的h小于當當?shù)膆即可.【詳解】解:由圖形可知,丁丁扇形的弧長大于當當扇形的弧長,根據(jù)弧長與圓錐底面圓的周長相等,∴丁丁剪成扇形做圓錐形的帽子的底面半徑r大于當當剪成扇形做圓錐形的帽子的底面半徑r,∵扇形的半徑相等,即母線長相等R,設圓錐底面圓半徑為r,母線為R,圓錐的高為h,,根據(jù)勾股定理由即,∴丁丁的h小于當當?shù)膆,∴由勾股定理可得當當做成的圓錐形的帽子更高一些.故選:B.【考點】本題考查扇形作圓錐帽子的應用,利用圓錐的母線底面圓的半徑,和圓錐的高三者之間關系,根據(jù)勾股定理確定出當當?shù)拿弊痈呤墙忸}關鍵.3、C【解析】【分析】根據(jù)作法可得CD平分∠ACB,結(jié)合題意即可求解.【詳解】解:由作法得CD平分∠ACB,

∵AG平分∠CAB,∴E點為△ABC的內(nèi)心故答案為:C.【考點】此題考查了尺規(guī)作圖(角平分線),以及三角形角平分線的性質(zhì),熟練掌握相關基本性質(zhì)是解題的關鍵.4、B【解析】【分析】連接CD,根據(jù)圓內(nèi)接四邊形的性質(zhì)得到∠CDB=180°﹣∠A=130°,根據(jù)垂徑定理得到OD⊥BC,求得BD=CD,根據(jù)等腰三角形的性質(zhì)即可得到結(jié)論.【詳解】解:連接CD,∵∠A=50°,∴∠CDB=180°﹣∠A=130°,∵E是邊BC的中點,∴OD⊥BC,∴BD=CD,∴∠ODB=∠ODC=∠BDC=65°,故選:B.【考點】本題考查了圓內(nèi)接四邊形的性質(zhì),垂徑定理,等腰三角形的性質(zhì)等知識.正確理解題意是解題的關鍵.5、B【解析】【分析】取AB的中點O、AC的中點E、BC的中點F,連接OC、OP、OM、OE、OF、EF,如圖,利用勾股定理得到AB的長,進而可求出OC,OP的長,求得∠CMO=90°,于是得到點M在以OC為直徑的圓上,然后根據(jù)圓的周長公式計算點M運動的路徑長.【詳解】解:取AB的中點O、AC的中點E、BC的中點F,連接OC、OP、OM、OE、OF、EF,如圖,∵在等腰Rt△ABC中,AC=BC=2,∴AB=BC=4,∴OC=OP=AB=2,∵∠ACB=90°,∴C在⊙O上,∵M為PC的中點,∴OM⊥PC,∴∠CMO=90°,∴點M在以OC為直徑的圓上,P點在A點時,M點在E點;P點在B點時,M點在F點.∵O是AB中點,E是AC中點,∴OE是△ABC的中位線,∴OE//BC,OE=BC=,∴OE⊥AC,同理OF⊥BC,OF=,∴四邊形CEOF是矩形,∵OE=OF,∴四邊形CEOF為正方形,EF=OC=2,∴M點的路徑為以EF為直徑的半圓,∴點M運動的路徑長=×π×2=π.故選:B.【考點】本題考查了等腰三角形的性質(zhì),勾股定理,正方形的判定與性質(zhì),圓周角定理,以及動點的軌跡:點按一定規(guī)律運動所形成的圖形為點運動的軌跡.解決此題的關鍵是利用圓周角定理確定M點的軌跡為以EF為直徑的半圓.二、填空題1、2或【解析】【分析】分,和確定點M的運動范圍,結(jié)合拋物線的對稱軸與,,共有三個不同的交點,確定對稱軸的位置即可得出結(jié)論.【詳解】解:由題意得:O(0,0),A(3,4)∵為直角三角形,則有:①當時,∴點M在與OA垂直的直線上運動(不含點O);如圖,②當時,,∴點M在與OA垂直的直線上運動(不含點A);③當時,,∴點M在與OA為直徑的圓上運動,圓心為點P,∴點P為OA的中點,∴∴半徑r=∵拋物線的對稱軸與x軸垂直由題意得,拋物線的對稱軸與,,共有三個不同的交點,∴拋物線的對稱軸為的兩條切線,而點P到切線,的距離,又∴直線的解析式為:;直線的解析式為:;∴或4∴或-8故答案為:2或-8【考點】本題是二次函數(shù)的綜合題型,其中涉及到的知識點有圓的切線的判定,直角三角形的判定,綜合性較強,有一定難度.運用數(shù)形結(jié)合、分類討論是解題的關鍵.2、1【解析】【分析】根據(jù)正六邊形的性質(zhì)和直角三角形的性質(zhì)即可得到結(jié)論.【詳解】∵正六邊形ABCDEF的邊長為2,且對角線CF和BE相交于點N,∴∠FNE=60°,∴△ENF是等邊三角形,∴∠FNM=60°,F(xiàn)N=EF=2,∵對角線DF與BE相交于點M,∴∠FMN=90°,∴MN=FN=2=1,故答案為:1.【考點】本題考查了正多邊形和圓,正六邊形的性質(zhì),直角三角形的性質(zhì),正確的識別圖形是解題的關鍵.3、3或5【解析】【分析】分類討論:當點P在當點P在射線OA時⊙P與CD相切,過P作PE⊥CD與E,根據(jù)切線的性質(zhì)得到PE=1cm,再利用含30°的直角三角形三邊的關系得到OP=2PE=2cm,則⊙P的圓心在直線AB上向右移動了(8-2)cm后與CD相切,即可得到⊙P移動所用的時間;當點P在射線OB時⊙P與CD相切,過P作PE⊥CD與F,同前面一樣易得到此時⊙P移動所用的時間.【詳解】當點P在射線OA時⊙P與CD相切,如圖,過P作PE⊥CD與E,∴PE=1cm,∵∠AOC=30°,∴OP=2PE=2cm,∴⊙P的圓心在直線AB上向右移動了(8-2)cm后與CD相切,∴⊙P移動所用的時間==3(秒);當點P在射線OB時⊙P與CD相切,如圖,過P作PE⊥CD與F,∴PF=1cm,∵∠AOC=∠DOB=30°,∴OP=2PF=2cm,∴⊙P的圓心在直線AB上向右移動了(8+2)cm后與CD相切,∴⊙P移動所用的時間==5(秒).故答案為3或5.【考點】本題考查直線與圓的位置關系:直線與有三種位置關系(相切、相交、相離).也考查了切線的性質(zhì).解題關鍵是熟練掌握以上性質(zhì).4、6【解析】【分析】作直徑CD,如圖,連接BD,根據(jù)圓周角定理得到∠CBD=90°,∠D=60°,然后利用含30度的直角三角形三邊的關系求出CD,從而得到⊙O的半徑.【詳解】解:作直徑CD,如圖,連接BD,∵CD為⊙O直徑,∴∠CBD=90°,∵∠D=∠A=60°,∴BD=BC=×6=6,∴CD=2BD=12,∴OC=6,即⊙O的半徑是6.故答案為6.【考點】本題主要考查圓周角的性質(zhì),解決本題的關鍵是要熟練掌握圓周角的性質(zhì).5、135【解析】【分析】先根據(jù)直徑所對的圓周角是直角得出,進而求出,再根據(jù)內(nèi)心是三角形內(nèi)角平分線的交點得出,最后利用三角形的內(nèi)角和定理即得.【詳解】∵AB是⊙O的直徑∴∴∵I是△ABC的內(nèi)心∴IA、IB是角平分線∴∴故答案為:135.【考點】本題考查圓周角定理、內(nèi)心、角平分線的定義及三角形內(nèi)角和定理,解題關鍵是熟知:直徑所對的圓周角為直角;三角形的內(nèi)心是內(nèi)角平分線的交點.三、解答題1、(1)(2)(3)【解析】【分析】(1)把,代入,待定系數(shù)法求解析式即可;(2)根據(jù)解析式求得,證明≌可得,進而可得,求得直線AN的解析式為,聯(lián)立拋物線解析式即可求得點的坐標,過點N作軸于點D,勾股定理即可求得線段AN的長;(3)設的外接圓為圓R,圓心R的坐標為,過點R作軸于點G,過點M作的延長線于點H,連接AR,MR,NR.證明≌可得,,,進而表示出點,將點M的坐標代入拋物線表達式得出④式,根據(jù)得出⑤式,聯(lián)立求解即可求得點的坐標(1)把,代入得:,解得,故拋物線的表達式為.(2)令,得,∴,.∵,∴.∵,,∴≌.∴,∴.設直線AN的解析式為,把,代入得:,解得,故直線AN的解析式為.由,解得,.故點.過點N作軸于點D,則,,根據(jù)勾股定理得:.(3).設的外接圓為圓R,過點R作軸于點G,過點M作的延長線于點H,連接AR,MR,NR.當時,則,設圓心R的坐標為,∵,,∴,∵,,∴≌(AAS),∴,,∴點,將點M的坐標代入拋物線表達式得:④,由題意得:,即⑤,聯(lián)立④⑤并解得:,故點.【考點】本題考查了二次函數(shù)的綜合題,待定系數(shù)法求解析式,勾股定理,圓周角定理,等腰三角形的性質(zhì),全等三角形的性質(zhì)與判定,第三問中正確的添加輔助線是解題的關鍵.2、見詳解.【解析】【分析】要作圓,即需要先確定其圓心,先作∠A的角平分線,再作線段BC的垂直平分線相交于點O,即O點為圓心.【詳解】解:根據(jù)題意可知,先作∠A的角平分線,再作線段BC的垂直平分線相交于O,即以O點為圓心,OB為半徑,作圓O,如下圖所示:【考點】此題主要考查了學生對確定圓心的作法,要求學生熟練掌握應用.3、證明見解析【解析】【分析】根據(jù)等邊對等角可以證得∠A=∠B,然后根據(jù)SAS即可證得兩個三角形全等.【詳解】證明:∵OA=OB,∴∠A=∠B,∵在△OAC和△OBD中:,∴△OAC≌△OBD(SAS).【考點】本題考查了三角形全等的判定與性質(zhì),同圓半徑相等.正確理解三角形的判定定理是關鍵.4、(1)見解析;(2)AD=.【解析】【分析】(1)連接FO,可根據(jù)三角形中位線的性質(zhì)可判斷易證OF∥AB,然后根據(jù)直徑所對的圓周角是直角,可得CE⊥AE,進而知OF⊥CE,然后根據(jù)垂徑定理可得∠FEC=∠FCE,∠OEC=∠OCE,再通過Rt△ABC可知∠OEC+∠FEC=90°,因此可證FE為⊙O的切線;(2)在Rt△OCD中和Rt△ACD中,分別利用勾股定理分別求出CD,AD的長即可.【詳解】(1)證明:連接CE,如圖所示:∵AC為⊙O的直徑,∴∠AEC=90°.∴∠BEC=90°,∵點F為BC的中點,∴EF=BF=CF,∴∠FEC=∠FCE,∵OE=OC,∴∠OEC=∠OCE,∵∠FCE+∠OCE=∠ACB=90°,∴∠FEC+∠OEC=∠OEF=90°,∴EF是⊙O的切線.(2)解:∵OA=OE,∠EAC=60°,∴△AOE是等邊三角形.∴∠AOE=60°,∴∠COD=∠AOE=60°,∵⊙O的半徑為2,∴OA=OC=2在Rt△OCD中,∵∠OCD=90°,∠CO

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論