版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
中考數(shù)學(xué)總復(fù)習(xí)《圓》考試綜合練習(xí)考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計(jì)20分)1、如圖,是的弦,點(diǎn)在過點(diǎn)的切線上,,交于點(diǎn).若,則的度數(shù)等于(
)A. B. C. D.2、已知⊙O的半徑為4,點(diǎn)O到直線m的距離為d,若直線m與⊙O公共點(diǎn)的個(gè)數(shù)為2個(gè),則d可?。ǎ〢.5 B.4.5 C.4 D.03、如圖,AB是⊙O的直徑,C,D是⊙O上位于AB異側(cè)的兩點(diǎn).下列四個(gè)角中,一定與∠ACD互余的角是()A.∠ADC B.∠ABD C.∠BAC D.∠BAD4、已知⊙O的半徑等于3,圓心O到點(diǎn)P的距離為5,那么點(diǎn)P與⊙O的位置關(guān)系是()A.點(diǎn)P在⊙O內(nèi) B.點(diǎn)P在⊙O外 C.點(diǎn)P在⊙O上 D.無法確定5、下列說法正確的是(
)①近似數(shù)精確到十分位;②在,,,中,最小的是;③如圖所示,在數(shù)軸上點(diǎn)所表示的數(shù)為;④用反證法證明命題“一個(gè)三角形最多有一個(gè)鈍角”時(shí),首先應(yīng)假設(shè)“這個(gè)三角形中有兩個(gè)鈍角”;⑤如圖,在內(nèi)一點(diǎn)到這三條邊的距離相等,則點(diǎn)是三個(gè)角平分線的交點(diǎn).A.1 B.2 C.3 D.4第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計(jì)30分)1、如圖,是的直徑,弦于點(diǎn),且,則的半徑為__________.2、如圖,矩形ABCD的對(duì)角線AC,BD交于點(diǎn)O,分別以點(diǎn)A,C為圓心,AO長為半徑畫弧,分別交AB,CD于點(diǎn)E,F(xiàn).若BD=4,∠CAB=36°,則圖中陰影部分的面積為___________.(結(jié)果保留π).3、如圖,正五邊形ABCDE內(nèi)接于⊙O,點(diǎn)F在上,則∠CFD=_____度.4、已知直線m與半徑為5cm的⊙O相切于點(diǎn)P,AB是⊙O的一條弦,且,若AB=6cm,則直線m與弦AB之間的距離為_____.5、如圖,已知點(diǎn)C是⊙O的直徑AB上的一點(diǎn),過點(diǎn)C作弦DE,使CD=CO.若AD的度數(shù)為35°,則的度數(shù)是_____.三、解答題(5小題,每小題10分,共計(jì)50分)1、如圖,兩個(gè)圓都以點(diǎn)O為圓心,大圓的弦交小圓于兩點(diǎn).求證:.2、如圖,⊙O的半徑弦AB于點(diǎn)C,連結(jié)AO并延長交⊙O于點(diǎn)E,連結(jié)EC.已知,.(1)求⊙O半徑的長;(2)求EC的長.3、已知四邊形內(nèi)接于⊙O,,垂足為E,,垂足為F,交于點(diǎn)G,連接.(1)求證:;(2)如圖1,若,,求⊙O的半徑;(3)如圖2,連接,交于點(diǎn)H,若,,試判斷是否為定值,若是,求出該定值;若不是,說明理由.4、如圖,是的直徑,點(diǎn)是上一點(diǎn),點(diǎn)是延長線上一點(diǎn),,是的弦,.(1)求證:直線是的切線;(2)若,求的半徑;(3)若于點(diǎn),點(diǎn)為上一點(diǎn),連接,,,請(qǐng)找出,,之間的關(guān)系,并證明.5、已知:如圖,圓O是△ABC的外接圓,AO平分∠BAC.(1)求證:△ABC是等腰三角形;(2)當(dāng)OA=4,AB=6,求邊BC的長.-參考答案-一、單選題1、B【解析】【分析】根據(jù)題意可求出∠APO、∠A的度數(shù),進(jìn)一步可得∠ABO度數(shù),從而推出答案.【詳解】∵,∴∠APO=70°,∵,∴∠AOP=90°,∴∠A=20°,又∵OA=OB,∴∠ABO=20°,又∵點(diǎn)C在過點(diǎn)B的切線上,∴∠OBC=90°,∴∠ABC=∠OBC?∠ABO=90°?20°=70°,故答案為:B.【考點(diǎn)】本題考查的是圓切線的運(yùn)用,熟練掌握運(yùn)算方法是關(guān)鍵.2、D【解析】【分析】根據(jù)直線和圓的位置關(guān)系判斷方法,可得結(jié)論.【詳解】∵直線m與⊙O公共點(diǎn)的個(gè)數(shù)為2個(gè)∴直線與圓相交∴d<半徑=4故選D.【考點(diǎn)】本題考查了直線與圓的位置關(guān)系,掌握直線和圓的位置關(guān)系判斷方法:設(shè)⊙O的半徑為r,圓心O到直線l的距離為d.①直線l和⊙O相交?d<r②直線l和⊙O相切?d=r,③直線l和⊙O相離?d>r.3、D【解析】【分析】由圓周角定理得出∠ACB=∠ACD+∠BCD=90°,∠BCD=∠BAD,得出∠ACD+∠BAD=90°,即可得出答案.【詳解】解:連接BC,如圖所示:∵AB是⊙O的直徑,∴∠ACB=∠ACD+∠BCD=90°,∵∠BCD=∠BAD,∴∠ACD+∠BAD=90°,故選:D.【考點(diǎn)】此題考查了圓周角定理:同弧所對(duì)的圓周角相等,直徑所對(duì)的圓周角是直角,正確掌握?qǐng)A周角定理是解題的關(guān)鍵.4、B【解析】【分析】根據(jù)d,r法則逐一判斷即可.【詳解】解:∵r=3,d=5,∴d>r,∴點(diǎn)P在⊙O外.故選:B.【考點(diǎn)】本題考查了點(diǎn)與圓的位置關(guān)系,熟練掌握d,r法則是解題的關(guān)鍵.5、B【解析】【分析】根據(jù)近似數(shù)的精確度定義,可判斷①;根據(jù)實(shí)數(shù)的大小比較,可判斷②;根據(jù)點(diǎn)在數(shù)軸上所對(duì)應(yīng)的實(shí)數(shù),即可判斷③;根據(jù)反證法的概念,可判斷④;根據(jù)角平分線的性質(zhì),可判斷⑤.【詳解】①近似數(shù)精確到十位,故本小題錯(cuò)誤;②,,,,最小的是,故本小題正確;③在數(shù)軸上點(diǎn)所表示的數(shù)為,故本小題錯(cuò)誤;④用反證法證明命題“一個(gè)三角形最多有一個(gè)鈍角”時(shí),首先應(yīng)假設(shè)“這個(gè)三角形中有兩個(gè)鈍角或三個(gè)鈍角”,故本小題錯(cuò)誤;⑤在內(nèi)一點(diǎn)到這三條邊的距離相等,則點(diǎn)是三個(gè)角平分線的交點(diǎn),故本小題正確.故選B【考點(diǎn)】本題主要考查近似數(shù)的精確度定義,實(shí)數(shù)的大小比較,點(diǎn)在數(shù)軸上所對(duì)應(yīng)的實(shí)數(shù),反證法的概念,角平分線的性質(zhì),熟練掌握上述知識(shí)點(diǎn),是解題的關(guān)鍵.二、填空題1、【解析】【分析】根據(jù)垂徑定理得出CE=DE,再由勾股定理得出OD2=DE2+(AE-OA)2,代入求解即可.【詳解】解:∵CD⊥AB,∴CE=DE=CD,∵AE=CD=6,∴CE=DE=3,∵OD=OB=OA,OE=AE-OA,在Rt△ODE中,由勾股定理可得:OD2=DE2+(AE-OA)2,即:OD2=32+(6-OD)2,解得:OD=,∴⊙O的半徑為:,故答案為:.【考點(diǎn)】本題考查了垂徑定理、勾股定理等知識(shí);熟練掌握垂徑定理和勾股定理是解題的關(guān)鍵.2、【解析】【分析】利用矩形的性質(zhì)求得OA=OC=OB=OD=2,再利用扇形的面積公式求解即可.【詳解】解:∵矩形ABCD的對(duì)角線AC,BD交于點(diǎn)O,且BD=4,∴AC=BD=4,OA=OC=OB=OD=2,∴,故答案為:.【考點(diǎn)】本題考查了矩形的性質(zhì),扇形的面積等知識(shí),正確的識(shí)別圖形是解題的關(guān)鍵.3、36.【解析】【分析】連接OC,OD.求出∠COD的度數(shù),再根據(jù)圓周角定理即可解決問題.【詳解】如圖,連接OC,OD.∵五邊形ABCDE是正五邊形,∴∠COD==72°,∴∠CFD=∠COD=36°,故答案為:36.【考點(diǎn)】本題考查了正多邊形和圓、圓周角定理等知識(shí),解題的關(guān)鍵是熟練掌握基本知識(shí).4、1cm或9cm【解析】【分析】根據(jù)題意:分兩種情況進(jìn)行分析,①當(dāng)AB與直線位于圓心O的同側(cè)時(shí),連接OA,OP交AB于點(diǎn)E;②當(dāng)AB與直線m位于圓心O的異側(cè)時(shí),連接OA’,OP交于點(diǎn)F;結(jié)合圖形利用圓的基本性質(zhì)及勾股定理進(jìn)行求解即可得出結(jié)果.【詳解】解:根據(jù)題意:分兩種情況進(jìn)行分析,①如圖所示,當(dāng)AB與直線位于圓心O的同側(cè)時(shí),連接OA,OP交AB于點(diǎn)E,∵,,∴,,∵直線m為圓O的切線,∴,在中,,∴,②如圖所示,當(dāng)AB與直線m位于圓心O的異側(cè)時(shí),連接OA’,OP交于點(diǎn)F,結(jié)合圖形及①可得,∴PF=PO+OF=5+4=9cm,故答案為:或.【考點(diǎn)】題目主要考查圓的基本性質(zhì)及勾股定理解直角三角形,理解題意,作出相應(yīng)圖形進(jìn)行求解是解題關(guān)鍵.5、105°.【解析】【分析】連接OD、OE,根據(jù)圓心角、弧、弦的關(guān)系定理求出∠AOD=35°,根據(jù)等腰三角形的性質(zhì)和三角形內(nèi)角和定理計(jì)算即可.【詳解】解:連接OD、OE,∵的度數(shù)為35°,∴∠AOD=35°,∵CD=CO,∴∠ODC=∠AOD=35°,∵OD=OE,∴∠ODC=∠E=35°,∴∠DOE=180°-∠ODC-∠E=180°-35°-35°=110°,∴∠AOE=∠DOE-∠AOD=110°-35°=75°,∴∠BOE=180°-∠AOE=180°-75°=105°,∴的度數(shù)是105°.故答案為105°.【考點(diǎn)】本題考查了圓心角、弧、弦的關(guān)系定理:在同圓和等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦也相等.三、解答題1、見解析【解析】【分析】過點(diǎn)O作OP⊥AB,由等腰三角形的性質(zhì)可知AP=BP,再由垂徑定理可知CP=DP,故可得出結(jié)論.【詳解】證明:如圖所示,過點(diǎn)O作OP⊥AB,垂足為點(diǎn)P,由垂徑定理可得PA=PB,PC=PD,PA-PC=PB-PD,AC=BD.【考點(diǎn)】本題考查的是垂徑定理,根據(jù)題意作出輔助線,利用垂徑定理求解是解答此題的關(guān)鍵.2、(1);(2)【解析】【分析】(1)根據(jù)垂徑定理可得,再由勾股定理可求得半徑的長;(2)連接構(gòu)造出,利用勾股定理可求得,再利用勾股定理解即可求得答案.【詳解】解:(1)∵,∴∴設(shè)的半徑∴∵在中,∴∴∴半徑的長為.(2)連接,如圖:∵是的直徑∴,∵∴在中,∵∴在中,∴.【考點(diǎn)】本題考查了垂徑定理、勾股定理、圓周角定理等,做出合適的輔助線是解題的關(guān)鍵.3、(1)證明見詳解(2)(3)為定值,【解析】【分析】(1)由,,可證明,由圓周角定理可知,可證明,再借助對(duì)頂角相等可知,進(jìn)而證明,即可推導(dǎo)出;(2)由(1)可知,AC為DG的垂直平分線,即有,連接OA、OB、OC、OD,過點(diǎn)O作,,垂足分別為M、N,利用垂徑定理和圓周角定理推導(dǎo),,,;再借助,可證明,進(jìn)而得到,即可證明,即有;在中,利用勾股定理計(jì)算OC的長,即可得到⊙O的半徑;(3)過點(diǎn)H作,垂足分別為P、Q,過點(diǎn)D作于點(diǎn)K,由已知條件、三角函數(shù)函數(shù)及含30°角的直角三角形的性質(zhì),先計(jì)算出,,再根據(jù),可得出,整理可得.(1)證明:∵,,∴,∴,,∵,∴,∴,∵,∴,∴;(2)解:由(1)可知,,,∴,即AC為DG的垂直平分線,∴,如圖1,連接OA、OB、OC、OD,過點(diǎn)O作,,垂足分別為M、N,則有,,,,,∴,同理,,∵,即,,∵,∴,在和中,,∴,∴,在中,,即圓⊙O的半徑為;(3)為定值,且,證明如下:如圖2,過點(diǎn)H作,垂足分別為P、Q,過點(diǎn)D作于點(diǎn)K,∵,∴,∵,,∴,即,∴,∵,,且,∴,∵,∴在中,,即有,∵,∴,即∴,∴.【考點(diǎn)】本題主要考查了圓周角定理、垂徑定理、等腰三角形的判定與性質(zhì)、全等三角形的判定與性質(zhì)、角平分線的性質(zhì)及利用三角函數(shù)解直角三角形等知識(shí),綜合性較強(qiáng),解題關(guān)鍵是熟練掌握相關(guān)知識(shí)并能夠綜合運(yùn)用.4、(1)見解析;(2)3;(3),理由見解析【解析】【分析】(1)先求出∠BAD=120°,再求出∠OAB,進(jìn)而得出∠OAD=90°,即可得出結(jié)論;(2)先判斷出△AOC是等邊三角形,得出AC=OC,再判斷出AC=CD,即可得出結(jié)論;(3)先判斷出∠CAP=∠CEM,進(jìn)而得出△ACP≌△ECM(SAS),進(jìn)而得出CM=CP,∠APC=∠M=30°,再判斷出,即可得出結(jié)論.【詳解】(1)證明:如圖,連接,,,,,,,,,點(diǎn)在上,∴直線是的切線;(2)解:如圖1,連接,由(1)知,,,,是等邊三角形,,,,,,即的半徑為3;(3),理由:如圖,,,連接,延長至,使,連接,,為的直徑,,四邊形是的內(nèi)接四邊形,,,,,過點(diǎn)作于,,在中,,,,,,,即.【考點(diǎn)】此題是圓的綜合題,主要考查了切線的判定和性質(zhì),等邊三角形的判定和勾股定理,構(gòu)造出直角三角形是解本題的關(guān)鍵.5、(1)見解析;(2)3【解析】【分析】(1)連接OB、OC,先證明∠OBA=∠OCA=∠BAO=∠CAO,再證明△OAB≌△OAC得AB=AC,問題得證;(2)延長AO交BC于點(diǎn)H,先證明AH⊥BC,BH=CH,設(shè)OH=b,BH=CH=a,根據(jù)OA=4,AB=6,由勾股定理列出a、b的方程組,解得a、b,便可得BC.【詳解】解:(1)連接OB、OC,∵OA=OB=OC,OA平分∠BAC,∴∠O
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 設(shè)備技術(shù)支持工程師績效考核標(biāo)準(zhǔn)
- 軟件測(cè)試工程師面經(jīng)
- 2025年現(xiàn)代農(nóng)業(yè)綜合示范園項(xiàng)目可行性研究報(bào)告
- 2025年農(nóng)業(yè)無人機(jī)監(jiān)測(cè)系統(tǒng)項(xiàng)目可行性研究報(bào)告
- 2025年定制化家居產(chǎn)品生產(chǎn)線建設(shè)項(xiàng)目可行性研究報(bào)告
- 2026年煙臺(tái)工程職業(yè)技術(shù)學(xué)院單招職業(yè)技能測(cè)試題庫及參考答案詳解1套
- 2026年天津仁愛學(xué)院單招職業(yè)技能測(cè)試題庫及答案詳解1套
- 2026年上海健康醫(yī)學(xué)院單招職業(yè)適應(yīng)性考試題庫含答案詳解
- 2026年攀枝花攀西職業(yè)學(xué)院單招職業(yè)傾向性測(cè)試題庫及答案詳解1套
- 2026年貴州電子信息職業(yè)技術(shù)學(xué)院單招職業(yè)適應(yīng)性考試題庫參考答案詳解
- 極簡化改造實(shí)施規(guī)范
- 達(dá)托霉素完整版本
- DBJ51-T 139-2020 四川省玻璃幕墻工程技術(shù)標(biāo)準(zhǔn)
- 一帶一路教學(xué)課件教學(xué)講義
- 中醫(yī)熱敏灸療法課件
- 工廠蟲害控制分析總結(jié)報(bào)告
- 回顧性中醫(yī)醫(yī)術(shù)實(shí)踐資料(醫(yī)案)表
- 延期交房起訴狀
- 廣東省消防安全重點(diǎn)單位消防檔案
- 高考日語形式名詞わけ、べき、はず辨析課件
- 2023學(xué)年完整公開課版節(jié)氣門
評(píng)論
0/150
提交評(píng)論