綜合解析人教版8年級數(shù)學下冊《平行四邊形》重點解析練習題_第1頁
綜合解析人教版8年級數(shù)學下冊《平行四邊形》重點解析練習題_第2頁
綜合解析人教版8年級數(shù)學下冊《平行四邊形》重點解析練習題_第3頁
綜合解析人教版8年級數(shù)學下冊《平行四邊形》重點解析練習題_第4頁
綜合解析人教版8年級數(shù)學下冊《平行四邊形》重點解析練習題_第5頁
已閱讀5頁,還剩22頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

人教版8年級數(shù)學下冊《平行四邊形》重點解析考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計20分)1、若一個直角三角形的周長為,斜邊上的中線長為1,則此直角三角形的面積為()A. B. C. D.2、如圖是用若干個全等的等腰梯形拼成的圖形,下列說法錯誤的是()A.梯形的下底是上底的兩倍 B.梯形最大角是C.梯形的腰與上底相等 D.梯形的底角是3、勾股定理是人類早期發(fā)現(xiàn)并證明的重要數(shù)學定理之一,是數(shù)形結(jié)合的重要紐帶.數(shù)學家歐幾里得利用如圖驗證了勾股定理:以直角三角形ABC的三條邊為邊長向外作正方形ACHI,正方形ABED,正方形BCGF,連接BI,CD,過點C作CJ⊥DE于點J,交AB于點K.設(shè)正方形ACHI的面積為S1,正方形BCGF的面積為S2,長方形AKJD的面積為S3,長方形KJEB的面積為S4,下列結(jié)論:①BI=CD;②2S△ACD=S1;③S1+S4=S2+S3;④+=.其中正確的結(jié)論有()A.1個 B.2個 C.3個 D.4個4、如圖,已知是平分線上的一點,,,是的中點,,如果是上一個動點,則的最小值為()A. B. C. D.5、在Rt△ABC中,∠C=90°,若D為斜邊AB上的中點,AB的長為10,則DC的長為()A.5 B.4 C.3 D.2第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計30分)1、已知長方形ABCD中,AB=4,BC=10,M為BC中點,P為AD上的動點,則以B、M、P為頂點組成的等腰三角形的底邊長是______________________.2、如圖,在菱形紙片ABCD中,AB=2,∠A=60°,將菱形紙片翻折,使點A落在CD的中點E處,折痕為FG,點F,G分別在邊AB,AD上,則cos∠EFG的值為________.3、如圖,在△ABC中,D,E分別是邊AB,AC的中點,∠B=50°.現(xiàn)將△ADE沿DE折疊點A落在三角形所在平面內(nèi)的點為A1,則∠BDA1的度數(shù)為_____.4、如圖,在直角三角形ABC中,∠B=90°,點D是AC邊上的一點,連接BD,把△CBD沿著BD翻折,點C落在AB邊上的點E處,得到△EBD,連接CE交BD于點F,BG為△EBD的中線.若BC=4,△EBG的面積為3,則CD的長為____________5、如圖,將矩形ABCD折疊,使點C與點A重合,折痕為EF.若AF=5,BF=3,則AC的長為_____.三、解答題(5小題,每小題10分,共計50分)1、如圖,平行四邊形ABCD中,對角線AC、BD相交于點O,AB⊥AC,AB=3,AD=5,求BD的長.2、如圖,中,.(1)作點A關(guān)于的對稱點C;(要求:尺規(guī)作圖,不寫作法,保留作圖痕跡)(2)在(1)所作的圖中,連接,,連接,交于點O.求證:四邊形是菱形.3、如圖,在四邊形ABCD中,∠ABC=∠ADC=90°,E是AC的中點,連接BD,ED,EB.求證:∠1=∠2.4、如圖,在正方形ABCD中,DF=AE,AE與DF相交于點O.(1)求證:△DAF≌△ABE;(2)求∠AOD的度數(shù).5、已知矩形ABCD,AB=6,BC=10,以BC所在直線為x軸,AB所在直線為y軸,建立如圖所示的平面直角坐標系,在CD邊上取一點E,將△ADE沿AE翻折,點D恰好落在BC邊上的點F處.(1)求線段EF長;(2)在平面內(nèi)找一點G,①使得以A、B、F、G為頂點的四邊形是平行四邊形,請直接寫出點G的坐標;②如圖2,將圖1翻折后的矩形沿y軸正半軸向上平移m(m>0)個單位,若以A、O、F、G為頂點的四邊形為菱形,請求出m的值并寫出點G的坐標.-參考答案-一、單選題1、B【解析】【分析】根據(jù)直角三角形斜邊上中線的性質(zhì),可得斜邊為2,然后利用兩直角邊之間的關(guān)系以及勾股定理求出兩直角邊之積,從而確定面積.【詳解】解:根據(jù)直角三角形斜邊上中線的性質(zhì)可知,斜邊上的中線等于斜邊的一半,得AC=2BD=2.∵一個直角三角形的周長為3+,∴AB+BC=3+-2=1+.等式兩邊平方得(AB+BC)2=(1+)2,即AB2+BC2+2AB?BC=4+2,∵AB2+BC2=AC2=4,∴2AB?BC=2,AB?BC=,即三角形的面積為×AB?BC=.故選:B.【點睛】本題考查直角三角形斜邊上的中線,勾股定理,三角形的面積等知識點的理解和掌握,巧妙求出AC?BC的值是解此題的關(guān)鍵,值得學習應(yīng)用.2、D【解析】【分析】如圖(見解析),先根據(jù)平角的定義可得,再根據(jù)可求出,由此可判斷選項;先根據(jù)等邊三角形的判定與性質(zhì)可得,再根據(jù)平行四邊形的判定可得四邊形是平行四邊形,根據(jù)平行四邊形的性質(zhì)可得,然后根據(jù)菱形的判定可得四邊形是菱形,根據(jù)菱形的性質(zhì)可得,最后根據(jù)線段的和差、等量代換可得,由此可判斷選項.【詳解】解:如圖,,,,,梯形是等腰梯形,,則梯形最大角是,選項B正確;沒有指明哪個角是底角,梯形的底角是或,選項D錯誤;如圖,連接,,是等邊三角形,,,點共線,,,,四邊形是平行四邊形,,,,,,四邊形是菱形,,,,選項A、C正確;故選:D.【點睛】本題考查了等腰梯形、菱形的判定與性質(zhì)、等邊三角形的判定與性質(zhì)等知識點,熟練掌握各判定與性質(zhì)是解題關(guān)鍵.3、C【解析】【分析】根據(jù)SAS證△ABI≌△ADC即可得證①正確,過點B作BM⊥IA,交IA的延長線于點M,根據(jù)邊的關(guān)系得出S△ABI=S1,即可得出②正確,過點C作CN⊥DA交DA的延長線于點N,證S1=S3即可得證③正確,利用勾股定理可得出S1+S2=S3+S4,即能判斷④不正確.【詳解】解:①∵四邊形ACHI和四邊形ABED都是正方形,∴AI=AC,AB=AD,∠IAC=∠BAD=90°,∴∠IAC+∠CAB=∠BAD+∠CAB,即∠IAB=∠CAD,在△ABI和△ADC中,,∴△ABI≌△ADC(SAS),∴BI=CD,故①正確;②過點B作BM⊥IA,交IA的延長線于點M,∴∠BMA=90°,∵四邊形ACHI是正方形,∴AI=AC,∠IAC=90°,S1=AC2,∴∠CAM=90°,又∵∠ACB=90°,∴∠ACB=∠CAM=∠BMA=90°,∴四邊形AMBC是矩形,∴BM=AC,∵S△ABI=AI?BM=AI?AC=AC2=S1,由①知△ABI≌△ADC,∴S△ACD=S△ABI=S1,即2S△ACD=S1,故②正確;③過點C作CN⊥DA交DA的延長線于點N,∴∠CNA=90°,∵四邊形AKJD是矩形,∴∠KAD=∠AKJ=90°,S3=AD?AK,∴∠NAK=∠AKC=90°,∴∠CNA=∠NAK=∠AKC=90°,∴四邊形AKCN是矩形,∴CN=AK,∴S△ACD=AD?CN=AD?AK=S3,即2S△ACD=S3,由②知2S△ACD=S1,∴S1=S3,在Rt△ACB中,AB2=BC2+AC2,∴S3+S4=S1+S2,又∵S1=S3,∴S1+S4=S2+S3,即③正確;④在Rt△ACB中,BC2+AC2=AB2,∴S3+S4=S1+S2,∴,故④錯誤;綜上,共有3個正確的結(jié)論,故選:C.【點睛】本題主要考查勾股定理,正方形的性質(zhì),矩形性質(zhì),全等三角形的判定和性質(zhì)等知識,熟練掌握勾股定理和全等三角形的判定和性質(zhì)是解題的關(guān)鍵.4、C【解析】【分析】根據(jù)題意由角平分線先得到是含有角的直角三角形,結(jié)合直角三角形斜邊上中線的性質(zhì)進而得到OP,DP的值,再根據(jù)角平分線的性質(zhì)以及垂線段最短等相關(guān)內(nèi)容即可得到PC的最小值.【詳解】解:∵點P是∠AOB平分線上的一點,,∴,∵PD⊥OA,M是OP的中點,∴,∴∵點C是OB上一個動點∴當時,PC的值最小,∵OP平分∠AOB,PD⊥OA,∴最小值,故選C.【點睛】本題主要考查了角平分線的性質(zhì)、含有角的直角三角形的選擇,直角三角形斜邊上中線的性質(zhì)、垂線段最短等相關(guān)內(nèi)容,熟練掌握相關(guān)性質(zhì)定理是解決本題的關(guān)鍵.5、A【解析】【分析】利用直角三角形斜邊的中線的性質(zhì)可得答案.【詳解】解:∵∠C=90°,若D為斜邊AB上的中點,∴CD=AB,∵AB的長為10,∴DC=5,故選:A.【點睛】此題主要考查了直角三角形斜邊的中線,關(guān)鍵是掌握在直角三角形中,斜邊上的中線等于斜邊的一半.二、填空題1、5或或【解析】【分析】分三種情況:①當BP=PM時,點P在BM的垂直平分線上,取BM的中點N,過點N作NP⊥BM交AD于P,則四邊形ABNP是矩形,得AB=PN=4,根據(jù)勾股定理即可求解;②當BM=PM=5時,當∠PMB為銳角如圖2時,則四邊形ABNP是矩形,得AB=PN=4,根據(jù)勾股定理可得MN=3,從而BN=2,再由勾股定理可得BP的長;③當BM=PM=5時,當∠PMB為鈍角如圖3時,則四邊形ABNP是矩形,得AB=PN=4,根據(jù)勾股定理MN=3,從而BN=8,再由勾股定理可得BP的長;即可求解.【詳解】解:BC=10,M為BC中點,∴BM=5,當△BMP為等腰三角形時,分三種情況:①當BP=PM時,點P在AM的垂直平分線上,取BM的中點N,過點N作NP⊥AD交AD于P,如圖1所示:則△PBM是等腰三角形∴底邊BM的長為5②當BM=PM=5時,當∠PMB為銳角如圖2時,則四邊形ABNP是矩形,∴PN=AB=4,∴MN=∴在Rt△PBN中,③當BM=PM=5時,當∠PMB為鈍角如圖3時,則四邊形ABNP是矩形,得AB=PN=4,同理可得∴在Rt△PBN中,綜上,以B、M、P為頂點組成的等腰三角形的底邊長是:5或或故答案為:5或或.【點睛】本題考查了矩形的性質(zhì)、勾股定理以及分類討論等知識,熟練掌握矩形的性質(zhì),進行分類討論是解題的關(guān)鍵.2、【解析】【分析】根據(jù)題意連接BE,連接AE交FG于O,如圖,利用菱形的性質(zhì)得△BDC為等邊三角形,∠ADC=120°,再在在Rt△BCE中計算出BE=CE=,然后證明BE⊥AB,利用勾股定理計算出AE,從而得到OA的長;設(shè)AF=x,根據(jù)折疊的性質(zhì)得到FE=FA=x,在Rt△BEF中利用勾股定理得到(2-x)2+()2=x2,解得x,然后在Rt△AOF中利用勾股定理計算出OF,再利用余弦的定義求解即可.【詳解】解:連接BE,連接AE交FG于O,如圖,∵四邊形ABCD為菱形,∠A=60°,∴△BDC為等邊三角形,∠ADC=120°,∵E點為CD的中點,∴CE=DE=1,BE⊥CD,在Rt△BCE中,BE=CE=,∵AB∥CD,∴BE⊥AB,∴.∴,設(shè)AF=x,∵菱形紙片翻折,使點A落在CD的中點E處,∴FE=FA=x,∴BF=2-x,在Rt△BEF中,(2-x)2+()2=x2,解得:,在Rt△AOF中,,∴.故答案為:.【點睛】本題考查了折疊的性質(zhì)以及菱形的性質(zhì),注意掌握折疊是一種對稱變換,它屬于軸對稱,折疊前后圖形的形狀和大小不變,位置變化,對應(yīng)邊和對應(yīng)角相等.3、80°【解析】【分析】由翻折的性質(zhì)得∠ADE=∠A1DE,由中位線的性質(zhì)得DE//BC,由平行線的性質(zhì)得∠ADE=∠B=50°,即可解決問題.【詳解】解:由題意得:∠ADE=∠A1DE;∵D、E分別是邊AB、AC的中點,∴DE//BC,∴∠ADE=∠B=∠A1DE=50°,∴∠A1DA=100°,∴∠BDA1=180°?100°=80°.故答案為:80°.【點睛】本題主要考查了翻折變換及其應(yīng)用問題;同時還考查了三角形的中位線定理等幾何知識點.熟練掌握各性質(zhì)是解題的關(guān)鍵.4、【解析】【分析】由折疊的性質(zhì)可得,,,,由勾股定理可得,,根據(jù)題意可得,,求得的長度,即可求解.【詳解】解:由折疊的性質(zhì)可得,,,,∴為等腰直角三角形,為的中點,∴由勾股定理可得,∴∵BG為△EBD的中線,△EBG的面積為3∴,解得∴由勾股定理得:故答案為:【點睛】此題考查了折疊的性質(zhì),勾股定理以及直角三角形的性質(zhì),解題的關(guān)鍵是靈活利用相關(guān)性質(zhì)進行求解.5、【解析】【分析】根據(jù)矩形的性質(zhì)得到∠B=90°,根據(jù)勾股定理得到,根據(jù)折疊的性質(zhì)得到CF=AF=5,根據(jù)勾股定理即可得到結(jié)論.【詳解】解:∵四邊形ABCD是矩形,∴∠B=90°,∵AF=5,BF=3,∴,∵將矩形ABCD折疊,使點C與點A重合,折痕為EF.∴CF=AF=5,∴BC=BF+CF=8,∴,故答案為:.【點睛】本題主要考查了矩形與折疊問題,勾股定理,解題的關(guān)鍵在于能夠熟練掌握折疊的性質(zhì).三、解答題1、【分析】根據(jù)平行四邊形的性質(zhì)可得,,勾股定理求得,,進而求得【詳解】解:四邊形是平行四邊形AB⊥AC,在中,在中,【點睛】本題考查了平行四邊形的性質(zhì),勾股定理,熟練掌握平行四邊形的性質(zhì)是解題的關(guān)鍵.2、(1)見解析;(2)見解析【分析】(1)作BD的垂直平分線,再截取即可;(2)先證明三角形全等,然后根據(jù)全等三角形的性質(zhì)可得:,依據(jù)菱形的判定定理即可證明.【詳解】(1)解:如圖所示,作BD的垂直平分線,再截取,點即為所求.(2)證明:如圖所示:∵,,∴,在與中,,∴;∴,又∵,∴四邊形是菱形.【點睛】本題考查了尺規(guī)作圖和菱形的證明,解題關(guān)鍵是熟練運用尺規(guī)作圖方法和菱形的判定定理進行作圖與證明.3、見解析【分析】根據(jù)直角三角形斜邊上的中線等于斜邊的一半和等腰三角形的性質(zhì)即可證明.【詳解】解:∵∠ABC=∠ADC=90°,∴△ABC和△ADC是直角三角形,∵點E是AC的中點,∴EB=AC,ED=AC,∴EB=ED,∴∠1=∠2.【點睛】本題考查了直角三角形斜邊上的中線、等腰三角形的判定與性質(zhì),解決本題的關(guān)鍵是掌握直角三角形斜邊上的中線等于斜邊的一半.4、(1)見解析;(2)90°【分析】(1)利用正方形的性質(zhì)得出AD=AB,∠DAB=∠ABC=90°,再證明Rt△DAF≌Rt△ABE即可得出結(jié)論;

(2)利用(1)的結(jié)論得出∠ADF=∠BAE,進而求出∠BAE+∠DFA=90°,最后用三角形的內(nèi)角和定理即可得出結(jié)論.【詳解】(1)證明:∵四邊形ABCD是正方形,∴∠DAB=∠ABC=90°,AD=AB,在Rt△DAF和Rt△ABE中,,∴Rt△DAF≌Rt△ABE(HL),即△DAF≌△ABE.(2)解:由(1)知,△DAF≌△ABE,∴∠ADF=∠BAE,∵∠ADF+∠DFA=∠BAE+∠DFA=∠DAB=90°,∴∠AOD=180°﹣(∠BAE+∠DFA)=90°.【點睛】本題主要考查了正方形的性質(zhì),全等三角形的判定和性質(zhì),三角形的內(nèi)角和定理,判斷出Rt△DAF≌Rt△ABE是解本題的關(guān)鍵.5、(1)103;(2)①點G的坐標為(﹣8,6)或(8,6)或(8,﹣6);②m=4,G(8,?6)或m=6,G(?8,6).或m=【分析】(1)由矩形的性質(zhì)得AD=BC=OC=10,CD=AB=OA=6,∠AOC=∠ECF=90°,由折疊性質(zhì)得EF=DE,AF=AD=10,則CE=6﹣EF,由勾股定理求出BF=OF=8,則FC=OC﹣OF=2,在Rt△ECF中,由勾股定理得出方程,解方程即可;(2)①分三種情況,當AB為平行四邊形的對角線時;當AF為平行四邊形的對角線時;當BF為平行四邊形的對角線時,分別求解點G的坐標即可;②分三種情況討論,當OF為對角線時,由菱形的性質(zhì)得OA=AF=10,則矩形ABCD平移距離m=OA﹣AB=4,即OB=4,設(shè)FG交x軸于H,證出四邊形OBFH是矩形,得FH=OB=4,OH=BF=8,則HG=6,如圖,當AO為菱形的對角線時,當AF為菱形的對角線時,結(jié)合矩形與菱形的性質(zhì)同理可得出答案.【詳解】解:(1)∵四邊形ABCD是矩形,∴AD=BC=OC=10,CD=AB=OA=6,∠AOC=∠ECF=90°,由折疊性

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論