版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
中考數(shù)學(xué)總復(fù)習(xí)《圓》能力提升B卷題庫考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計(jì)20分)1、如圖,、為⊙O的切線,切點(diǎn)分別為A、B,交于點(diǎn)C,的延長(zhǎng)線交⊙O于點(diǎn)D.下列結(jié)論不一定成立的是(
)A.為等腰三角形 B.與相互垂直平分C.點(diǎn)A、B都在以為直徑的圓上 D.為的邊上的中線2、如圖,在△ABC中,cosB=,sinC=,AC=5,則△ABC的面積是()A. B.12 C.14 D.213、往直徑為的圓柱形容器內(nèi)裝入一些水以后,截面如圖所示,若水面寬,則水的最大深度為(
)A. B. C. D.4、如圖,、為的切線,、為切點(diǎn),點(diǎn)為弧上一點(diǎn),過點(diǎn)作的切線分別交、于、,若,則的周長(zhǎng)等于(
).A. B. C. D.5、下列說法:(1)長(zhǎng)度相等的弧是等弧;(2)弦不包括直徑;(3)劣弧一定比優(yōu)弧短;(4)直徑是圓中最長(zhǎng)的弦.其中正確的有(
)A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計(jì)30分)1、如圖,將繞點(diǎn)順時(shí)針旋轉(zhuǎn)25°得到,EF交BC于點(diǎn)N,連接AN,若,則__________.2、如圖,一下水管道橫截面為圓形,直徑為100cm,下雨前水面寬為60cm,一場(chǎng)大雨過后,水面寬為80cm,則水位上升______cm.3、如圖,PA、PB切⊙O于A、B兩點(diǎn),點(diǎn)C在⊙O上,且∠P=∠C,則∠AOB=_______.4、如圖,已知正六邊形ABCDEF的邊長(zhǎng)為2,對(duì)角線CF和BE相交于點(diǎn)N,對(duì)角線DF與BE相交于點(diǎn)M,則MN=_____.5、一個(gè)圓錐的底面半徑r=6,高h(yuǎn)=8,則這個(gè)圓錐的側(cè)面積是_____.三、解答題(5小題,每小題10分,共計(jì)50分)1、如圖,在中,∠=45°,,以為直徑的⊙與邊交于點(diǎn).(1)判斷直線與⊙的位置關(guān)系,并說明理由;(2)若,求圖中陰影部分的面積.2、已知PA,PB分別與⊙O相切于點(diǎn)A,B,∠APB=80°,C為⊙O上一點(diǎn).(1)如圖①,求∠ACB的大??;(2)如圖②,AE為⊙O的直徑,AE與BC相交于點(diǎn)D.若AB=AD,求∠EAC的大?。?、如圖,已知拋物線的頂點(diǎn)坐標(biāo)為M,與x軸相交于A,B兩點(diǎn)(點(diǎn)B在點(diǎn)A的右側(cè)),與y軸相交于點(diǎn)C.(1)用配方法將拋物線的解析式化為頂點(diǎn)式:(),并指出頂點(diǎn)M的坐標(biāo);(2)在拋物線的對(duì)稱軸上找點(diǎn)R,使得CR+AR的值最小,并求出其最小值和點(diǎn)R的坐標(biāo);(3)以AB為直徑作⊙N交拋物線于點(diǎn)P(點(diǎn)P在對(duì)稱軸的左側(cè)),求證:直線MP是⊙N的切線.4、如圖,半徑為6的⊙O與Rt△ABC的邊AB相切于點(diǎn)A,交邊BC于點(diǎn)C,D,∠B=90°,連接OD,AD.(1)若∠ACB=20°,求的長(zhǎng)(結(jié)果保留).(2)求證:AD平分∠BDO.5、如圖,在△ABC中,以AB為直徑的⊙O交AC于點(diǎn)M,弦交AB于點(diǎn)E,且ME=3,AE=4,AM=5.(1)求證:BC是⊙O的切線;(2)求⊙O的直徑AB的長(zhǎng)度.-參考答案-一、單選題1、B【解析】【分析】連接OB,OC,令M為OP中點(diǎn),連接MA,MB,證明Rt△OPB≌Rt△OPA,可得BP=AP,∠OPB=∠OPA,∠BOC=∠AOC,可推出為等腰三角形,可判斷A;根據(jù)△OBP與△OAP為直角三角形,OP為斜邊,可得PM=OM=BM=AM,可判斷C;證明△OBC≌△OAC,可得PC⊥AB,根據(jù)△BPA為等腰三角形,可判斷D;無法證明與相互垂直平分,即可得出答案.【詳解】解:連接OB,OC,令M為OP中點(diǎn),連接MA,MB,∵B,C為切點(diǎn),∴∠OBP=∠OAP=90°,∵OA=OB,OP=OP,∴Rt△OPB≌Rt△OPA,∴BP=AP,∠OPB=∠OPA,∠BOC=∠AOC,∴為等腰三角形,故A正確;∵△OBP與△OAP為直角三角形,OP為斜邊,∴PM=OM=BM=AM∴點(diǎn)A、B都在以為直徑的圓上,故C正確;∵∠BOC=∠AOC,OB=OA,OC=OC,∴△OBC≌△OAC,∴∠OCB=∠OCA=90°,∴PC⊥AB,∵△BPA為等腰三角形,∴為的邊上的中線,故D正確;無法證明與相互垂直平分,故選:B.【考點(diǎn)】本題考查了全等三角形的判定與性質(zhì),等腰三角形的判定與性質(zhì),圓的性質(zhì),掌握知識(shí)點(diǎn)靈活運(yùn)用是解題關(guān)鍵.2、A【解析】【分析】根據(jù)已知作出三角形的高線AD,進(jìn)而得出AD,BD,CD,的長(zhǎng),即可得出三角形的面積.【詳解】解:過點(diǎn)A作AD⊥BC,∵△ABC中,cosB=,sinC=,AC=5,∴cosB==,∴∠B=45°,∵sinC===,∴AD=3,∴CD==4,∴BD=3,則△ABC的面積是:×AD×BC=×3×(3+4)=.故選A.【考點(diǎn)】此題主要考查了解直角三角形的知識(shí),作出AD⊥BC,進(jìn)而得出相關(guān)線段的長(zhǎng)度是解決問題的關(guān)鍵.3、C【解析】【分析】過點(diǎn)O作OD⊥AB于D,交⊙O于E,連接OA,根據(jù)垂徑定理即可求得AD的長(zhǎng),又由⊙O的直徑為,求得OA的長(zhǎng),然后根據(jù)勾股定理,即可求得OD的長(zhǎng),進(jìn)而求得油的最大深度的長(zhǎng).【詳解】解:過點(diǎn)O作OD⊥AB于D,交⊙O于E,連接OA,由垂徑定理得:,∵⊙O的直徑為,∴,在中,由勾股定理得:,∴,∴油的最大深度為,故選:.【考點(diǎn)】本題主要考查了垂徑定理的知識(shí).此題難度不大,解題的關(guān)鍵是注意輔助線的作法,構(gòu)造直角三角形,利用勾股定理解決.4、B【解析】【分析】由切線長(zhǎng)定理可得,然后根據(jù)線段之間的轉(zhuǎn)化即可求得的周長(zhǎng).【詳解】∵、為的切線,所以,又∵為的切線,∴,∴的周長(zhǎng).故選:B.【考點(diǎn)】此題考查了圓中切線長(zhǎng)定理的運(yùn)用,解題的關(guān)鍵是熟練掌握切線長(zhǎng)定理.5、A【解析】【分析】根據(jù)等弧的定義、弦的定義、弧的定義、分別判斷后即可確定正確的選項(xiàng).【詳解】解:(1)長(zhǎng)度相等的弧不一定是等弧,弧的度數(shù)必須相同,故錯(cuò)誤;(2)直徑是圓中最長(zhǎng)的弦,故(2)錯(cuò)誤,(4)正確;(3)同圓或等圓中劣弧一定比優(yōu)弧短,故錯(cuò)誤;正確的只有一個(gè),故選:A.【考點(diǎn)】本題考查了圓的有關(guān)定義,能夠了解圓的有關(guān)知識(shí)是解答本題的關(guān)鍵,難度不大.二、填空題1、102.5°【解析】【分析】先根據(jù)旋轉(zhuǎn)的性質(zhì)得到,,得到點(diǎn)A、N、F、C共圓,再利用,根據(jù)平角的性質(zhì)即可得到答案;【詳解】解:如圖,AF與CB相交于點(diǎn)O,連接CF,根據(jù)旋轉(zhuǎn)的性質(zhì)得到:AC=AF,,,,∴點(diǎn)A、N、F、C共圓,∴,又∵點(diǎn)A、N、F、C共圓,∴,∴(平角的性質(zhì)),故答案為:102.5°【考點(diǎn)】本題主要考查了旋轉(zhuǎn)的性質(zhì)、平角的性質(zhì)、點(diǎn)共圓的判定,掌握平移的性質(zhì)是解題的關(guān)鍵;2、10或70【解析】【分析】分水位在圓心下以及圓心上兩種情況,畫出符合題意的圖形進(jìn)行求解即可得.【詳解】如圖,作半徑于C,連接OB,由垂徑定理得:=AB=×60=30cm,在中,,當(dāng)水位上升到圓心以下時(shí)
水面寬80cm時(shí),則,水面上升的高度為:;當(dāng)水位上升到圓心以上時(shí),水面上升的高度為:,綜上可得,水面上升的高度為30cm或70cm,故答案為:10或70.【考點(diǎn)】本題考查了垂徑定理的應(yīng)用,掌握垂徑定理、靈活運(yùn)用分類討論的思想是解題的關(guān)鍵.3、120°【解析】【分析】根據(jù)圓周角定理得到∠C=∠AOB,根據(jù)切線的性質(zhì)得到∠PAO=∠PBO=90°,進(jìn)而得出∠P+∠AOB=180°,根據(jù)題意計(jì)算,得到答案.【詳解】解:由圓周角定理得:∠C=∠AOB,∵PA、PB切⊙O于A、B兩點(diǎn),∴∠PAO=∠PBO=90°,∴∠P+∠AOB=180°,∵∠P=∠C,∴∠AOB+∠AOB=180°,∴∠AOB=120°,故答案為:120°.【考點(diǎn)】本題考查切線的性質(zhì)以及圓周角定理,熟記由切線得垂直是解題的關(guān)鍵.4、1【解析】【分析】根據(jù)正六邊形的性質(zhì)和直角三角形的性質(zhì)即可得到結(jié)論.【詳解】∵正六邊形ABCDEF的邊長(zhǎng)為2,且對(duì)角線CF和BE相交于點(diǎn)N,∴∠FNE=60°,∴△ENF是等邊三角形,∴∠FNM=60°,F(xiàn)N=EF=2,∵對(duì)角線DF與BE相交于點(diǎn)M,∴∠FMN=90°,∴MN=FN=2=1,故答案為:1.【考點(diǎn)】本題考查了正多邊形和圓,正六邊形的性質(zhì),直角三角形的性質(zhì),正確的識(shí)別圖形是解題的關(guān)鍵.5、60π【解析】【分析】利用圓錐的側(cè)面積公式:,求出圓錐的母線即可解決問題.【詳解】解:圓錐的母線,∴圓錐的側(cè)面積=π×10×6=60π,故答案為:60π.【考點(diǎn)】本題考查了圓錐的側(cè)面積,勾股定理等知識(shí),解題的關(guān)鍵是記住圓錐的側(cè)面積公式.三、解答題1、(1)證明見解析(2)【解析】【分析】(1)利用等腰三角形的性質(zhì)與三角形的內(nèi)角和定理證明從而可得結(jié)論;(2)如圖,記BC與的交點(diǎn)為M,連接OM,先證明再利用陰影部分的面積等于三角形ABC的面積減去三角形BOM的面積,減去扇形AOM的面積即可.(1)證明:∠=45°,,即在上,為的切線.(2)如圖,記BC與的交點(diǎn)為M,連接OM,,,,,,,.【考點(diǎn)】本題考查的是等腰三角形的性質(zhì),切線的判定,扇形面積的計(jì)算,掌握“切線的判定方法與割補(bǔ)法求解不規(guī)則圖形面積的方法”是解本題的關(guān)鍵.2、(1)∠ACB=50°(2)∠EAC=20°【解析】【分析】(1)連接OA、OB,根據(jù)切線性質(zhì)和∠P=80°,得到∠AOB=100°,根據(jù)圓周角定理得到∠C=50°;(2)連接CE,證明∠BCE=∠BAE=40°,根據(jù)等腰三角形性質(zhì)得到∠ABD=∠ADB=70°,由三角形外角性質(zhì)得到∠EAC=20°.(1)連接OA、OB,
∵PA,PB是⊙O的切線,∴∠OAP=∠OBP=90°,∴∠AOB=360°﹣90°﹣90°﹣80°=100°,由圓周角定理得,∠ACB=∠AOB=50°;(2)連接CE,∵AE為⊙O的直徑,∴∠ACE=90°,∵∠ACB=50°,∴∠BCE=90°﹣50°=40°,∴∠BAE=∠BCE=40°,∵AB=AD,∴∠ABD=∠ADB=70°,∴∠EAC=∠ADB﹣∠ACB=20°.【考點(diǎn)】本題考查了圓的切線,圓周角,等腰三角形,三角形外角,熟練掌握?qǐng)A的切線性質(zhì),圓周角定理及推論,等腰三角形的性質(zhì),三角形外角性質(zhì),是解決問題的關(guān)鍵.3、(1),M(,);(2),(,);(3)證明見試題解析.【解析】【詳解】試題分析:(1)利用配方法把一般式轉(zhuǎn)化為頂點(diǎn)式,然后根據(jù)二次函數(shù)的性質(zhì)求出拋物線的頂點(diǎn)坐標(biāo);(2)連接BC,則BC與對(duì)稱軸的交點(diǎn)為R,此時(shí)CR+AR的值最??;先求出點(diǎn)A、B、C的坐標(biāo),再利用待定系數(shù)法求出直線BC的解析式,進(jìn)而求出其最小值和點(diǎn)R的坐標(biāo);(3)設(shè)點(diǎn)P坐標(biāo)為(x,).根據(jù)NPAB=,列出方程,解方程得到點(diǎn)P坐標(biāo),再計(jì)算得出,由勾股定理的逆定理得出∠MPN=90°,然后利用切線的判定定理即可證明直線MP是⊙N的切線.試題解析:(1)∵=,∴拋物線的解析式化為頂點(diǎn)式為:,頂點(diǎn)M的坐標(biāo)是(,);(2)∵,∴當(dāng)y=0時(shí),,解得x=1或6,∴A(1,0),B(6,0),∵x=0時(shí),y=﹣3,∴C(0,﹣3).連接BC,則BC與對(duì)稱軸x=的交點(diǎn)為R,連接AR,則CR+AR=CR+BR=BC,根據(jù)兩點(diǎn)之間線段最短可知此時(shí)CR+AR的值最小,最小值為BC==.設(shè)直線BC的解析式為,∵B(6,0),C(0,﹣3),∴,解得:,∴直線BC的解析式為:,令x=,得y==,∴R點(diǎn)坐標(biāo)為(,);(3)設(shè)點(diǎn)P坐標(biāo)為(x,).∵A(1,0),B(6,0),∴N(,0),∴以AB為直徑的⊙N的半徑為AB=,∴NP=,即,移項(xiàng)得,,得:,整理得:,解得(與A重合,舍去),,(在對(duì)稱軸的右側(cè),舍去),(與B重合,舍去),∴點(diǎn)P坐標(biāo)為(2,2).∵M(jìn)(,),N(,0),∴==,==,==,∴,∴∠MPN=90°,∵點(diǎn)P在⊙N上,∴直線MP是⊙N的切線.考點(diǎn):1.二次函數(shù)綜合題;2.最值問題;3.切線的判定;4.壓軸題.4、(1)(2)見解析【解析】【分析】(1)連接,由,得,由弧長(zhǎng)公式即得的長(zhǎng)為;(2)根據(jù)切于點(diǎn),,可得,有,而,即可得,從而平分.(1)解:連接OA,∵∠ACB=20°,∴∠AOD=40°,∴,.(2)證明:,,切于點(diǎn),,,,,,平分.【考點(diǎn)】本題考查與圓有關(guān)的計(jì)算及圓的性質(zhì),解題的關(guān)鍵是掌握弧長(zhǎng)公式及圓的切線的性質(zhì).5、(1)見解析(2)【解析】【分析】(1)根據(jù)勾股定理的逆定理得到∠AEM=90°,由于,根據(jù)平行線的性質(zhì)得∠ABC=90°,然后根據(jù)切線的判定定理即可得到BC是⊙O的切線;(2)連接OM,設(shè)⊙O的半徑是r,在Rt△OEM中,根據(jù)勾股定理得到r2=32+(4?r)2,解方
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 計(jì)量測(cè)試工程師項(xiàng)目進(jìn)度控制方法含答案
- 質(zhì)量部門績(jī)效評(píng)估與考核標(biāo)準(zhǔn)
- 國鐵集團(tuán)工程師崗位職責(zé)考核標(biāo)準(zhǔn)
- 2025年職業(yè)技能培訓(xùn)體系建設(shè)可行性研究報(bào)告
- 2025年智能農(nóng)業(yè)設(shè)備市場(chǎng)推廣項(xiàng)目可行性研究報(bào)告
- 2025年智慧農(nóng)業(yè)發(fā)展平臺(tái)可行性研究報(bào)告
- 2025年自動(dòng)化生產(chǎn)線升級(jí)項(xiàng)目可行性研究報(bào)告
- 2025年無人機(jī)技術(shù)在農(nóng)業(yè)中的應(yīng)用研究可行性報(bào)告
- 2025年社區(qū)智慧養(yǎng)老服務(wù)中心可行性研究報(bào)告
- 9.1堅(jiān)持憲法至上(教學(xué)設(shè)計(jì))-中職思想政治《中國特色社會(huì)主義法治道路》(高教版2023·基礎(chǔ)模塊)
- 赫茲伯格-雙因素理論
- 華為HCIA存儲(chǔ)H13-611認(rèn)證培訓(xùn)考試題庫(匯總)
- 浙江省建設(shè)工程施工現(xiàn)場(chǎng)安全管理臺(tái)賬實(shí)例
- 社會(huì)主義發(fā)展史知到章節(jié)答案智慧樹2023年齊魯師范學(xué)院
- 美國史智慧樹知到答案章節(jié)測(cè)試2023年東北師范大學(xué)
- GB/T 15924-2010錫礦石化學(xué)分析方法錫量測(cè)定
- GB/T 14525-2010波紋金屬軟管通用技術(shù)條件
- GB/T 11343-2008無損檢測(cè)接觸式超聲斜射檢測(cè)方法
- GB/T 1040.3-2006塑料拉伸性能的測(cè)定第3部分:薄膜和薄片的試驗(yàn)條件
- 教師晉級(jí)專業(yè)知識(shí)和能力證明材料
- 申報(bào)專業(yè)技術(shù)職稱課件-
評(píng)論
0/150
提交評(píng)論