版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025-2026學年重慶地區(qū)高三數(shù)學第一學期期末教學質量檢測試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在很多地鐵的車廂里,頂部的扶手是一根漂亮的彎管,如下圖所示.將彎管形狀近似地看成是圓弧,已知彎管向外的最大突出(圖中)有,跨接了6個坐位的寬度(),每個座位寬度為,估計彎管的長度,下面的結果中最接近真實值的是()A. B. C. D.2.已知的值域為,當正數(shù)a,b滿足時,則的最小值為()A. B.5 C. D.93.某幾何體的三視圖如圖所示,則該幾何體中的最長棱長為()A. B. C. D.4.3本不同的語文書,2本不同的數(shù)學書,從中任意取出2本,取出的書恰好都是數(shù)學書的概率是()A. B. C. D.5.已知集合,,則=()A. B. C. D.6.歐拉公式為,(虛數(shù)單位)是由瑞士著名數(shù)學家歐拉發(fā)現(xiàn)的,它將指數(shù)函數(shù)的定義域擴大到復數(shù),建立了三角函數(shù)和指數(shù)函數(shù)的關系,它在復變函數(shù)論里非常重要,被譽為“數(shù)學中的天橋”.根據(jù)歐拉公式可知,表示的復數(shù)位于復平面中的()A.第一象限 B.第二象限 C.第三象限 D.第四象限7.一袋中裝有個紅球和個黑球(除顏色外無區(qū)別),任取球,記其中黑球數(shù)為,則為()A. B. C. D.8.是恒成立的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件9.已知復數(shù)滿足,其中為虛數(shù)單位,則().A. B. C. D.10.洛書,古稱龜書,是陰陽五行術數(shù)之源,在古代傳說中有神龜出于洛水,其甲殼上心有此圖象,結構是戴九履一,左三右七,二四為肩,六八為足,以五居中,五方白圈皆陽數(shù),四角黑點為陰數(shù).如圖,若從四個陰數(shù)和五個陽數(shù)中分別隨機選取1個數(shù),則其和等于11的概率是().A. B. C. D.11.若復數(shù)()在復平面內的對應點在直線上,則等于()A. B. C. D.12.在展開式中的常數(shù)項為A.1 B.2 C.3 D.7二、填空題:本題共4小題,每小題5分,共20分。13.已知二項式ax-1x6的展開式中的常數(shù)項為-16014.的展開式中,項的系數(shù)是__________.15.定義在R上的函數(shù)滿足:①對任意的,都有;②當時,,則函數(shù)的解析式可以是______________.16.齊王與田忌賽馬,田忌的上等馬優(yōu)于齊王的中等馬,劣于齊王的上等馬,田忌的中等馬優(yōu)于齊王的下等馬,劣于齊王的中等馬,田忌的下等馬劣于齊王的下等馬.現(xiàn)從雙方的馬匹中隨機選一匹進行一場比賽,則田忌的馬獲勝的概率為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)若函數(shù)不存在單調遞減區(qū)間,求實數(shù)的取值范圍;(2)若函數(shù)的兩個極值點為,,求的最小值.18.(12分)設復數(shù)滿足(為虛數(shù)單位),則的模為______.19.(12分)已知數(shù)列的前項和和通項滿足.(1)求數(shù)列的通項公式;(2)已知數(shù)列中,,,求數(shù)列的前項和.20.(12分)已知在平面直角坐標系中,直線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,軸非負半軸為極軸建立極坐標系,曲線的極坐標方程為,點的極坐標為.(1)求直線的極坐標方程;(2)若直線與曲線交于,兩點,求的面積.21.(12分)已知橢圓的左,右焦點分別為,,,M是橢圓E上的一個動點,且的面積的最大值為.(1)求橢圓E的標準方程,(2)若,,四邊形ABCD內接于橢圓E,,記直線AD,BC的斜率分別為,,求證:為定值.22.(10分)已知數(shù)列和滿足,,,,.(Ⅰ)求與;(Ⅱ)記數(shù)列的前項和為,且,若對,恒成立,求正整數(shù)的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】
為彎管,為6個座位的寬度,利用勾股定理求出弧所在圓的半徑為,從而可得弧所對的圓心角,再利用弧長公式即可求解.【詳解】如圖所示,為彎管,為6個座位的寬度,則設弧所在圓的半徑為,則解得可以近似地認為,即于是,長所以是最接近的,其中選項A的長度比還小,不可能,因此只能選B,260或者由,所以弧長.故選:B本題考查了弧長公式,需熟記公式,考查了學生的分析問題的能力,屬于基礎題.2.A【解析】
利用的值域為,求出m,再變形,利用1的代換,即可求出的最小值.【詳解】解:∵的值域為,∴,∴,∴,當且僅當時取等號,∴的最小值為.故選:A.本題主要考查了對數(shù)復合函數(shù)的值域運用,同時也考查了基本不等式中“1的運用”,屬于中檔題.3.C【解析】
根據(jù)三視圖,可得該幾何體是一個三棱錐,并且平面SAC平面ABC,,過S作,連接BD,,再求得其它的棱長比較下結論.【詳解】如圖所示:由三視圖得:該幾何體是一個三棱錐,且平面SAC平面ABC,,過S作,連接BD,則,所以,,,,該幾何體中的最長棱長為.故選:C本題主要考查三視圖還原幾何體,還考查了空間想象和運算求解的能力,屬于中檔題.4.D【解析】
把5本書編號,然后用列舉法列出所有基本事件.計數(shù)后可求得概率.【詳解】3本不同的語文書編號為,2本不同的數(shù)學書編號為,從中任意取出2本,所有的可能為:共10個,恰好都是數(shù)學書的只有一種,∴所求概率為.故選:D.本題考查古典概型,解題方法是列舉法,用列舉法寫出所有的基本事件,然后計數(shù)計算概率.5.C【解析】
計算,,再計算交集得到答案.【詳解】,,故.故選:.本題考查了交集運算,意在考查學生的計算能力.6.A【解析】
計算,得到答案.【詳解】根據(jù)題意,故,表示的復數(shù)在第一象限.故選:.本題考查了復數(shù)的計算,意在考查學生的計算能力和理解能力.7.A【解析】
由題意可知,隨機變量的可能取值有、、、,計算出隨機變量在不同取值下的概率,進而可求得隨機變量的數(shù)學期望值.【詳解】由題意可知,隨機變量的可能取值有、、、,則,,,.因此,隨機變量的數(shù)學期望為.故選:A.本題考查隨機變量數(shù)學期望的計算,考查計算能力,屬于基礎題.8.A【解析】
設成立;反之,滿足,但,故選A.9.A【解析】
先化簡求出,即可求得答案.【詳解】因為,所以所以故選:A此題考查復數(shù)的基本運算,注意計算的準確度,屬于簡單題目.10.A【解析】
基本事件總數(shù),利用列舉法求出其和等于11包含的基本事件有4個,由此能求出其和等于11的概率.【詳解】解:從四個陰數(shù)和五個陽數(shù)中分別隨機選取1個數(shù),基本事件總數(shù),其和等于11包含的基本事件有:,,,,共4個,其和等于的概率.故選:.本題考查概率的求法,考查古典概型等基礎知識,考查運算求解能力,屬于基礎題.11.C【解析】
由題意得,可求得,再根據(jù)共軛復數(shù)的定義可得選項.【詳解】由題意得,解得,所以,所以,故選:C.本題考查復數(shù)的幾何表示和共軛復數(shù)的定義,屬于基礎題.12.D【解析】
求出展開項中的常數(shù)項及含的項,問題得解?!驹斀狻空归_項中的常數(shù)項及含的項分別為:,,所以展開式中的常數(shù)項為:.故選:D本題主要考查了二項式定理中展開式的通項公式及轉化思想,考查計算能力,屬于基礎題。二、填空題:本題共4小題,每小題5分,共20分。13.2【解析】
在二項展開式的通項公式中,令x的冪指數(shù)等于0,求出r的值,即可求得常數(shù)項,再根據(jù)常數(shù)項等于-160求得實數(shù)a的值.【詳解】∵二項式(ax-1x)令6-2r=0,求得r=3,可得常數(shù)項為-C63故答案為:2.本題主要考查二項式定理的應用,二項展開式的通項公式,二項式系數(shù)的性質,屬于基礎題.14.240【解析】
利用二項式展開式的通項公式,令x的指數(shù)等于3,計算展開式中含有項的系數(shù)即可.【詳解】由題意得:,只需,可得,代回原式可得,故答案:240.本題主要考查二項式展開式的通項公式及簡單應用,相對不難.15.(或,答案不唯一)【解析】
由可得是奇函數(shù),再由時,可得到滿足條件的奇函數(shù)非常多,屬于開放性試題.【詳解】在中,令,得;令,則,故是奇函數(shù),由時,,知或等,答案不唯一.故答案為:(或,答案不唯一).本題考查抽象函數(shù)的性質,涉及到由表達式確定函數(shù)奇偶性,是一道開放性的題,難度不大.16..【解析】分析:由題意結合古典概型計算公式即可求得題中的概率值.詳解:由題意可知了,比賽可能的方法有種,其中田忌可獲勝的比賽方法有三種:田忌的中等馬對齊王的下等馬,田忌的上等馬對齊王的下等馬,田忌的上等馬對齊王的中等馬,結合古典概型公式可得,田忌的馬獲勝的概率為.點睛:有關古典概型的概率問題,關鍵是正確求出基本事件總數(shù)和所求事件包含的基本事件數(shù).(1)基本事件總數(shù)較少時,用列舉法把所有基本事件一一列出時,要做到不重復、不遺漏,可借助“樹狀圖”列舉.(2)注意區(qū)分排列與組合,以及計數(shù)原理的正確使用.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)(2)【解析】分析:(1)先求導,再令在上恒成立,得到上恒成立,利用基本不等式得到m的取值范圍.(2)先由得到,再求得,再構造函數(shù)再利用導數(shù)求其最小值.詳解:(1)由函數(shù)有意義,則由且不存在單調遞減區(qū)間,則在上恒成立,上恒成立(2)由知,令,即由有兩個極值點故為方程的兩根,,,則由由,則上單調遞減,即由知綜上所述,的最小值為.點睛:(1)本題主要考查利用導數(shù)求函數(shù)的單調區(qū)間和極值,考查利用導數(shù)求函數(shù)的最值,意在考查學生對這些知識的掌握水平和分析推理能力.(2)本題的難點有兩個,其一是求出,其二是構造函數(shù)再利用導數(shù)求其最小值.18.1【解析】
整理已知利用復數(shù)的除法運算方式計算,再由求模公式得答案.【詳解】因為,即所以的模為1故答案為:1本題考查復數(shù)的除法運算與求模,屬于基礎題.19.(1);(2)【解析】
(1)當時,利用可得,故可利用等比數(shù)列的通項公式求出的通項.(2)利用分組求和法可求數(shù)列的前項和.【詳解】(1)當時,,所以,當時,,①,②所以,即,又因為,故,所以,所以是首項,公比為的等比數(shù)列,故.(2)由得:數(shù)列為等差數(shù)列,公差,,,.本題考查數(shù)列的通項與求和,注意數(shù)列求和關鍵看通項的結構形式,如果通項是等差數(shù)列與等比數(shù)列的和,則用分組求和法;如果通項是等差數(shù)列與等比數(shù)列的乘積,則用錯位相減法;如果通項可以拆成一個數(shù)列連續(xù)兩項的差,那么用裂項相消法;如果通項的符號有規(guī)律的出現(xiàn),則用并項求和法.20.(1)(2)【解析】
(1)先消去參數(shù),化為直角坐標方程,再利用求解.(2)直線與曲線方程聯(lián)立,得,求得弦長和點到直線的距離,再求的面積.【詳解】(1)由已知消去得,則,所以,所以直線的極坐標方程為.(2)由,得,設,兩點對應的極分別為,,則,,所以,又點到直線的距離所以本題主要考查參數(shù)方程、直角坐標方程及極坐標方程的轉化和直線與曲線的位置關系,還考查了數(shù)形結合的思想和運算求解的能力,屬于中檔題.21.(1)(2)證明見解析【解析】
(1)設橢圓E的半焦距為c,由題意可知,當M為橢圓E的上頂點或下頂點時,的面積取得最大值,求出,即可得答案;(2)根據(jù)題意可知,,因為,所以可設直線CD的方程為,將直線代入曲線的方程,利用韋達定理得到的關系,再代入斜率公式可證得為定值.【詳解】(1)設橢圓E的半焦距為c,由題意可知,當M為橢圓E的上頂點或下頂點時,的面積取得最大值.所以,所以,,故橢圓E的標準方程為.(2)根據(jù)題意可知,,因為,所以可設直線CD的方程為.由,消去y可得,所以,即.直線AD的斜率,直線BC的斜率,所以,故為定值.本題考查橢圓標準方程的求解、橢圓中的定值問題,考查函數(shù)與方程思想、轉化與化歸思想,考查邏輯推理能力和運算求解能力,求解時注意坐標法的運用.22.(Ⅰ),;(Ⅱ)1【解析】
(Ⅰ)易得為等比數(shù)列,再利用前項
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 租賃中介合同范本
- 手辦設計合同范本
- 打架私了沒協(xié)議書
- 綜藝冠名合同范本
- 電器業(yè)務合同范本
- 代理買房協(xié)議書
- 企業(yè)帶貧協(xié)議書
- 承包地磚合同范本
- 承包協(xié)議勞務合同
- 修理車輛協(xié)議書
- 新媒體賬號管理制度單位(3篇)
- 血透失衡綜合征的護理課件
- 2025年甘肅省張掖市培黎職業(yè)學院招聘非事業(yè)編制工作人員14人(公共基礎知識)測試題附答案解析
- 2025年服飾時尚行業(yè)數(shù)字化轉型研究報告
- 機關單位績效考核系統(tǒng)建設方案
- 物流搬運工合同范本
- 2025年心肺復蘇指南課件
- 2025年湖北省宜昌市新質生產力發(fā)展研判:聚焦“3+2”主導產業(yè)打造長江經(jīng)濟帶新質生產力發(fā)展示范區(qū)圖
- 2025 小學二年級數(shù)學上冊解決問題審題方法課件
- 老年患者術后加速康復外科(ERAS)實施方案
- 2024-2025學年廣州市越秀區(qū)八年級上學期期末歷史試卷(含答案)
評論
0/150
提交評論