版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2025年函數(shù)全真試題專項(xiàng)解析-數(shù)學(xué)高三第一學(xué)期期末復(fù)習(xí)檢測(cè)試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.年部分省市將實(shí)行“”的新高考模式,即語文、數(shù)學(xué)、英語三科必選,物理、歷史二選一,化學(xué)、生物、政治、地理四選二,若甲同學(xué)選科沒有偏好,且不受其他因素影響,則甲同學(xué)同時(shí)選擇歷史和化學(xué)的概率為A. B.C. D.2.已知雙曲線(,)的左、右焦點(diǎn)分別為,以(為坐標(biāo)原點(diǎn))為直徑的圓交雙曲線于兩點(diǎn),若直線與圓相切,則該雙曲線的離心率為()A. B. C. D.3.已知等差數(shù)列的前n項(xiàng)和為,,則A.3 B.4 C.5 D.64.設(shè)復(fù)數(shù)滿足,在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)為,則不可能為()A. B. C. D.5.設(shè)正項(xiàng)等差數(shù)列的前項(xiàng)和為,且滿足,則的最小值為A.8 B.16 C.24 D.366.已知直三棱柱中,,,,則異面直線與所成的角的正弦值為().A. B. C. D.7.已知正項(xiàng)等比數(shù)列的前項(xiàng)和為,且,則公比的值為()A. B.或 C. D.8.已知雙曲線的左、右焦點(diǎn)分別為,過作一條直線與雙曲線右支交于兩點(diǎn),坐標(biāo)原點(diǎn)為,若,則該雙曲線的離心率為()A. B. C. D.9.拋物線的準(zhǔn)線方程是,則實(shí)數(shù)()A. B. C. D.10.已知是邊長為的正三角形,若,則A. B.C. D.11.正項(xiàng)等比數(shù)列中,,且與的等差中項(xiàng)為4,則的公比是()A.1 B.2 C. D.12.復(fù)數(shù)滿足,則復(fù)數(shù)等于()A. B. C.2 D.-2二、填空題:本題共4小題,每小題5分,共20分。13.已知復(fù)數(shù),且滿足(其中為虛數(shù)單位),則____.14.已知正方形邊長為,空間中的動(dòng)點(diǎn)滿足,,則三棱錐體積的最大值是______.15.已知,那么______.16.已知集合,若,則__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標(biāo)系中,已知橢圓的左頂點(diǎn)為,右焦點(diǎn)為,為橢圓上兩點(diǎn),圓.(1)若軸,且滿足直線與圓相切,求圓的方程;(2)若圓的半徑為,點(diǎn)滿足,求直線被圓截得弦長的最大值.18.(12分)如圖所示,在四棱錐中,∥,,點(diǎn)分別為的中點(diǎn).(1)證明:∥面;(2)若,且,面面,求二面角的余弦值.19.(12分)如圖,在四棱錐中,底面,,,,為的中點(diǎn),是上的點(diǎn).(1)若平面,證明:平面.(2)求二面角的余弦值.20.(12分)已知,均為給定的大于1的自然數(shù),設(shè)集合,.(Ⅰ)當(dāng),時(shí),用列舉法表示集合;(Ⅱ)當(dāng)時(shí),,且集合滿足下列條件:①對(duì)任意,;②.證明:(ⅰ)若,則(集合為集合在集合中的補(bǔ)集);(ⅱ)為一個(gè)定值(不必求出此定值);(Ⅲ)設(shè),,,其中,,若,則.21.(12分)如圖,四棱錐中,平面,,,.(I)證明:;(Ⅱ)若是中點(diǎn),與平面所成的角的正弦值為,求的長.22.(10分)在平面直角坐標(biāo)系中,曲線:(為參數(shù),),曲線:(為參數(shù)).若曲線和相切.(1)在以為極點(diǎn),軸非負(fù)半軸為極軸的極坐標(biāo)系中,求曲線的普通方程;(2)若點(diǎn),為曲線上兩動(dòng)點(diǎn),且滿足,求面積的最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.B【解析】
甲同學(xué)所有的選擇方案共有種,甲同學(xué)同時(shí)選擇歷史和化學(xué)后,只需在生物、政治、地理三科中再選擇一科即可,共有種選擇方案,根據(jù)古典概型的概率計(jì)算公式,可得甲同學(xué)同時(shí)選擇歷史和化學(xué)的概率,故選B.2.D【解析】
連接,可得,在中,由余弦定理得,結(jié)合雙曲線的定義,即得解.【詳解】連接,則,,所以,在中,,,故在中,由余弦定理可得.根據(jù)雙曲線的定義,得,所以雙曲線的離心率故選:D本題考查了雙曲線的性質(zhì)及雙曲線的離心率,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.3.C【解析】
方法一:設(shè)等差數(shù)列的公差為,則,解得,所以.故選C.方法二:因?yàn)?,所以,則.故選C.4.D【解析】
依題意,設(shè),由,得,再一一驗(yàn)證.【詳解】設(shè),因?yàn)椋?,?jīng)驗(yàn)證不滿足,故選:D.本題主要考查了復(fù)數(shù)的概念、復(fù)數(shù)的幾何意義,還考查了推理論證能力,屬于基礎(chǔ)題.5.B【解析】
方法一:由題意得,根據(jù)等差數(shù)列的性質(zhì),得成等差數(shù)列,設(shè),則,,則,當(dāng)且僅當(dāng)時(shí)等號(hào)成立,從而的最小值為16,故選B.方法二:設(shè)正項(xiàng)等差數(shù)列的公差為d,由等差數(shù)列的前項(xiàng)和公式及,化簡(jiǎn)可得,即,則,當(dāng)且僅當(dāng),即時(shí)等號(hào)成立,從而的最小值為16,故選B.6.C【解析】
設(shè)M,N,P分別為和的中點(diǎn),得出的夾角為MN和NP夾角或其補(bǔ)角,根據(jù)中位線定理,結(jié)合余弦定理求出和的余弦值再求其正弦值即可.【詳解】根據(jù)題意畫出圖形:設(shè)M,N,P分別為和的中點(diǎn),則的夾角為MN和NP夾角或其補(bǔ)角可知,.作BC中點(diǎn)Q,則為直角三角形;中,由余弦定理得,在中,在中,由余弦定理得所以故選:C此題考查異面直線夾角,關(guān)鍵點(diǎn)通過平移將異面直線夾角轉(zhuǎn)化為同一平面內(nèi)的夾角,屬于較易題目.7.C【解析】
由可得,故可求的值.【詳解】因?yàn)?,所以,故,因?yàn)檎?xiàng)等比數(shù)列,故,所以,故選C.一般地,如果為等比數(shù)列,為其前項(xiàng)和,則有性質(zhì):(1)若,則;(2)公比時(shí),則有,其中為常數(shù)且;(3)為等比數(shù)列()且公比為.8.B【解析】
由題可知,,再結(jié)合雙曲線第一定義,可得,對(duì)有,即,解得,再對(duì),由勾股定理可得,化簡(jiǎn)即可求解【詳解】如圖,因?yàn)?,所?因?yàn)樗?在中,,即,得,則.在中,由得.故選:B本題考查雙曲線的離心率求法,幾何性質(zhì)的應(yīng)用,屬于中檔題9.C【解析】
根據(jù)準(zhǔn)線的方程寫出拋物線的標(biāo)準(zhǔn)方程,再對(duì)照系數(shù)求解即可.【詳解】因?yàn)闇?zhǔn)線方程為,所以拋物線方程為,所以,即.故選:C本題考查拋物線與準(zhǔn)線的方程.屬于基礎(chǔ)題.10.A【解析】
由可得,因?yàn)槭沁呴L為的正三角形,所以,故選A.11.D【解析】
設(shè)等比數(shù)列的公比為q,,運(yùn)用等比數(shù)列的性質(zhì)和通項(xiàng)公式,以及等差數(shù)列的中項(xiàng)性質(zhì),解方程可得公比q.【詳解】由題意,正項(xiàng)等比數(shù)列中,,可得,即,與的等差中項(xiàng)為4,即,設(shè)公比為q,則,則負(fù)的舍去,故選D.本題主要考查了等差數(shù)列的中項(xiàng)性質(zhì)和等比數(shù)列的通項(xiàng)公式的應(yīng)用,其中解答中熟記等比數(shù)列通項(xiàng)公式,合理利用等比數(shù)列的性質(zhì)是解答的關(guān)鍵,著重考查了方程思想和運(yùn)算能力,屬于基礎(chǔ)題.12.B【解析】
通過復(fù)數(shù)的模以及復(fù)數(shù)的代數(shù)形式混合運(yùn)算,化簡(jiǎn)求解即可.【詳解】復(fù)數(shù)滿足,∴,故選B.本題主要考查復(fù)數(shù)的基本運(yùn)算,復(fù)數(shù)模長的概念,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
計(jì)算出,兩個(gè)復(fù)數(shù)相等,實(shí)部與實(shí)部相等,虛部與虛部相等,列方程組求解.【詳解】,所以,所以.故答案為:-8此題考查復(fù)數(shù)的基本運(yùn)算和概念辨析,需要熟練掌握復(fù)數(shù)的運(yùn)算法則.14.【解析】
以為原點(diǎn),為軸,為軸,過作平面的垂線為軸建立空間直角坐標(biāo)系,設(shè)點(diǎn),根據(jù)題中條件得出,進(jìn)而可求出的最大值,由此能求出三棱錐體積的最大值.【詳解】以為原點(diǎn),為軸,為軸,過作平面的垂線為軸建立空間直角坐標(biāo)系,則,,,設(shè)點(diǎn),空間中的動(dòng)點(diǎn)滿足,,所以,整理得,,當(dāng),時(shí),取最大值,所以,三棱錐的體積為.因此,三棱錐體積的最大值為.故答案為:.本題考查三棱錐體積的最大值的求法,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,是中檔題.15.【解析】
由已知利用誘導(dǎo)公式可求,進(jìn)而根據(jù)同角三角函數(shù)基本關(guān)系即可求解.【詳解】∵,∴,,∴.故答案為:.本小題主要考查誘導(dǎo)公式、同角三角函數(shù)的基本關(guān)系式,屬于基礎(chǔ)題.16.1【解析】
分別代入集合中的元素,求出值,再結(jié)合集合中元素的互異性進(jìn)行取舍可解.【詳解】依題意,分別令,,,由集合的互異性,解得,則.故答案為:本題考查集合元素的特性:確定性、互異性、無序性.確定集合中元素,要注意檢驗(yàn)集合中的元素是否滿足互異性.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)(2)【解析】試題分析:(1)確定圓的方程,就是確定半徑的值,因?yàn)橹本€與圓相切,所以先確定直線方程,即確定點(diǎn)坐標(biāo):因?yàn)檩S,所以,根據(jù)對(duì)稱性,可取,則直線的方程為,根據(jù)圓心到切線距離等于半徑得(2)根據(jù)垂徑定理,求直線被圓截得弦長的最大值,就是求圓心到直線的距離的最小值.設(shè)直線的方程為,則圓心到直線的距離,利用得,化簡(jiǎn)得,利用直線方程與橢圓方程聯(lián)立方程組并結(jié)合韋達(dá)定理得,因此,當(dāng)時(shí),取最小值,取最大值為.試題解析:解:(1)因?yàn)闄E圓的方程為,所以,.因?yàn)檩S,所以,而直線與圓相切,根據(jù)對(duì)稱性,可取,則直線的方程為,即.由圓與直線相切,得,所以圓的方程為.(2)易知,圓的方程為.①當(dāng)軸時(shí),,所以,此時(shí)得直線被圓截得的弦長為.②當(dāng)與軸不垂直時(shí),設(shè)直線的方程為,,首先由,得,即,所以(*).聯(lián)立,消去,得,將代入(*)式,得.由于圓心到直線的距離為,所以直線被圓截得的弦長為,故當(dāng)時(shí),有最大值為.綜上,因?yàn)椋灾本€被圓截得的弦長的最大值為.考點(diǎn):直線與圓位置關(guān)系18.(1)證明見解析(2)【解析】
(1)根據(jù)題意,連接交于,連接,利用三角形全等得,進(jìn)而可得結(jié)論;(2)建立空間直角坐標(biāo)系,利用向量求得平面的法向量,進(jìn)而可得二面角的余弦值.【詳解】(1)證明:連接交于,連接,,≌,且,面面,面,(2)取中點(diǎn),連,.由,面面面,又由,以分別為軸建立如圖所示空間直角坐標(biāo)系,設(shè),則,,,,,,為面的一個(gè)法向量,設(shè)面的法向量為,依題意,即,令,解得,所以,平面的法向量,,又因二面角為銳角,故二面角的余弦值為.本題考查直線與平面平行的證明,考查二面角的余弦值的求法,解題時(shí)要認(rèn)真審題,注意中位線和向量法的合理運(yùn)用,屬于基礎(chǔ)題.19.(1)證明見解析(2)【解析】
(1)因?yàn)?,利用線面平行的判定定理可證出平面,利用點(diǎn)線面的位置關(guān)系,得出和,由于底面,利用線面垂直的性質(zhì),得出,且,最后結(jié)合線面垂直的判定定理得出平面,即可證出平面.(2)由(1)可知,,兩兩垂直,建立空間直角坐標(biāo)系,標(biāo)出點(diǎn)坐標(biāo),運(yùn)用空間向量坐標(biāo)運(yùn)算求出所需向量,分別求出平面和平面的法向量,最后利用空間二面角公式,即可求出的余弦值.【詳解】(1)證明:因?yàn)?,平面,平面,所以平面,因?yàn)槠矫?,平面,所以可設(shè)平面平面,又因?yàn)槠矫?,所?因?yàn)槠矫?,平面,所以,從而?因?yàn)榈酌妫?因?yàn)?,所?因?yàn)椋云矫?綜上,平面.(2)解:由(1)可得,,兩兩垂直,以為原點(diǎn),,,所在直線分別為,,軸,建立如圖所示的空間直角坐標(biāo)系.因?yàn)椋?,則,,,,所以,,,.設(shè)是平面的法向量,由取取,得.設(shè)是平面的法向量,由得取,得,所以,即的余弦值為.本題考查線面垂直的判定和空間二面角的計(jì)算,還運(yùn)用線面平行的性質(zhì)、線面垂直的判定定理、點(diǎn)線面的位置關(guān)系、空間向量的坐標(biāo)運(yùn)算等,同時(shí)考查學(xué)生的空間想象能力和邏輯推理能力.20.(Ⅰ);(Ⅱ)(?。┰斠娊馕觯áⅲ┰斠娊馕?(Ⅲ)詳見解析.【解析】
(Ⅰ)當(dāng),時(shí),,,,,,.即可得出.(Ⅱ)(i)當(dāng)時(shí),,2,3,,,又,,,,,,必然有,否則得出矛盾.(ii)由.可得.又,即可得出為定值.(iii)由設(shè),,,,其中,,,2,,.,可得,通過求和即可證明結(jié)論.【詳解】(Ⅰ)解:當(dāng),時(shí),,,,,..(Ⅱ)證明:(i)當(dāng)時(shí),,2,3,,,又,,,,,,必然有,否則,而,與已知對(duì)任意,矛盾.因此有.(ii)..,為定值.(iii)由設(shè),,,,其中,,,2,,.,..本題主要考查等差數(shù)列與等比數(shù)列的通項(xiàng)公式求和公式,考查了推理能力與計(jì)算能力,屬于難題.21.(Ⅰ)見解析;(Ⅱ)【解析】
(Ⅰ)取的中點(diǎn),連接,由,,得三點(diǎn)共線,且,又,再利用線面垂直的判定定理證明.(Ⅱ)設(shè),則,,在底面中,,在中,由余弦定理得:,在中,由余弦定理得,兩式相加求得,再過作,則平面,即點(diǎn)到平面的距離,由是中點(diǎn),得到到平面的距離,然后根據(jù)與平面所成的角的正弦值為求解.【詳解】(Ⅰ)取的中點(diǎn),連接,由,,得三點(diǎn)共線,且,又,,所以平面,所以.(Ⅱ)設(shè),,,在底面中,,在中,由余弦定理得:,在中,由余弦定理得,兩式相加得:,所以,,過作,則平面,即點(diǎn)到平面的距離,因?yàn)槭侵悬c(diǎn),所以為到平面的距離,因?yàn)榕c平面所成的角的正弦值為,即,解得.本題主要考查線面垂直的判定定理,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年帶電作業(yè)技術(shù)會(huì)議:配網(wǎng)低壓不停電作業(yè)的“機(jī)智”升級(jí)
- 2025年電解鋁行業(yè)運(yùn)行研究報(bào)告
- 2025年MODULE-COG檢測(cè)系統(tǒng)項(xiàng)目合作計(jì)劃書
- 術(shù)后并發(fā)癥管理護(hù)理查房
- 低血糖的飲食建議
- 2025年血橙提取物化妝品項(xiàng)目發(fā)展計(jì)劃
- 護(hù)理隨訪流程與規(guī)范
- 咯血介入治療患者的營養(yǎng)支持護(hù)理
- 護(hù)理中的護(hù)理風(fēng)險(xiǎn)管理與不良事件處理
- 母嬰護(hù)理基礎(chǔ)知識(shí)和技巧大全
- 教學(xué)查房課件-強(qiáng)直性脊柱炎
- 傳染病報(bào)告卡
- 句法成分課件(共18張)統(tǒng)編版語文八年級(jí)上冊(cè)
- 2023版中國近現(xiàn)代史綱要課件:07第七專題 星星之火可以燎原
- 通知書產(chǎn)品升級(jí)通知怎么寫
- 氣管插管術(shù) 氣管插管術(shù)
- 大學(xué)《實(shí)驗(yàn)診斷學(xué)》實(shí)驗(yàn)八:病例分析培訓(xùn)課件
- GB/T 28400-2012釹鎂合金
- 多維閱讀第8級(jí)Moon Mouse 明星老鼠的秘密
- 骨髓增生異常綜合癥課件整理
- 心肌梗死院前急救課件
評(píng)論
0/150
提交評(píng)論