版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
一、解答題1.在平面直角坐標系中,點,的坐標分別為,,現(xiàn)將線段先向上平移3個單位,再向右平移1個單位,得到線段,連接,.(1)如圖1,求點,的坐標及四邊形的面積;圖1(2)如圖1,在軸上是否存在點,連接,,使?若存在這樣的點,求出點的坐標;若不存在,試說明理由;(3)如圖2,在直線上是否存在點,連接,使?若存在這樣的點,直接寫出點的坐標;若不存在,試說明理由.圖2(4)在坐標平面內是否存在點,使?若存在這樣的點,直接寫出點的坐標的規(guī)律;若不存在,請說明理由.解析:(1),,;(2)存在,或;(3)存在,或;(4)存在,的縱坐標總是4或.或者:點在平行于軸且與軸的距離等于4的兩條直線上;或者:點在直線或直線上【分析】(1)根據(jù)點的平移規(guī)律,即可得到對應點坐標;(2)由,可以得到,即可得到P點坐標;(3)由,可以得到,結合點C坐標,就可以求得點Q坐標;(4)由,可以AB邊上的高的長度,從而得到點的坐標規(guī)律.【詳解】(1)∵點,點∴向上平移3個單位,再向右平移1個單位之后對應點坐標為,點∴∴(2)存在,理由如下:∵即:=12∴∴或(3)存在,理由如下:∵即:∵∴∵∴或(4)存在:理由如下:∵∴設中,AB邊上的高為h則:∴∴點在直線或直線上【點睛】本題考查直角坐標系中點的坐標平移規(guī)律,由點到坐標軸的距離確定點坐標等知識點,根據(jù)相關內容解題是關鍵.2.如圖1,在平面直角坐標系中,,且滿足,過作軸于.(1)求的面積.(2)若過作交軸于,且分別平分,如圖2,求的度數(shù).(3)在軸上存在點使得和的面積相等,請直接寫出點坐標.解析:(1)4;(2);(2)或.【分析】(1)根據(jù)非負數(shù)的性質易得,,然后根據(jù)三角形面積公式計算;(2)過作,根據(jù)平行線性質得,且,,所以;然后把代入計算即可;(3)分類討論:設,當在軸正半軸上時,過作軸,軸,軸,利用可得到關于的方程,再解方程求出;當在軸負半軸上時,運用同樣方法可計算出.【詳解】解:(1),,,,,,,,的面積;(2)解:軸,,,又∵,∴,過作,如圖①,,,,,分別平分,,即:,,;(3)或.解:①當在軸正半軸上時,如圖②,設,過作軸,軸,軸,,,解得,②當在軸負半軸上時,如圖③,解得,綜上所述:或.【點睛】本題考查了平行線的判定與性質:兩直線平行,內錯角相等.也考查了非負數(shù)的性質、坐標與圖形性質以及三角形面積公式.構造矩形求三角形面積是解題關鍵.3.如圖,在平面直角坐標系中,點,,將線段AB進行平移,使點A剛好落在x軸的負半軸上,點B剛好落在y軸的負半軸上,A,B的對應點分別為,,連接交y軸于點C,交x軸于點D.(1)線段可以由線段AB經(jīng)過怎樣的平移得到?并寫出,的坐標;(2)求四邊形的面積;(3)P為y軸上的一動點(不與點C重合),請?zhí)骄颗c的數(shù)量關系,給出結論并說明理由.解析:(1)向左平移4個單位,再向下平移6個單位,,;(2)24;(3)見解析【分析】(1)利用平移變換的性質解決問題即可.(2)利用分割法確定四邊形的面積即可.(3)分兩種情形:點在點的上方,點在點的下方,分別求解即可.【詳解】解:(1)點,,又將線段進行平移,使點剛好落在軸的負半軸上,點剛好落在軸的負半軸上,線段是由線段向左平移4個單位,再向下平移6個單位得到,,.(2).(3)連接.,,的中點坐標為在軸上,.,軸,同法可證,,,,同法可證,,,,當點在點的下方時,,,,,當點在點的上方時,.【點睛】本題考查坐標與圖形變化—平移,解題的關鍵是理解題意,學會有分割法求四邊形的面積,學會用分類討論的思想解決問題,屬于中考??碱}型.4.問題情境:在平面直角坐標系xOy中有不重合的兩點A(x1,y1)和點B(x2,y2),小明在學習中發(fā)現(xiàn),若x1=x2,則AB∥y軸,且線段AB的長度為|y1﹣y2|;若y1=y(tǒng)2,則AB∥x軸,且線段AB的長度為|x1﹣x2|;(應用):(1)若點A(﹣1,1)、B(2,1),則AB∥x軸,AB的長度為.(2)若點C(1,0),且CD∥y軸,且CD=2,則點D的坐標為.(拓展):我們規(guī)定:平面直角坐標系中任意不重合的兩點M(x1,y1),N(x2,y2)之間的折線距離為d(M,N)=|x1﹣x2|+|y1﹣y2|;例如:圖1中,點M(﹣1,1)與點N(1,﹣2)之間的折線距離為d(M,N)=|﹣1﹣1|+|1﹣(﹣2)|=2+3=5.解決下列問題:(1)如圖1,已知E(2,0),若F(﹣1,﹣2),則d(E,F(xiàn));(2)如圖2,已知E(2,0),H(1,t),若d(E,H)=3,則t=.(3)如圖3,已知P(3,3),點Q在x軸上,且三角形OPQ的面積為3,則d(P,Q)=.解析:【應用】:(1)3;(2)(1,2)或(1,﹣2);【拓展】:(1)=5;(2)2或﹣2;(3)4或8.【分析】(應用)(1)根據(jù)若y1=y(tǒng)2,則AB∥x軸,且線段AB的長度為|x1?x2|,代入數(shù)據(jù)即可得出結論;(2)由CD∥y軸,可設點D的坐標為(1,m),根據(jù)CD=2,可得|0﹣m|=2,故可求出m,即可求解;(拓展)(1)根據(jù)兩點之間的折線距離公式,代入數(shù)據(jù)即可得出結論;(2)根據(jù)兩點之間的折線距離公式結合d(E,H)=3,即可得出關于t的含絕對值符號的一元一次方程,解之即可得出結論;(3)由點Q在x軸上,可設點Q的坐標為(x,0),根據(jù)三角形的面積公式結合三角形OPQ的面積為3即可求出x的值,再利用兩點之間的折線距離公式即可得出結論;【詳解】(應用):(1)AB的長度為|﹣1﹣2|=3.故答案為:3.(2)由CD∥y軸,可設點D的坐標為(1,m),∵CD=2,∴|0﹣m|=2,解得:m=±2,∴點D的坐標為(1,2)或(1,﹣2).故答案為:(1,2)或(1,﹣2).(拓展):(1)d(E,F(xiàn))=|2﹣(﹣1)|+|0﹣(﹣2)|=5.故答案為:=5.(2)∵E(2,0),H(1,t),d(E,H)=3,∴|2﹣1|+|0﹣t|=3,解得:t=±2.故答案為:2或﹣2.(3)由點Q在x軸上,可設點Q的坐標為(x,0),∵三角形OPQ的面積為3,∴|x|×3=3,解得:x=±2.當點Q的坐標為(2,0)時,d(P,Q)=|3﹣2|+|3﹣0|=4;當點Q的坐標為(﹣2,0)時,d(P,Q)=|3﹣(﹣2)|+|3﹣0|=8.故答案為:4或8.【點睛】本題是三角形綜合題目,考查了新定義、兩點間的距離公式、三角形面積等知識,讀懂題意并熟練運用兩點間的距離及兩點之間的折線距離公式是解題的關鍵.5.如圖,在平面直角坐標系中,已知,將線段平移至,點在軸正半軸上,,且.連接,,,.(1)寫出點的坐標為;點的坐標為;(2)當?shù)拿娣e是的面積的3倍時,求點的坐標;(3)設,,,判斷、、之間的數(shù)量關系,并說明理由.解析:(1),;(2)點D的坐標為或;(3)之間的數(shù)量關系,或,理由見解析.【分析】(1)由二次根式成立的條件可得a和b的值,由平移的性質確定BC∥OA,且BC=OA,可得結論;(2)分點D在線段OA和在OA延長線兩種情況進行計算;(3)分點D在線段OA上時,α+β=θ和在OA延長線α-β=θ兩種情況進行計算;【詳解】解:(1)∵,∴a=2,b=3,∴點C的坐標為(2,3),∵A(4,0),∴OA=BC=4,由平移得:BC∥x軸,∴B(6,3),故答案為:,;(2)設點D的坐標為∵△ODC的面積是△ABD的面積的3倍∴∴①如圖1,當點D在線段OA上時,由,得解得∴點D的坐標為②如圖2,當點D在OA得延長線上時,由,得解得∴點D的坐標為綜上,點D的坐標為或.(3)①如圖1,當點D在線段OA上時,過點D作DE∥AB,與CB交于點E.由平移知OC∥AB,∴DE∥OC∴又∴.②如圖2,當點D在OA得延長線上時,過點D作DE∥AB,與CB得延長線交于點E由平移知OC∥AB,∴DE∥OC∴又∴.綜上,之間的數(shù)量關系,或.【點睛】此題考查四邊形和三角形的綜合題,點的坐標和三角形面積的計算方法,平移得性質,平行線的性質和判定,解題的關鍵是分點D在線段OA上,和OA延長線上兩種情況.6.如圖,在平面直角坐標系中,點O為坐標原點,三角形OAB的邊OA、OB分別在x軸正半軸上和y軸正半軸上,A(a,0),a是方程的解,且△OAB的面積為6.(1)求點A、B的坐標;(2)將線段OA沿軸向上平移后得到PQ,點O、A的對應點分別為點P和點Q(點P與點B不重合),設點P的縱坐標為t,△BPQ的面積為S,請用含t的式子表示S;(3)在(2)的條件下,設PQ交線段AB于點K,若PK=,求t的值及△BPQ的面積.解析:(1)B(0,3);(2)S=(3)4【分析】(1)解方程求出a的值,利用三角形的面積公式構建方程求出b的值即可解決問題;(2)分兩種情形分別求解:當點P在線段OB上時,當點P在線段OB的延長線上時;(3)過點K作KH⊥OA用H.根據(jù)S△BPK+S△AKH=S△AOB-S長方形OPKH,構建方程求出t,即可解決問題;【詳解】解:(1)∵,∴2(a+2)-3(a-2)=6,∴-a+4=0,∴a=4,∴A(4,0),∵S△OAB=6,∴?4?OB=6,∴OB=3,∴B(0,3).(2)當點P在線段OB上時,S=?PQ?PB=×4×(3-t)=-2t+6.當點P在線段OB的延長線上時,S=?PQ?PB=×4×(t-3)=2t-6.綜上所述,S=.(3)過點K作KH⊥OA用H.∵S△BPK+S△AKH=S△AOB-S長方形OPKH,∴PK?BP+AH?KH=6-PK?OP,∴××(3-t)+(4-)?t=6-?t,解得t=1,∴S△BPQ=-2t+6=4.【點睛】本題考查三角形綜合題,一元一次方程、三角形的面積、平移變換等知識,解題的關鍵是學會利用參數(shù)構建方程解決問題,屬于中考壓軸題.7.如圖,在平面直角坐標系中,已知,,,,滿足.平移線段得到線段,使點與點對應,點與點對應,連接,.(1)求,的值,并直接寫出點的坐標;(2)點在射線(不與點,重合)上,連接,.①若三角形的面積是三角形的面積的2倍,求點的坐標;②設,,.求,,滿足的關系式.解析:(1);(2)①或;②點在B點左側時,;點在B點右側時,.【分析】(1)根據(jù)非負數(shù)的性質分別求出、,根據(jù)平移規(guī)律得到平移方式,再由平移的坐標變化規(guī)律求出點的坐標;(2)①設,根據(jù)三角形的面積公式列出方程,解方程求出,得到點P的坐標;②分點點在B點左側、點在B點右側時,過點P作,根據(jù)平行線的性質解答.【詳解】解:(1),,,,解得,,.,,平移線段得到線段,使點與點對應,∴平移線段向上平移4個單位,再向右平移2個單位得到線段,∴,即;(2)①設,∵線段平移得到線段,∴,∵,∵,∴,∵,∴解得,當P在B點左側時,坐標為(1,0),當P在B點右側時,坐標為(7,0),或;②I、點在射線(不與點,重合)上,點在B點左側時,,,滿足的關系式是.理由如下:如圖1,過點作,,∴,由平移得到,點與點對應,點與點對應,,∴∴,;即,II、如圖2,點在射線(不與點,重合)上,點在B點右側時,,,滿足的關系式是.同①的方法得,,,;即:綜上所述:點在B點左側時,.點在B點右側時,.【點睛】本題考查了坐標與圖形平移的關系,坐標與平行四邊形性質的關系,平行線的性質及三角形、平行四邊形的面積公式.關鍵是理解平移規(guī)律,作平行線將相關角進行轉化.8.(1)如圖①,若∠B+∠D=∠E,則直線AB與CD有什么位置關系?請證明(不需要注明理由).(2)如圖②中,AB//CD,又能得出什么結論?請直接寫出結論.(3)如圖③,已知AB//CD,則∠1+∠2+…+∠n-1+∠n的度數(shù)為.解析:(1)AB//CD,證明見解析;(2)∠E1+∠E2+…∠En=∠B+∠F1+∠F2+…∠Fn-1+∠D;(3)(n-1)?180°【分析】(1)過點E作EF//AB,利用平行線的性質則可得出∠B=∠BEF,再由已知及平行線的判定即可得出AB∥CD;(2)如圖,過點E作EM∥AB,過點F作FN∥AB,過點G作GH∥AB,根據(jù)探究(1)的證明過程及方法,可推出∠E+∠G=∠B+∠F+∠D,則可由此得出規(guī)律,并得出∠E1+∠E2+…∠En=∠B+∠F1+∠F2+…∠Fn-1+∠D;(3)如圖,過點M作EF∥AB,過點N作GH∥AB,則可由平行線的性質得出∠1+∠2+∠MNG=180°×2,依此即可得出此題結論.【詳解】解:(1)過點E作EF//AB,∴∠B=∠BEF.∵∠BEF+∠FED=∠BED,∴∠B+∠FED=∠BED.∵∠B+∠D=∠E(已知),∴∠FED=∠D.∴CD//EF(內錯角相等,兩直線平行).∴AB//CD.(2)過點E作EM∥AB,過點F作FN∥AB,過點G作GH∥AB,∵AB∥CD,∴AB∥EM∥FN∥GH∥CD,∴∠B=∠BEM,∠MEF=∠EFN,∠NFG=∠FGH,∠HGD=∠D,∴∠BEF+∠FGD=∠BEM+∠MEF+∠FGH+∠HGD=∠B+∠EFN+∠NFG+∠D=∠B+∠EFG+∠D,即∠E+∠G=∠B+∠F+∠D.由此可得:開口朝左的所有角度之和與開口朝右的所有角度之和相等,∴∠E1+∠E2+…∠En=∠B+∠F1+∠F2+…∠Fn-1+∠D.故答案為:∠E1+∠E2+…∠En=∠B+∠F1+∠F2+…∠Fn-1+∠D.(3)如圖,過點M作EF∥AB,過點N作GH∥AB,∴∠APM+∠PME=180°,∵EF∥AB,GH∥AB,∴EF∥GH,∴∠EMN+∠MNG=180°,∴∠1+∠2+∠MNG=180°×2,依次類推:∠1+∠2+…+∠n-1+∠n=(n-1)?180°.故答案為:(n-1)?180°.【點睛】本題考查了平行線的性質與判定,屬于基礎題,關鍵是過E點作AB(或CD)的平行線,把復雜的圖形化歸為基本圖形.9.如圖①,將一張長方形紙片沿對折,使落在的位置;(1)若的度數(shù)為,試求的度數(shù)(用含的代數(shù)式表示);(2)如圖②,再將紙片沿對折,使得落在的位置.①若,的度數(shù)為,試求的度數(shù)(用含的代數(shù)式表示);②若,的度數(shù)比的度數(shù)大,試計算的度數(shù).解析:(1);(2)①;②【分析】(1)由平行線的性質得到,由折疊的性質可知,∠2=∠BFE,再根據(jù)平角的定義求解即可;(2)①由(1)知,,根據(jù)平行線的性質得到,再由折疊的性質及平角的定義求解即可;②由(1)知,∠BFE=,由可知:,再根據(jù)條件和折疊的性質得到,即可求解.【詳解】解:(1)如圖,由題意可知,∴,∵,∴,,由折疊可知.(2)①由題(1)可知,∵,,再由折疊可知:,;②由可知:,由(1)知,,又的度數(shù)比的度數(shù)大,,,,.【點睛】此題考查了平行線的性質,屬于綜合題,有一定難度,熟記“兩直線平行,同位角相等”、“兩直線平行,內錯角相等”及折疊的性質是解題的關鍵.10.已知,如圖1,射線PE分別與直線AB,CD相交于E、F兩點,∠PFD的平分線與直線AB相交于點M,射線PM交CD于點N,設∠PFM=α°,∠EMF=β°,且(40﹣2α)2+|β﹣20|=0(1)α=,β=;直線AB與CD的位置關系是;(2)如圖2,若點G、H分別在射線MA和線段MF上,且∠MGH=∠PNF,試找出∠FMN與∠GHF之間存在的數(shù)量關系,并證明你的結論;(3)若將圖中的射線PM繞著端點P逆時針方向旋轉(如圖3),分別與AB、CD相交于點M1和點N1時,作∠PM1B的角平分線M1Q與射線FM相交于點Q,問在旋轉的過程中的值是否改變?若不變,請求出其值;若變化,請說明理由.解析:(1)20,20,;(2);(3)的值不變,【分析】(1)根據(jù),即可計算和的值,再根據(jù)內錯角相等可證;(2)先根據(jù)內錯角相等證,再根據(jù)同旁內角互補和等量代換得出;(3)作的平分線交的延長線于,先根據(jù)同位角相等證,得,設,,得出,即可得.【詳解】解:(1),,,,,,,;故答案為:20、20,;(2);理由:由(1)得,,,,,,,;(3)的值不變,;理由:如圖3中,作的平分線交的延長線于,,,,,,,,設,,則有:,可得,,.【點睛】本題主要考查平行線的判定與性質,熟練掌握內錯角相等證平行,平行線同旁內角互補等知識是解題的關鍵.11.如圖,,直線與、分別交于點、,點在直線上,過點作,垂足為點.(1)如圖1,求證:;(2)若點在線段上(不與、、重合),連接,和的平分線交于點請在圖2中補全圖形,猜想并證明與的數(shù)量關系;解析:(1)證明見解析;(2)補圖見解析;當點在上時,;當點在上時,.【分析】(1)過點作,根據(jù)平行線的性質即可求解;(2)分兩種情況:當點在上,當點在上,再過點作即可求解.【詳解】(1)證明:如圖,過點作,∴,∵,∴.∴.∵,∴,∴.(2)補全圖形如圖2、圖3,猜想:或.證明:過點作.∴.∵,∴∴,∴.∵平分,∴.如圖3,當點在上時,∵平分,∴,∵,∴,即.如圖2,當點在上時,∵平分,∴.∴.即.【點睛】本題考查了平行線的基本性質、角平分線的基本性質及角的運算,解題的關鍵是準確作出平行線,找出角與角之間的數(shù)量關系.12.已知直線,點P為直線、所確定的平面內的一點.(1)如圖1,直接寫出、、之間的數(shù)量關系;(2)如圖2,寫出、、之間的數(shù)量關系,并證明;(3)如圖3,點E在射線上,過點E作,作,點G在直線上,作的平分線交于點H,若,,求的度數(shù).解析:(1)∠A+∠C+∠APC=360°;(2)見解析;(3)55°【分析】(1)首先過點P作PQ∥AB,則易得AB∥PQ∥CD,然后由兩直線平行,同旁內角互補,即可證得∠A+∠C+∠APC=360°;(2)作PQ∥AB,易得AB∥PQ∥CD,根據(jù)兩直線平行,內錯角相等,即可證得∠APC=∠A+∠C;(3)由(2)知,∠APC=∠PAB-∠PCD,先證∠BEF=∠PQB=110°、∠PEG=∠FEG,∠GEH=∠BEG,根據(jù)∠PEH=∠PEG-∠GEH可得答案.【詳解】解:(1)∠A+∠C+∠APC=360°如圖1所示,過點P作PQ∥AB,∴∠A+∠APQ=180°,∵AB∥CD,∴PQ∥CD,∴∠C+∠CPQ=180°,∴∠A+∠APQ+∠C+∠CPQ=360°,即∠A+∠C+∠APC=360°;(2)∠APC=∠A+∠C,如圖2,作PQ∥AB,∴∠A=∠APQ,∵AB∥CD,∴PQ∥CD,∴∠C=∠CPQ,∵∠APC=∠APQ-∠CPQ,∴∠APC=∠A-∠C;(3)由(2)知,∠APC=∠PAB-∠PCD,∵∠APC=30°,∠PAB=140°,∴∠PCD=110°,∵AB∥CD,∴∠PQB=∠PCD=110°,∵EF∥BC,∴∠BEF=∠PQB=110°,∵EF∥BC,∴∠BEF=∠PQB=110°,∵∠PEG=∠PEF,∴∠PEG=∠FEG,∵EH平分∠BEG,∴∠GEH=∠BEG,∴∠PEH=∠PEG-∠GEH=∠FEG-∠BEG=∠BEF=55°.【點睛】此題考查了平行線的性質以及角平分線的定義.此題難度適中,注意掌握輔助線的作法,注意掌握數(shù)形結合思想的應用.13.已知,點為平面內一點,于.(1)如圖1,求證:;(2)如圖2,過點作的延長線于點,求證:;(3)如圖3,在(2)問的條件下,點、在上,連接、、,且平分,平分,若,,求的度數(shù).解析:(1)見解析;(2)見解析;(3).【分析】(1)先根據(jù)平行線的性質得到,然后結合即可證明;(2)過作,先說明,然后再說明得到,最后運用等量代換解答即可;(3)設∠DBE=a,則∠BFC=3a,根據(jù)角平分線的定義可得∠ABD=∠C=2a,∠FBC=∠DBC=a+45°,根據(jù)三角形內角和可得∠BFC+∠FBC+∠BCF=180°,可得∠AFC=∠BCF的度數(shù)表達式,再根據(jù)平行的性質可得∠AFC+∠NCF=180°,代入即可算出a的度數(shù),進而完成解答.【詳解】(1)證明:∵,∴,∵于,∴,∴,∴;(2)證明:過作,∵,∴,又∵,∴,∴,∵,∴,∴,∴;(3)設∠DBE=a,則∠BFC=3a,∵BE平分∠ABD,∴∠ABD=∠C=2a,又∵AB⊥BC,BF平分∠DBC,∴∠DBC=∠ABD+∠ABC=2a+90,即:∠FBC=∠DBC=a+45°又∵∠BFC+∠FBC+∠BCF=180°,即:3a+a+45°+∠BCF=180°∴∠BCF=135°-4a,∴∠AFC=∠BCF=135°-4a,又∵AM//CN,∴∠AFC+∠NCF=180°,即:∠AFC+∠BCN+∠BCF=180°,∴135°-4a+135°-4a+2a=180,解得a=15°,∴∠ABE=15°,∴∠EBC=∠ABE+∠ABC=15°+90°=105°.【點睛】本題主要考查了平行線的性質、角平分線的性質及角的計算,熟練應用平行線的性質、角平分線的性質是解答本題的關鍵.14.已知AB∥CD,∠ABE與∠CDE的角分線相交于點F.(1)如圖1,若BM、DM分別是∠ABF和∠CDF的角平分線,且∠BED=100°,求∠M的度數(shù);(2)如圖2,若∠ABM=∠ABF,∠CDM=∠CDF,∠BED=α°,求∠M的度數(shù);(3)若∠ABM=∠ABF,∠CD
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 骨質疏松癥的運動防治
- 2025年懸掛式離子風機項目發(fā)展計劃
- 舌癌患者的社會支持系統(tǒng)
- 醫(yī)院護理投訴的滿意度調查與反饋
- 員工心態(tài)課件
- 惡心嘔吐的護理計劃
- 頸椎術后長期隨訪管理
- VTE護理中的心理支持
- 肌腱術后如何選擇合適的鞋具
- 聽手命令課件
- 大學軍事理論課教程第四章現(xiàn)代戰(zhàn)爭第一節(jié) 戰(zhàn)爭概述
- 《野望》與《渡荊門送別》教學設計
- 離婚登記申請受理回執(zhí)單模板
- 高壓供電管理規(guī)定
- 項目監(jiān)理部監(jiān)理周報
- 光伏工程資料表格模板
- GB/T 41123.2-2021無損檢測工業(yè)射線計算機層析成像檢測第2部分:操作和解釋
- GB/T 17636-1998土工布及其有關產(chǎn)品抗磨損性能的測定砂布/滑塊法
- GB/T 17612-1998封閉管道中液體流量的測量稱重法
- GB/T 10609.2-1989技術制圖明細欄
- 配電系統(tǒng)標識
評論
0/150
提交評論