考點解析廣東省陽春市中考數(shù)學真題分類(位置與坐標)匯編同步測試練習題(詳解)_第1頁
考點解析廣東省陽春市中考數(shù)學真題分類(位置與坐標)匯編同步測試練習題(詳解)_第2頁
考點解析廣東省陽春市中考數(shù)學真題分類(位置與坐標)匯編同步測試練習題(詳解)_第3頁
考點解析廣東省陽春市中考數(shù)學真題分類(位置與坐標)匯編同步測試練習題(詳解)_第4頁
考點解析廣東省陽春市中考數(shù)學真題分類(位置與坐標)匯編同步測試練習題(詳解)_第5頁
已閱讀5頁,還剩19頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

廣東省陽春市中考數(shù)學真題分類(位置與坐標)匯編同步測試考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計16分)1、以下圖形中對稱軸的數(shù)量小于3的是(

)A. B.C. D.2、在平面直角坐標系中.點P(1,﹣2)關于x軸的對稱點的坐標是()A.(1,2) B.(﹣1,﹣2) C.(﹣1,2) D.(﹣2,1)3、在平面直角坐標系中,對進行循環(huán)往復的軸對稱變換,若原來點的坐標是,則經(jīng)過第2019次變換后所得的點的坐標是A. B. C. D.4、下列圖形中對稱軸條數(shù)最多的是(

).A.等邊三角形 B.正方形 C.等腰三角形 D.線段5、在平面直角坐標系xOy中,點A(3,-4)關于y軸的對稱點B的坐標是(

)A.(3,4) B.(-3,-4) C.(-3,4) D.(-4,3)6、若點在第四象限,則點在(

)A.第一象限 B.第二象限 C.第三象限 D.第四象限7、如圖是丁丁畫的一張臉的示意圖,如果用表示左眼,用表示右眼,那么嘴的位置可以表示成(

).A. B. C. D.8、點A(2,-1)關于y軸對稱的點B的坐標為(

)A.(2,1) B.(-2,1) C.(2,-1) D.(-2,-1)第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計14分)1、已知點到軸、軸的距離相等,則點的坐標______.2、在平面直角坐標系中,O為坐標原點,已知:A(3,2),B(5,0),則△AOB的面積為___________.3、在平面直角坐標系中,點M(a,b)與點N(3,﹣1)關于x軸對稱,則的值是_____.4、如圖,在△ABC中,AB=AC=10,BC=12,AD⊥BC于點D,點E、F分別是線段AB、AD上的動點,且BE=AF,則BF+CE的最小值為_____.5、同學們玩過五子棋嗎?它的比賽規(guī)則是只要同色五子先成一條直線就算勝.如圖是兩人玩的一盤棋,若白①的位置是(1,-5),黑②的位置是(2,-4),現(xiàn)在輪到黑棋走,你認為黑棋放在___________________________位置就可獲勝.6、若點在第二象限,則a的取值范圍是___________.7、點(3,0)關于y軸對稱的點的坐標是_______三、解答題(7小題,每小題10分,共計70分)1、如圖,方格紙中的每個小方格都是邊長為1個單位的正方形,在建立平面直角坐標系后,△ABC的頂點均在格點上,點C的坐標為(4,﹣1).(1)畫出△ABC的各點縱坐標不變,橫坐標乘﹣1后得到的△;(2)畫出△的各點橫坐標不變,縱坐標乘﹣1后得到的△;(3)點的坐標是;點的坐標是.2、已知點P(2x,y2+4)與Q(x2+1,﹣4y)關于原點對稱,求x+y的值.3、如圖,正方形網(wǎng)格中一線段的兩個端點的坐標分別為(1)在正方形網(wǎng)格中建立平面直角坐標系;(2)若點在軸上運動,當長度最小時,點的坐標為,依據(jù)是(3)在(2)的條件下,連接,求的面積.4、如圖,A(x1,y1),B(x2,y2)是直角坐標系中的任意兩點,AD,BC都垂直于x軸,點D,C分別為垂足,(1)用適當?shù)拇鷶?shù)式表示:|AD﹣BC|,CD;(2)猜想A,B兩點間的距離公式,不要求證明;(3)利用(2)的結(jié)果計算點(﹣1,3)與點(﹣5,7)之間的距離.5、已知點A(﹣1,3a﹣1)與點B(2b+1,﹣2)關于x軸對稱,點C(a+2,b)與點D關于原點對稱.(1)求點A、B、C、D的坐標;(2)順次聯(lián)結(jié)點A、D、B、C,求所得圖形的面積.6、在如圖所示的平面直角坐標系中,(1)描出點,并依次連接點A、B、C、D、E、A,請寫出形成一個什么圖形;答:形成___________.(2)若將該圖形沿x軸向右平移2個單位,再沿y軸向下平移4單位,則經(jīng)過兩次平移后點D的對應點的坐標為_______________.7、如圖,在直角坐標系中,A(﹣1,5),B(﹣3,0),C(﹣4,3).(1)在圖中作出△ABC關于y軸對稱的圖形△A1B1C1;(2)寫出點C1的坐標;(3)求△ABC的面積.-參考答案-一、單選題1、D【解析】【分析】確定各圖形的對稱軸數(shù)量即可.【詳解】解:A、有4條對稱軸;B、有6條對稱軸;C、有4條對稱軸;D、有2條對稱軸.故選D.2、A【解析】【詳解】點P(1,-2)關于x軸的對稱點的坐標是(1,2),故選:A.3、A【解析】【分析】觀察圖形可知每四次軸對稱變換為一個循環(huán)組依次循環(huán),用2019除以4,然后根據(jù)商和余數(shù)的情況確定出變換后的點A所在的象限即可解答.【詳解】解:點A第一次關于x軸對稱后在第四象限,點A第二次關于y軸對稱后在第三象限,點A第三次關于x軸對稱后在第二象限,點A第四次關于y軸對稱后在第一象限,即點A回到原始位置,所以,每四次軸對稱變換為一個循環(huán)組依次循環(huán),∵2019÷4=504余3,∴經(jīng)過第2019次變換后所得的A點與第三次變換的位置相同,在第二象限,坐標為.故選A.【考點】本題考查軸對稱的性質(zhì),點的坐標變換規(guī)律,讀懂題目信息,觀察出每四次軸對稱變換為一個循環(huán)組依次循環(huán)是解題的關鍵.4、B【解析】【分析】根據(jù)對稱軸的定義逐一判斷出每種圖形的對稱軸條數(shù),然后即可得出結(jié)論.【詳解】解:A.等邊三角形有3條對稱軸;

B.正方形有4條對稱軸;

C.等腰三角形有1條對稱軸;

D.線段有2條對稱軸.∵4>3>2>1∴正方形的對稱軸條數(shù)最多.故選B.【考點】此題考查的是軸對稱圖形對稱軸條數(shù)的判斷,掌握軸對稱圖形的定義是解決此題的關鍵.5、B【解析】【分析】根據(jù)直角坐標系和軸對稱的性質(zhì)分析,即可得到答案.【詳解】點A(3,-4)關于y軸的對稱點B的坐標是:(-3,-4)故選:B.【考點】本題考查了直角坐標系、軸對稱的性質(zhì);解題的關鍵是熟練掌握坐標、軸對稱的性質(zhì),從而完成求解.6、A【解析】【分析】首先得出第四象限點的坐標性質(zhì),進而得出Q點的位置.【詳解】解:∵點P(a,b)在第四象限,∴a>0,b<0,∴-b>0,∴點Q(-b,a)在第一象限.故選:A.【考點】此題主要考查了點的坐標,正確把握各象限點的坐標特點是解題關鍵.7、B【解析】【分析】根據(jù)題意建立平面直角坐標系,由坐標系中點的特征解題即可.【詳解】建立平面直角坐標系,如圖,嘴的坐標為故選:B.【考點】本題考查坐標確定位置,其中涉及建立直角坐標系,各象限點的坐標的特征等,是常見考點,難度較易,掌握相關知識是解題關鍵.8、D【解析】【分析】根據(jù)點坐標關于軸對稱的變換規(guī)律即可得.【詳解】解:點坐標關于軸對稱的變換規(guī)律:橫坐標互為相反數(shù),縱坐標相同.則點關于軸對稱的點的坐標為,故選:D.【考點】本題考查了點坐標與軸對稱變化,熟練掌握點坐標關于軸對稱的變換規(guī)律是解題關鍵.二、填空題1、或【解析】【分析】利用點P到x軸、y軸的距離相等,得出橫縱坐標相等或互為相反數(shù)進而得出答案.【詳解】解:∵點P到x軸、y軸的距離相等,∴2-2a=4+a或2-2a+4+a=0,解得:a1=-,a2=6,故當a=-時,2-2a=,4+a=,則P(,);故當a=6時,2-2a=-10,4+a=10,則P(-10,10).綜上所述:P點坐標為(,)或P(-10,10).故答案為:(,)或P(-10,10).【考點】此題主要考查了點的坐標性質(zhì),用到的知識點為:點到兩坐標軸的距離相等,那么點的橫縱坐標相等或互為相反數(shù).2、5【解析】【分析】首先在坐標系中標出A、B兩點坐標,由于B點在x軸上,所以面積較為容易計算,根據(jù)三角形面積的計算公式,即可求出△AOB的面積.【詳解】解:如圖所示,過A點作AD垂直x軸于D點,則h=2,∴.故答案為:5.【考點】本題主要考查的是坐標系中三角形面積的求法,需要準確對點位進行標注,并根據(jù)公式進行求解即可.3、1【解析】【分析】根據(jù)關于x軸對稱的兩點的橫坐標相同,縱坐標互為相反數(shù)求得a、b的值即可求得答案.【詳解】解:在直角坐標系中,關于x軸對稱的兩點,橫坐標相同,縱坐標互為相反數(shù),∵點M(a,b)與點N(3,﹣1)關于x軸對稱,∴a=3,b=1,∴=1,故答案為:1.【考點】本題考查了關于x軸對稱的點的坐標特征,熟練掌握關于坐標軸對稱的點的坐標特征是解題的關鍵.4、【解析】【分析】過點作,使,連接,,可證明,則當、、三點共線時,的值最小,最小值為,求出即可求解.【詳解】解:過點作,使,連接,,,,,,,,,當、、三點共線時,的值最小,,,,在中,,故答案為:.【考點】本題考查軸對稱求最短距離,熟練掌握軸對稱求最短距離的方法,通過構(gòu)造三角形全等,將所求的問題轉(zhuǎn)化為將軍飲馬求最短距離是解題的關鍵.5、(2,0)或(7,?5)##(7,?5)或(2,0)【解析】【分析】根據(jù)題意得出原點位置進而得出答案黑棋應該放的位置.【詳解】如圖所示,黑旗放在圖中三角形位置,就能獲勝.∵白①的位置是:(1,?5),黑②的位置是:(2,?4),∴O點的位置為:(0,0),∴黑棋放在(2,0)或(7,?5)位置就能獲勝.故答案為(2,0)或(7,?5)【考點】本題考查坐標確定位置,根據(jù)點的坐標建立坐標系是解題的關鍵.6、-2<a<0【解析】【分析】【詳解】解:因為點(a,a+2)在第二象限,所以,解得﹣2<a<0,故答案為﹣2<a<0.7、(-3,0)【解析】【分析】根據(jù)平面直角坐標系中兩個關于坐標軸成軸對稱的點的坐標特點,直接用假設法設出相關點即可.【詳解】解:點(m,n)關于y軸對稱點的坐標(-m,n),所以點(3,0)關于y軸對稱的點的坐標為(-3,0).故答案為:(-3,0).【考點】本題考查平面直角坐標系點的對稱性質(zhì):(1)關于x軸對稱的點,橫坐標相同,縱坐標互為相反數(shù);(2)關于y軸對稱的點,縱坐標相同,橫坐標互為相反數(shù);(3)關于原點對稱的點,橫坐標與縱坐標都互為相反數(shù).三、解答題1、(1)見解析

(2)見解析

(3)(﹣4,﹣1);(﹣4,1)【解析】【分析】(1)△ABC的各點縱坐標不變,橫坐標乘-1后的坐標首先寫出,然后在數(shù)軸上表示出來,順次連接;(2)△A1B1C1的各點橫坐標不變,縱坐標乘-1后的坐標首先寫出,然后在數(shù)軸上表示出來,順次連接;(3)根據(jù)(1)(2)即可直接寫出.【詳解】(1)A1的坐標是(-1,-4),B1的坐標是(-5,-4),C1的坐標是(-4,-1),如圖,△A1B1C1為所作;(2)A2的坐標是(-1,4),B2的坐標是(-5,4),C2的坐標是(-4,1),如圖,△A2B2C2為所作;(3)C1的坐標是(﹣4,﹣1),C2的坐標是(﹣4,1).故答案是:(﹣4,﹣1),(﹣4,1).【考點】本題考查了坐標與圖形的變化-軸對稱變換,根據(jù)題目的敘述求得△A1B1C1和△A2B2C2的坐標是解題的關鍵.2、1【解析】【分析】根據(jù)關于原點對稱的點的坐標特點,列出方程即可求得x、y值,據(jù)此即可解答.【詳解】解:∵點P(2x,y2+4)與Q(x2+1,﹣4y)關于原點對稱,∴x2+1+2x=0,y2+4﹣4y=0,∴(x+1)2=0,(y﹣2)2=0,解得:x=﹣1,y=2,∴x+y=-1+2=1.【考點】本題考查了關于原點對稱的點的坐標的特點,代數(shù)式求值問題,熟練掌握和運用關于原點對稱的點的坐標特點是解決本題的關鍵.3、(1)見解析;(2)(5,0),垂線段最短;(3)3【解析】【分析】(1)根據(jù)點A和點B的坐標找到原點位置,并建立坐標系即可;(2)根據(jù)垂線段最短的基本事實,過A作x軸的垂線,垂足為C,求出C坐標即可;(3)以AC為底,計算△ABC的面積,利用公式計算結(jié)果即可.【詳解】(1)如圖所示:(2),垂線段最短.(3)如圖所示:所以的面積為.【考點】考查平面直角坐標系內(nèi)坐標以及幾何的一些問題,學生要熟練掌握平面直角坐標系的相關知識點,并結(jié)合三角形等幾何問題解出本題.4、(1)|AD﹣BC|=|y1﹣y2|,CD=|x1﹣x2|;(2)AB=;(3)【解析】【分析】(1)由于AD,BC都垂直于軸,點D,C分別為垂足,則AD,BC,則|AD-BC|=,CD直接用兩點的橫坐標之差的絕對值表示;(2)利用勾股定理求解;(3)把點(-1,3)和點(-5,7)直接代入(2)中的公式中計算即可.【詳解】(1)|AD﹣BC|=,CD=;(2)AB=,理由如下:過B作BE⊥AD于E,∵AD,BC都垂直于x軸,∴四邊形BCDE是矩形,∴ED=BC,CD=BE,∴AE,BE=,∴AB=;(3)點(﹣1,3)與點(﹣5,7)之間的距離.【考點】本題考查了兩點間的距離公式:設有兩點A(,),B(,),則這兩點間的距離為.求直角坐標系內(nèi)任意兩點間的距離可直接套用此公式.5、(1)點A(?1,2),B(?1,?2),C(3,?1),D(?3,1);(2)圖見詳解,12.【解析】【分析】(1)根據(jù)關于x軸對稱的點的坐標規(guī)律:橫坐標相同,縱坐標互為相反數(shù),分別求出a,b的值,進而求出點A、B、C的坐標,再根據(jù)關于原點的對稱點,橫縱坐標都變成相反數(shù)求出點D的坐標;(2)把這些點按A?D?B?C?A順次連接起來,再根據(jù)三角形的面積公式計算其面積即可.【詳解】解:(1)∵點A(?1,3a?1)與點B(2b+1,?2)關于x軸對稱,∴2b+1=?1,3a?

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論