基礎(chǔ)強(qiáng)化人教版8年級(jí)數(shù)學(xué)下冊(cè)《平行四邊形》專題練習(xí)試題(詳解版)_第1頁
基礎(chǔ)強(qiáng)化人教版8年級(jí)數(shù)學(xué)下冊(cè)《平行四邊形》專題練習(xí)試題(詳解版)_第2頁
基礎(chǔ)強(qiáng)化人教版8年級(jí)數(shù)學(xué)下冊(cè)《平行四邊形》專題練習(xí)試題(詳解版)_第3頁
基礎(chǔ)強(qiáng)化人教版8年級(jí)數(shù)學(xué)下冊(cè)《平行四邊形》專題練習(xí)試題(詳解版)_第4頁
基礎(chǔ)強(qiáng)化人教版8年級(jí)數(shù)學(xué)下冊(cè)《平行四邊形》專題練習(xí)試題(詳解版)_第5頁
已閱讀5頁,還剩21頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

人教版8年級(jí)數(shù)學(xué)下冊(cè)《平行四邊形》專題練習(xí)考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計(jì)20分)1、如圖,陰影部分是將一個(gè)菱形剪去一個(gè)平行四邊形后剩下的,要想知道陰影部分的周長(zhǎng),需要測(cè)量一些線段的長(zhǎng),這些線段可以是()A.AF B.AB C.AB與BC D.BC與CD2、在數(shù)學(xué)活動(dòng)課上,老師和同學(xué)們判斷一個(gè)四邊形門框是否為矩形.下面是某個(gè)合作小組的4位同學(xué)擬定的方案,其中正確的是()A.測(cè)量對(duì)角線是否互相平分 B.測(cè)量?jī)山M對(duì)邊是否分別相等C.測(cè)量其內(nèi)角是否均為直角 D.測(cè)量對(duì)角線是否垂直3、如圖,在正方形有中,E是AB上的動(dòng)點(diǎn),(不與A、B重合),連結(jié)DE,點(diǎn)A關(guān)于DE的對(duì)稱點(diǎn)為F,連結(jié)EF并延長(zhǎng)交BC于點(diǎn)G,連接DG,過點(diǎn)E作⊥DE交DG的延長(zhǎng)線于點(diǎn)H,連接,那么的值為()A.1 B. C. D.24、直角三角形中,兩直角邊長(zhǎng)分別是12和5,則斜邊上的中線長(zhǎng)是()A.2.5 B.6 C.6.5 D.135、如圖是用若干個(gè)全等的等腰梯形拼成的圖形,下列說法錯(cuò)誤的是()A.梯形的下底是上底的兩倍 B.梯形最大角是C.梯形的腰與上底相等 D.梯形的底角是第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計(jì)30分)1、點(diǎn)D、E分別是△ABC邊AB、AC的中點(diǎn),已知BC=12,則DE=_____2、已知長(zhǎng)方形ABCD中,AB=4,BC=10,M為BC中點(diǎn),P為AD上的動(dòng)點(diǎn),則以B、M、P為頂點(diǎn)組成的等腰三角形的底邊長(zhǎng)是______________________.3、如圖,在△ABC中,∠ACB=90°,以AC,BC和AB為邊向上作正方形ACED和正方形BCMI和正方形ABGF,點(diǎn)G落在MI上,若AC+BC=7,空白部分面積為16,則圖中陰影部分的面積是_____.4、如圖,在矩形ABCD中,對(duì)角線AC,BD相交于O,EF過點(diǎn)O分別交AB,CD于E,F(xiàn),已知AB=8cm,AD=5cm,那么圖中陰影部分面積為_____cm2.5、如圖,△ABC中,AC=BC=3,AB=2,將它沿AB翻折得到△ABD,點(diǎn)P、E、F分別為線段AB、AD、DB上的動(dòng)點(diǎn),則PE+PF的最小值是_____.三、解答題(5小題,每小題10分,共計(jì)50分)1、如圖,ABCD的對(duì)角線AC、BD相交于點(diǎn)O,BD12cm,AC6cm,點(diǎn)E在線段BO上從點(diǎn)B以1cm/s的速度向點(diǎn)O運(yùn)動(dòng),點(diǎn)F在線段OD上從點(diǎn)O以2cm/s的速度向點(diǎn)D運(yùn)動(dòng).

(1)若點(diǎn)E、F同時(shí)運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒,當(dāng)t為何值時(shí),四邊形AECF是平行四邊形.(2)在(1)的條件下,當(dāng)AB為何值時(shí),AECF是菱形;(3)求(2)中菱形AECF的面積.2、已知:如圖,在中,,,.求證:互相平分.如圖,將矩形紙片ABCD沿對(duì)角線AC折疊,使點(diǎn)B落在點(diǎn)E處,AE交CD于點(diǎn)F,且已知AB=8,BC=4(1)判斷△ACF的形狀,并說明理由;(2)求△ACF的面積;3、如圖,在中,過點(diǎn)作于點(diǎn),點(diǎn)在邊上,,連接,.(1)求證:四邊形是矩形;(2)若,,,求證:平分.4、如圖,在正方形中,是直線上的一點(diǎn),連接,過點(diǎn)作,交直線于點(diǎn),連接.(1)當(dāng)點(diǎn)在線段上時(shí),如圖①,求證:;(2)當(dāng)點(diǎn)在直線上移動(dòng)時(shí),位置如圖②、圖③所示,線段,與之間又有怎樣的數(shù)量關(guān)系?請(qǐng)直接寫出你的猜想,不需證明.5、如圖所示,在△ABC中,AD是邊BC上的高,CE是邊AB上的中線,G是CE的中點(diǎn),AB=2CD,求證:DG⊥CE.

-參考答案-一、單選題1、A【解析】【分析】如圖,延長(zhǎng),交于點(diǎn),證明,,再利用菱形的性質(zhì)證明:陰影部分的周長(zhǎng),從而可得答案.【詳解】解:如圖,延長(zhǎng),交于點(diǎn),四邊形是平行四邊形,,,四邊形是菱形,,陰影部分的周長(zhǎng),故需要測(cè)量的長(zhǎng)度,故選A.【點(diǎn)睛】本題考查的是平行四邊形的性質(zhì),菱形的性質(zhì),證明陰影部分的周長(zhǎng)是解本題的關(guān)鍵.2、C【解析】【分析】根據(jù)矩形的判定:(1)四個(gè)角均為直角;(2)對(duì)邊互相平行且相等;(3)對(duì)角線相等且平分,據(jù)此即可判斷結(jié)果.【詳解】解:A、根據(jù)矩形的對(duì)角線相等且平分,故錯(cuò)誤;B、對(duì)邊分別相等只能判定四邊形是平行四邊形,故錯(cuò)誤;C、矩形的四個(gè)角都是直角,故正確;D、矩形的對(duì)角線互相相等且平分,所以垂直與否與矩形的判定無關(guān),故錯(cuò)誤.故選:C.【點(diǎn)睛】本題主要考查的是矩形的判定方法,熟練掌握矩形的判定是解題的關(guān)鍵.3、B【解析】【分析】作輔助線,構(gòu)建全等三角形,證明△DAE≌△ENH,得AE=HN,AD=EN,再說明△BNH是等腰直角三角形,可得結(jié)論.【詳解】解:如圖,在線段AD上截取AM,使AM=AE,,∵AD=AB,∴DM=BE,∵點(diǎn)A關(guān)于直線DE的對(duì)稱點(diǎn)為F,∴△ADE≌△FDE,∴DA=DF=DC,∠DFE=∠A=90°,∠1=∠2,∴∠DFG=90°,在Rt△DFG和Rt△DCG中,∵,∴Rt△DFG≌Rt△DCG(HL),∴∠3=∠4,∵∠ADC=90°,∴∠1+∠2+∠3+∠4=90°,∴2∠2+2∠3=90°,∴∠2+∠3=45°,即∠EDG=45°,∵EH⊥DE,∴∠DEH=90°,△DEH是等腰直角三角形,∴∠AED+∠BEH=∠AED+∠1=90°,DE=EH,∴∠1=∠BEH,在△DME和△EBH中,∵,∴△DME≌△EBH(SAS),∴EM=BH,Rt△AEM中,∠A=90°,AM=AE,∴,∴,即=.故選:B.【點(diǎn)睛】本題考查了正方形的性質(zhì),全等三角形的判定定理和性質(zhì)定理,等知識(shí),解決本題的關(guān)鍵是作出輔助線,利用正方形的性質(zhì)得到相等的邊和相等的角,證明三角形全等.4、C【解析】【分析】利用勾股定理列式求出斜邊,再根據(jù)直角三角形斜邊上的中線等于斜邊的一半解答.【詳解】解:由勾股定理得,斜邊,所以,斜邊上的中線長(zhǎng).故選:C.【點(diǎn)睛】本題考查了直角三角形斜邊上的中線等于斜邊的一半的性質(zhì),勾股定理,解題的關(guān)鍵是熟記性質(zhì).5、D【解析】【分析】如圖(見解析),先根據(jù)平角的定義可得,再根據(jù)可求出,由此可判斷選項(xiàng);先根據(jù)等邊三角形的判定與性質(zhì)可得,再根據(jù)平行四邊形的判定可得四邊形是平行四邊形,根據(jù)平行四邊形的性質(zhì)可得,然后根據(jù)菱形的判定可得四邊形是菱形,根據(jù)菱形的性質(zhì)可得,最后根據(jù)線段的和差、等量代換可得,由此可判斷選項(xiàng).【詳解】解:如圖,,,,,梯形是等腰梯形,,則梯形最大角是,選項(xiàng)B正確;沒有指明哪個(gè)角是底角,梯形的底角是或,選項(xiàng)D錯(cuò)誤;如圖,連接,,是等邊三角形,,,點(diǎn)共線,,,,四邊形是平行四邊形,,,,,,四邊形是菱形,,,,選項(xiàng)A、C正確;故選:D.【點(diǎn)睛】本題考查了等腰梯形、菱形的判定與性質(zhì)、等邊三角形的判定與性質(zhì)等知識(shí)點(diǎn),熟練掌握各判定與性質(zhì)是解題關(guān)鍵.二、填空題1、6【解析】【分析】根據(jù)三角形的中位線等于第三邊的一半進(jìn)行計(jì)算即可.【詳解】解:∵D、E分別是△ABC邊AB、AC的中點(diǎn),∴DE是△ABC的中位線,∵BC=12,∴DE=BC=6,故答案為6.【點(diǎn)睛】本題主要考查了三角形中位線定理,熟知三角形中位線定理是解題的關(guān)鍵.2、5或或【解析】【分析】分三種情況:①當(dāng)BP=PM時(shí),點(diǎn)P在BM的垂直平分線上,取BM的中點(diǎn)N,過點(diǎn)N作NP⊥BM交AD于P,則四邊形ABNP是矩形,得AB=PN=4,根據(jù)勾股定理即可求解;②當(dāng)BM=PM=5時(shí),當(dāng)∠PMB為銳角如圖2時(shí),則四邊形ABNP是矩形,得AB=PN=4,根據(jù)勾股定理可得MN=3,從而BN=2,再由勾股定理可得BP的長(zhǎng);③當(dāng)BM=PM=5時(shí),當(dāng)∠PMB為鈍角如圖3時(shí),則四邊形ABNP是矩形,得AB=PN=4,根據(jù)勾股定理MN=3,從而BN=8,再由勾股定理可得BP的長(zhǎng);即可求解.【詳解】解:BC=10,M為BC中點(diǎn),∴BM=5,當(dāng)△BMP為等腰三角形時(shí),分三種情況:①當(dāng)BP=PM時(shí),點(diǎn)P在AM的垂直平分線上,取BM的中點(diǎn)N,過點(diǎn)N作NP⊥AD交AD于P,如圖1所示:則△PBM是等腰三角形∴底邊BM的長(zhǎng)為5②當(dāng)BM=PM=5時(shí),當(dāng)∠PMB為銳角如圖2時(shí),則四邊形ABNP是矩形,∴PN=AB=4,∴MN=∴在Rt△PBN中,③當(dāng)BM=PM=5時(shí),當(dāng)∠PMB為鈍角如圖3時(shí),則四邊形ABNP是矩形,得AB=PN=4,同理可得∴在Rt△PBN中,綜上,以B、M、P為頂點(diǎn)組成的等腰三角形的底邊長(zhǎng)是:5或或故答案為:5或或.【點(diǎn)睛】本題考查了矩形的性質(zhì)、勾股定理以及分類討論等知識(shí),熟練掌握矩形的性質(zhì),進(jìn)行分類討論是解題的關(guān)鍵.3、【解析】【分析】根據(jù)余角的性質(zhì)得到,根據(jù)全等三角形的性質(zhì)得到,推出,根據(jù)勾股定理得到,解方程組得到,接著由圖可知空白部分為重疊部分,陰影部分為非重疊部分,所以2倍的空白部分與陰影部分面積和等于三個(gè)正方形與三角形面積和.結(jié)合即可得出結(jié)論.依此即可求解.【詳解】解:如圖,四邊形是正方形,,,,,,,∵,即,,在中,,,,,,,陰影部分的面積和=三個(gè)正方形面積+三角形面積-2倍空白部分面積=.故答案為:.【點(diǎn)睛】本題考查勾股定理的知識(shí),有一定難度,解題關(guān)鍵是將勾股定理和正方形的面積公式進(jìn)行靈活的結(jié)合和應(yīng)用.4、10【解析】【分析】利用矩形性質(zhì),求證,將陰影部分的面積轉(zhuǎn)為的面積,最后利用中線平分三角形的面積,求出的面積,即可得到陰影部分的面積.【詳解】解:四邊形為矩形,,,,,在與中,,陰影部分的面積最后轉(zhuǎn)化為了的面積,中,,平分,陰影部分的面積:,故答案為:10.【點(diǎn)睛】本題主要是考查了矩形的性質(zhì)以全等三角形的判定與性質(zhì)以及中線平分三角形面積,熟練利用矩形性質(zhì),證明三角形全等,將陰影部分面積轉(zhuǎn)化為其他圖形的面積,這是解決本題的關(guān)鍵.5、##【解析】【分析】首先證明四邊四邊形ABCD是菱形,作出F關(guān)于AB的對(duì)稱點(diǎn)M,再過M作ME′⊥AD,交AB于點(diǎn)P′,此時(shí)P′E′+P′F最小,求出ME即可.【詳解】解:作出F關(guān)于AB的對(duì)稱點(diǎn)M,再過M作ME′⊥AD,交AB于點(diǎn)P′,此時(shí)P′E′+P′F最小,此時(shí)P′E′+P′F=ME′,過點(diǎn)A作AN⊥BC,CH⊥AB于H,∵△ABC沿AB翻折得到△ABD,∴AC=AD,BC=BD,∵AC=BC,∴AC=AD=BC=BD,∴四邊形ADBC是菱形,∵AD∥BC,∴ME′=AN,∵AC=BC,∴AH=AB=1,由勾股定理可得,CH=,∵×AB×CH=×BC×AN,可得AN=,∴ME′=AN=,∴PE+PF最小為.故答案為:.【點(diǎn)睛】本題考查翻折變換,等腰三角形的性質(zhì),軸對(duì)稱?最短問題等知識(shí),解題的關(guān)鍵是靈活運(yùn)用所學(xué)知識(shí)解決問題,屬于中考??碱}型.三、解答題1、(1)t=2s;(2)AB=;(3)24【分析】(1)若是平行四邊形,所以BD=12cm,則BO=DO=6cm,故有6-t=2t,即可求得t值;

(2)若是菱形,則AC垂直于BD,即有,故AB可求;

(3)根據(jù)四邊形AECF是菱形,求得,根據(jù)平行四邊形的性質(zhì)得到BO=OD,求得BE=DF,列方程到底BE=DF=2,求得EF=8,于是得到結(jié)論.【詳解】解:(1)∵四邊形ABCD為平行四邊形,∴AO=OC,EO=OF,∵BO=OD=6cm,∴,∴,∴,∴當(dāng)t為2秒時(shí),四邊形AECF是平行四邊形;(2)若四邊形AECF是菱形,則,,;∴當(dāng)AB為時(shí),平行四邊形是菱形;(3)由(1)(2)可知當(dāng)t=2s,AB=時(shí),四邊形AECF是菱形,∴EO=6?t=4,∴EF=8,∴菱形AECF的面積=.【點(diǎn)睛】本題考查了平行四邊形的判定和性質(zhì)和菱形的判定和性質(zhì),勾股定理,菱形的面積的計(jì)算.2、證明見解析【分析】連接,由三角形中位線定理可得,,可證四邊形ADEF是平行四邊形,由平行四邊形的性質(zhì)可得AE,DF互相平分;【詳解】

證明:連接,∵AD=DB,BE=EC,∴,∵BE=EC,AF=FC,∴,∴四邊形ADEF是平行四邊形,∴AE,DF互相平分.【點(diǎn)睛】本題考查了平行四邊形的性質(zhì)判定和性質(zhì)及三角形中位線定理,靈活運(yùn)用這些性質(zhì)是解題的關(guān)鍵.(1)△ACF是等腰三角形,理由見解析;(2)10;(3)3、(1)見解析;(2)見解析【分析】(1)先證明四邊形是平行四邊形,結(jié)合,從而可得結(jié)論;(2)先證明,再求解證明證明從而可得結(jié)論.【詳解】(1)證明:四邊形是平行四邊形,.即,,四邊形是平行四邊形.,,四邊形是矩形;(2)四邊形是平行四邊形,,.四邊形是矩形;在中,由勾股定理,得,,,,即平分.【點(diǎn)睛】本題考查的是勾股定理的應(yīng)用,角平分線的定義,平行四邊形的判定與性質(zhì),矩形的判定,證明四邊形是平行四邊形是解(1)的關(guān)鍵,證明是解(2)的關(guān)鍵.4、(1)見解析;(2)圖②中,圖③中【分析】(1)在上截取,連接,可先證得,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論