考點(diǎn)解析江西省樂(lè)平市中考數(shù)學(xué)真題分類(勾股定理)匯編重點(diǎn)解析試卷(含答案詳解)_第1頁(yè)
考點(diǎn)解析江西省樂(lè)平市中考數(shù)學(xué)真題分類(勾股定理)匯編重點(diǎn)解析試卷(含答案詳解)_第2頁(yè)
考點(diǎn)解析江西省樂(lè)平市中考數(shù)學(xué)真題分類(勾股定理)匯編重點(diǎn)解析試卷(含答案詳解)_第3頁(yè)
考點(diǎn)解析江西省樂(lè)平市中考數(shù)學(xué)真題分類(勾股定理)匯編重點(diǎn)解析試卷(含答案詳解)_第4頁(yè)
考點(diǎn)解析江西省樂(lè)平市中考數(shù)學(xué)真題分類(勾股定理)匯編重點(diǎn)解析試卷(含答案詳解)_第5頁(yè)
已閱讀5頁(yè),還剩25頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

江西省樂(lè)平市中考數(shù)學(xué)真題分類(勾股定理)匯編重點(diǎn)解析考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來(lái)的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無(wú)效。第I卷(選擇題14分)一、單選題(7小題,每小題2分,共計(jì)14分)1、如圖,在矩形ABCD中,AB=4,BC=6,點(diǎn)E為BC的中點(diǎn),將△ABE沿AE折疊,使點(diǎn)B落在矩形內(nèi)的點(diǎn)F處,連接CF,則CF的長(zhǎng)為()A. B. C. D.2、如圖,點(diǎn),在直線的同側(cè),到的距離,到的距離,已知,是直線上的一個(gè)動(dòng)點(diǎn),記的最小值為,的最大值為,則的值為(

)A.160 B.150 C.140 D.1303、觀察“趙爽弦圖”(如圖),若圖中四個(gè)全等的直角三角形的兩直角邊分別為a,b,,根據(jù)圖中圖形面積之間的關(guān)系及勾股定理,可直接得到等式(

)A. B.C. D.4、如圖,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足為D,AF平分∠CAB,交CD于點(diǎn)E,交CB于點(diǎn)F,若AC=3,AB=5,則CE的長(zhǎng)為()A. B. C. D.5、如圖,將△ABC放在正方形網(wǎng)格圖中(圖中每個(gè)小正方形的邊長(zhǎng)均為1),點(diǎn)A,B,C恰好在網(wǎng)格圖中的格點(diǎn)上,那么△ABC中BC邊上的高是(

)A. B. C. D.6、下列四組數(shù)中,是勾股數(shù)的是()A.5,12,13 B.4,5,6 C.2,3,4 D.1,,7、我圖古代數(shù)學(xué)著作《九章算術(shù)》中有這樣一個(gè)問(wèn)題:今有方池一丈,葭生其中央,出水一尺,引葭赴岸,適與岸齊,問(wèn)水深幾何?(注:丈、尺是長(zhǎng)度單位,1丈=10尺)意思為:如圖,有一個(gè)邊長(zhǎng)為1丈的正方形水池,在水池正中央有一根蘆葦,它高出水面1尺,如果把這根蘆葦拉向水池一邊的岸邊,它的頂端恰好碰到池邊的水面.則這根蘆葦?shù)拈L(zhǎng)度是(

)A.5尺 B.10尺 C.12尺 D.13尺第Ⅱ卷(非選擇題86分)二、填空題(8小題,每小題2分,共計(jì)16分)1、如圖,一艘輪船位于燈塔P的南偏東方向,距離燈塔50海里的A處,它沿正北方向航行一段時(shí)間后,到達(dá)位于燈塔P的北偏東方向上的B處,此時(shí)B處與燈塔P的距離為___________海里(結(jié)果保留根號(hào)).2、如圖,將一個(gè)長(zhǎng)方形紙片沿折疊,使C點(diǎn)與A點(diǎn)重合,若,則線段的長(zhǎng)是_________.3、(2011貴州安順,16,4分)如圖,在Rt△ABC中,∠C=90°,BC=6cm,AC=8cm,按圖中所示方法將△BCD沿BD折疊,使點(diǎn)C落在AB邊的C′點(diǎn),那么△ADC′的面積是.4、如圖,矩形ABCD中,AD=6,AB=8.點(diǎn)E為邊DC上的一個(gè)動(dòng)點(diǎn),△AD'E與△ADE關(guān)于直線AE對(duì)稱,當(dāng)△CD'E為直角三角形時(shí),DE的長(zhǎng)為__.5、勘測(cè)隊(duì)按實(shí)際需要構(gòu)建了平面直角坐標(biāo)系,并標(biāo)示了A,B,C三地的坐標(biāo),數(shù)據(jù)如圖(單位:km).筆直鐵路經(jīng)過(guò)A,B兩地.(1)A,B間的距離為______km;(2)計(jì)劃修一條從C到鐵路AB的最短公路l,并在l上建一個(gè)維修站D,使D到A,C的距離相等,則C,D間的距離為______km.6、我國(guó)古代數(shù)學(xué)著作《九章算術(shù)》中記載了一個(gè)問(wèn)題:“今有池方一丈,葭(ji?。┥渲?,出水一尺.引葭赴岸(丈、尺是長(zhǎng)度單位,1丈10尺)其大意為:有一個(gè)水池,水面是一個(gè)邊長(zhǎng)為10尺的正方形,它高出水面1尺(即BC=1尺).如果把這根蘆葦拉向水池一邊的中點(diǎn),它的頂端B恰好到達(dá)池邊的水面D處,問(wèn)水的深度是多少?則水深DE為_____尺.7、學(xué)習(xí)完《勾股定理》后,尹老師要求數(shù)學(xué)興趣小組的同學(xué)測(cè)量學(xué)校旗桿的高度.同學(xué)們發(fā)現(xiàn)系在旗桿頂端的繩子垂到了地面并多出了一段,但這條繩子的長(zhǎng)度未知.如圖,經(jīng)測(cè)量,繩子多出的部分長(zhǎng)度為1米,將繩子沿地面拉直,繩子底端距離旗桿底端4米,則旗桿的高度為______米.8、在△ABC中,AD是BC邊上的中線,AD⊥AB,如果AC=5,AD=2,那么AB的長(zhǎng)是________.三、解答題(7小題,每小題10分,共計(jì)70分)1、一架云梯長(zhǎng)25m,如圖所示斜靠在一而墻上,梯子底端C離墻7m.(1)這個(gè)梯子的頂端A距地面有多高?(2)如果梯子的頂端下滑了4m,那么梯子的底部在水平方向滑動(dòng)了多少米?2、(1)圖1是由有20個(gè)邊長(zhǎng)為1的正方形組成的,把它按圖1的分割方法分割成5部分后可拼接成一個(gè)大正方形(內(nèi)部的粗實(shí)線表示分割線),請(qǐng)你在圖2的網(wǎng)格中畫出拼接成的大正方形.(2)如果(1)中分割成的直角三角形兩直角邊分別為a,b斜邊為c.請(qǐng)你利用圖2中拼成的大正方形證明勾股定理.(3)應(yīng)用:測(cè)量旗桿的高度:校園內(nèi)有一旗桿,小希想知道旗桿的高度,經(jīng)觀察發(fā)現(xiàn)從頂端垂下一根拉繩,于是他測(cè)出了下列數(shù)據(jù):①測(cè)得拉繩垂到地面后,多出的長(zhǎng)度為0.5米;②他在距離旗桿4米的地方拉直繩子,拉繩的下端恰好距離地面0.5米.請(qǐng)你根據(jù)所測(cè)得的數(shù)據(jù)設(shè)計(jì)可行性方案,解決這一問(wèn)題.(畫出示意圖并計(jì)算出這根旗桿的高度).3、做4個(gè)全等的直角三角形,設(shè)它們的兩條直角邊分別為a,b,斜邊為c,再做一個(gè)邊長(zhǎng)為c的正方形,把它們按如圖的方式拼成正方形,請(qǐng)用這個(gè)圖證明勾股定理.4、如圖,在筆直的鐵路上A、B兩點(diǎn)相距25km,C、D為兩村莊,,,于A,于B,現(xiàn)要在AB上建一個(gè)中轉(zhuǎn)站E,使得C、D兩村到E站的距離相等,求E應(yīng)建在距A多遠(yuǎn)處?5、勾股定理是人類最偉大的十個(gè)科學(xué)發(fā)現(xiàn)之一,在《周髀算經(jīng)》中就有“若勾三,股四,則弦五”的記載,漢代數(shù)學(xué)家趙爽為證明勾股定理創(chuàng)制的“趙爽弦圖”也流傳至今.迄今為止已有多種證明勾股定理的方法.下面是數(shù)學(xué)課上創(chuàng)新小組驗(yàn)證過(guò)程的一部分.請(qǐng)認(rèn)真閱讀并根據(jù)他們的思路將后續(xù)的過(guò)程補(bǔ)充完整:將兩張全等的直角三角形紙片按圖所示擺放,其中,點(diǎn)在線段上,點(diǎn)在邊兩側(cè),試證明:.6、如圖是“弦圖”的示意圖,“弦圖”最早是由三國(guó)時(shí)期的數(shù)學(xué)家趙爽在為《周髀算經(jīng)》作注時(shí)給出的,它標(biāo)志著中國(guó)古代的數(shù)學(xué)成就.它由4個(gè)全等的直角三角形與一個(gè)小正方形組成,恰好拼成一個(gè)大正方形,每個(gè)直角三角形的兩條直角邊分別為a、b,斜邊為c.請(qǐng)你運(yùn)用此圖形證明勾股定理:a2+b2=c2.7、如圖,把長(zhǎng)方形紙片沿折疊,使點(diǎn)落在邊上的點(diǎn)處,點(diǎn)落在點(diǎn)處.(1)試說(shuō)明;(2)設(shè),,,試猜想,,之間的關(guān)系,并說(shuō)明理由.-參考答案-一、單選題1、C【解析】【分析】連接BF,(見詳解圖),由翻折變換可知,BF⊥AE,BE=EF,由點(diǎn)E是BC的中點(diǎn),可知BE=3,根據(jù)勾股定理即可求得AE;根據(jù)三角形的面積公式可求得BH,進(jìn)而可得到BF的長(zhǎng)度;結(jié)合題意可知FE=BE=EC,進(jìn)而可得∠BFC=90°,至此,在Rt△BFC中,利用勾股定理求出CF的長(zhǎng)度即可【詳解】如圖,連接BF.∵△AEF是由△ABE沿AE折疊得到的,∴BF⊥AE,BE=EF.∵BC=6,點(diǎn)E為BC的中點(diǎn),∴BE=EC=EF=3根據(jù)勾股定理有AE=AB+BE代入數(shù)據(jù)求得AE=5根據(jù)三角形的面積公式得BH=即可得BF=由FE=BE=EC,可得∠BFC=90°再由勾股定理有BC-BF=CF代入數(shù)據(jù)求得CF=故答案為:【考點(diǎn)】此題考查矩形的性質(zhì)和折疊問(wèn)題,解題關(guān)鍵在于利用好折疊的性質(zhì),對(duì)應(yīng)點(diǎn)的連線被折痕垂直平分.2、A【解析】【分析】作點(diǎn)A關(guān)于直線MN的對(duì)稱點(diǎn),連接交直線MN于點(diǎn)P,則點(diǎn)P即為所求點(diǎn),過(guò)點(diǎn)作直線,在根據(jù)勾股定理求出線段的長(zhǎng),即為PA+PB的最小值,延長(zhǎng)AB交MN于點(diǎn),此時(shí),由三角形三邊關(guān)系可知,故當(dāng)點(diǎn)P運(yùn)動(dòng)到時(shí)最大,過(guò)點(diǎn)B作由勾股定理求出AB的長(zhǎng)就是的最大值,代入計(jì)算即可得.【詳解】解:如圖所示,作點(diǎn)A關(guān)于直線MN的對(duì)稱點(diǎn),連接交直線MN于點(diǎn)P,則點(diǎn)P即為所求點(diǎn),過(guò)點(diǎn)作直線,∵,,,∴,,,在中,根據(jù)勾股定理得,∴,即PA+PB的最小值是;如圖所示,延長(zhǎng)AB交MN于點(diǎn),∵,,∴當(dāng)點(diǎn)P運(yùn)動(dòng)到點(diǎn)時(shí),最大,過(guò)點(diǎn)B作,則,∴,在中,根據(jù)勾股定理得,,∴,即,∴,故選A.【考點(diǎn)】本題考查了最短線路問(wèn)題和勾股定理,解題的關(guān)鍵是熟知兩點(diǎn)之間線段最短及三角形的三邊關(guān)系.3、C【解析】【分析】根據(jù)小正方形的面積等于大正方形的面積減去4個(gè)直角三角形的面積可得問(wèn)題的答案.【詳解】標(biāo)記如下:∵,∴(a﹣b)2=a2+b2﹣4=a2﹣2ab+b2.故選:C.【考點(diǎn)】此題考查的是利用勾股定理的證明,可以完全平方公式進(jìn)行證明,掌握面積差得算式是解決此題關(guān)鍵.4、A【解析】【分析】根據(jù)三角形的內(nèi)角和定理得出∠CAF+∠CFA=90°,∠FAD+∠AED=90°,根據(jù)角平分線和對(duì)頂角相等得出∠CEF=∠CFE,即可得出EC=FC,再利用相似三角形的判定與性質(zhì)得出答案.【詳解】過(guò)點(diǎn)F作FG⊥AB于點(diǎn)G,∵∠ACB=90°,CD⊥AB,∴∠CDA=90°,∴∠CAF+∠CFA=90°,∠FAD+∠AED=90°,∵AF平分∠CAB,∴∠CAF=∠FAD,∴∠CFA=∠AED=∠CEF,∴CE=CF,∵AF平分∠CAB,∠ACF=∠AGF=90°,∴FC=FG,∵∠B=∠B,∠FGB=∠ACB=90°,∴△BFG∽△BAC,∴,∵AC=3,AB=5,∠ACB=90°,∴BC=4,∴,∵FC=FG,∴,解得:FC=,即CE的長(zhǎng)為.故選A.【考點(diǎn)】本題考查了直角三角形性質(zhì)、等腰三角形的性質(zhì)和判定,三角形的內(nèi)角和定理以及相似三角形的判定與性質(zhì)等知識(shí),關(guān)鍵是推出∠CEF=∠CFE.5、A【解析】【詳解】先用勾股定理耱出三角形的三邊,再根據(jù)勾股定理的逆定理判斷出△ABC是直角三角形,最后設(shè)BC邊上的高為h,利用三角形面積公式建立方程即可得出答案.解:由勾股定理得:,,,,即∴△ABC是直角三角形,設(shè)BC邊上的高為h,則,∴.故選A.點(diǎn)睛:本題主要考查勾股理及其逆定理.借助網(wǎng)格利用勾股定理求邊長(zhǎng),并用勾股定理的逆定理來(lái)判斷三角形是否是直角三角形是解題的關(guān)鍵.6、A【解析】【分析】欲判斷是否為勾股數(shù),必須根據(jù)勾股數(shù)是正整數(shù),同時(shí)還需驗(yàn)證兩小邊的平方和是否等于最長(zhǎng)邊的平方.【詳解】解:A、52+122=132,都是正整數(shù),是勾股數(shù),故此選項(xiàng)符合題意;B、42+52≠62,不是勾股數(shù),故此選項(xiàng)不合題意;C、22+32≠42,不是勾股數(shù),故此選項(xiàng)不合題意;D、,不是正整數(shù),不是勾股數(shù),故此選項(xiàng)不合題意;故選:A.【考點(diǎn)】此題主要考查了勾股數(shù),解答此題要用到勾股數(shù)組的定義,如果a,b,c為正整數(shù),且滿足a2+b2=c2,那么,a、b、c叫做一組勾股數(shù).7、D【解析】【分析】依題意,蘆葦?shù)拈L(zhǎng)度為直角三角形的斜邊,水深為一直角邊,另一直角邊為5尺,由勾股定理即可列出方程,進(jìn)而得到答案.【詳解】解:設(shè)水深x尺,則蘆葦?shù)拈L(zhǎng)度為(x+1)尺,依題意,由勾股定理,得:,解得,所以蘆葦?shù)拈L(zhǎng)度為13尺.故選D.【考點(diǎn)】本題考查勾股定理的應(yīng)用,將題目描述問(wèn)題轉(zhuǎn)化成直角三角形求邊長(zhǎng)的問(wèn)題是解題的關(guān)鍵.二、填空題1、.【解析】【分析】先作PC⊥AB于點(diǎn)C,然后利用勾股定理進(jìn)行求解即可.【詳解】解:如圖,作PC⊥AB于點(diǎn)C,在Rt△APC中,AP=50海里,∠APC=90°-60°=30°,∴海里,海里,在Rt△PCB中,PC=海里,∠BPC=90°-45°=45°,∴PC=BC=海里,∴海里,故答案為:.【考點(diǎn)】此題主要考查了勾股定理的應(yīng)用-方向角問(wèn)題,求三角形的邊或高的問(wèn)題一般可以轉(zhuǎn)化為用勾股定理解決問(wèn)題,解決的方法就是作高線.2、【解析】【分析】根據(jù)折疊的性質(zhì)和勾股定理即可求得.【詳解】解:∵長(zhǎng)方形紙片,∴,,根據(jù)折疊的性質(zhì)可得,,,設(shè),,根據(jù)勾股定理,即,解得,故答案為:.【考點(diǎn)】本題考查折疊與勾股定理.能正確表示直角三角形的三邊是解題關(guān)鍵.3、6cm2【解析】【分析】先根據(jù)勾股定理得到AB=10cm,再根據(jù)折疊的性質(zhì)得到DC=DC′,BC=BC′=6cm,則AC′=4cm,設(shè)DC=xcm,在Rt△ADC′中根據(jù)勾股定理列方程求得x的值,然后根據(jù)三角形的面積公式計(jì)算即可.【詳解】∵∠C=90°,BC=6cm,AC=8cm,∴AB=10cm,∵將△BCD沿BD折疊,使點(diǎn)C落在AB邊的C′點(diǎn),∴△BCD≌△BC′D,∴∠C=∠BC′D=90°,DC=DC′,BC=BC′=6cm,∴AC′=AB-BC′=4cm,設(shè)DC=xcm,則AD=(8-x)cm,在Rt△ADC′中,AD2=AC′2+C′D2,即(8-x)2=x2+42,解得x=3,∵∠AC′D=90°,∴△ADC′的面積═×AC′×C′D=×4×3=6(cm2).考點(diǎn):折疊的性質(zhì),勾股定理點(diǎn)評(píng):折疊的性質(zhì):折疊前后兩圖形全等,即對(duì)應(yīng)角相等,對(duì)應(yīng)線段相等,對(duì)應(yīng)點(diǎn)的連線段被折痕垂直平分.4、3或6【解析】【分析】分兩種情況分別求解,(1)當(dāng)∠CED′=90°時(shí),如圖(1),根據(jù)軸對(duì)稱的性質(zhì)得∠AED=∠AED′=45′,得DE=AD=6;(2)當(dāng)∠ED′A=90°時(shí),如圖(2),根據(jù)軸對(duì)稱的性質(zhì)得∠AD′E=∠D,AD′=AD,DE=D′E,得A、D′、C在同一直線上,根據(jù)勾股定理得AC=10,設(shè)DE=D′E=x,則EC=CD?DE=8?x,根據(jù)勾股定理得,D′E2+D′C2=EC2,代入相關(guān)的值,計(jì)算即可.【詳解】解:當(dāng)∠CED′=90°時(shí),如圖(1),∵∠CED′=90°,根據(jù)軸對(duì)稱的性質(zhì)得∠AED=∠AED′=×90°=45°,∵∠D=90°,∴△ADE是等腰直角三角形,∴DE=AD=6;(2)當(dāng)∠ED′A=90°時(shí),如圖(2),根據(jù)軸對(duì)稱的性質(zhì)得∠AD′E=∠D=90°,AD′=AD,DE=D′E,△CD′E為直角三角形,即∠CD′E=90°,∴∠AD′E+∠CD′E=180°,∴A、D′、C在同一直線上,根據(jù)勾股定理得,∴CD′=10?6=4,設(shè)DE=D′E=x,則EC=CD?DE=8?x,在Rt△D′EC中,D′E2+D′C2=EC2,即x2+16=(8?x)2,解得x=3,即DE=3;綜上所述:DE的長(zhǎng)為3或6;故答案為:3或6.【考點(diǎn)】本題考查了矩形的性質(zhì)、勾股定理、軸對(duì)稱的性質(zhì),熟練掌握矩形的性質(zhì)、勾股定理、軸對(duì)稱的性質(zhì)的綜合應(yīng)用,分情況討論,作出圖形是解題關(guān)鍵.5、

20

13【解析】【分析】(1)由垂線段最短以及根據(jù)兩點(diǎn)的縱坐標(biāo)相同即可求出AB的長(zhǎng)度;(2)根據(jù)A、B、C三點(diǎn)的坐標(biāo)可求出CE與AE的長(zhǎng)度,設(shè)CD=x,根據(jù)勾股定理即可求出x的值.【詳解】(1)由A、B兩點(diǎn)的縱坐標(biāo)相同可知:AB∥x軸,∴AB=12﹣(﹣8)=20;(2)過(guò)點(diǎn)C作l⊥AB于點(diǎn)E,連接AC,作AC的垂直平分線交直線l于點(diǎn)D,由(1)可知:CE=1﹣(﹣17)=18,AE=12,設(shè)CD=x,∴AD=CD=x,由勾股定理可知:x2=(18﹣x)2+122,∴解得:x=13,∴CD=13.故答案為(1)20;(2)13.【考點(diǎn)】本題考查了勾股定理,解題的關(guān)鍵是根據(jù)A、B、C三點(diǎn)的坐標(biāo)求出相關(guān)線段的長(zhǎng)度,本題屬于中等題型.6、12【解析】【分析】設(shè)水深為h尺,則蘆葦長(zhǎng)為(h+1)尺,根據(jù)勾股定理列方程,解出h即可.【詳解】設(shè)水深為h尺,則蘆葦長(zhǎng)為(h+1)尺,根據(jù)勾股定理,得(h+1)2-h2=52解得h=12,∴水深為12尺,故答案是:12.【考點(diǎn)】本題主要考查勾股定理的應(yīng)用,熟練根據(jù)勾股定理列出方程是解題的關(guān)鍵.7、7.5;【解析】【分析】旗桿、拉直的繩子與地面構(gòu)成直角三角形,根據(jù)題中數(shù)據(jù),用勾股定理即可解答.【詳解】解:如圖,設(shè)旗桿的長(zhǎng)度為xm,則繩子的長(zhǎng)度為:(x+1)m,在Rt△ABC中,由勾股定理得:x2+42=(x+1)2,解得:x=7.5,∴旗桿的高度為7.5m,故答案為7.5.【考點(diǎn)】本題考查的是勾股定理的應(yīng)用,根據(jù)題意得出直角三角形是解答此題的關(guān)鍵.8、3【解析】【分析】過(guò)點(diǎn)C作CE∥AB交AD延長(zhǎng)線于E,先證△ABD≌△ECD(AAS),求出AE=2AD=4,在Rt△AEC中,即可.【詳解】解:過(guò)點(diǎn)C作CE∥AB交AD延長(zhǎng)線于E,∵AD是BC邊上的中線,∴BD=CD,∵AD⊥AB,CE∥AB,∴AD⊥CE,∠ABD=∠ECD,∴∠E=90°,在△ABD和△ECD中,∴△ABD≌△ECD(AAS),∴AB=EC,AD=ED=2,∴AE=2AD=4,在Rt△AEC中,,∴AB=CE=3.故答案為:3.【考點(diǎn)】本題考查中線性質(zhì),平行線性質(zhì),三角形全等判定與性質(zhì),勾股定理,掌握中線性質(zhì),平行線性質(zhì),三角形全等判定與性質(zhì),勾股定理,關(guān)鍵是利用輔助線構(gòu)造三角形全等.三、解答題1、(1)這個(gè)梯子的頂端距地面有高;(2)梯子的底部在水平方向滑動(dòng)了.【解析】【分析】(1)根據(jù)勾股定理即可求解;(2)先求出BD,再根據(jù)勾股定理即可求解.【詳解】解:(1)由題意可知:,;,在中,由勾股定理得:,∴,因此,這個(gè)梯子的頂端距地面有高.(2)由圖可知:AD=4m,,在中,由勾股定理得:,∴,∴.答:梯子的底部在水平方向滑動(dòng)了.【考點(diǎn)】此題主要考查勾股定理的實(shí)際應(yīng)用,解題的關(guān)鍵是根據(jù)題意在直角三角形中,利用勾股定理進(jìn)行求解.2、(1)見解析;(2)見解析;(3)在四邊形ABCD中,AB⊥BC,DC⊥BC,AD比AB長(zhǎng)0.5米,BC=4米,CD=0.5米,求AB的長(zhǎng);8米【解析】【分析】(1)將圖1分割成五塊:四個(gè)直角邊分別為1、2的直角三角形,一個(gè)邊長(zhǎng)為2的正方形,再在圖2中,拼成邊長(zhǎng)為的正方形即可.(2)根據(jù)20個(gè)小正方形的面積的和等于拼成的正方形的面積,根據(jù)勾股定理確定截線的長(zhǎng)度即可;(3)根據(jù)題意,畫出圖形,可將該問(wèn)題抽象為解直角三角形問(wèn)題,該直角三角形的斜邊比其中一條直角邊多1m,而另一條直角邊長(zhǎng)為5m,可以根據(jù)勾股定理求出斜邊的長(zhǎng)即可.【詳解】解:(1)如圖(2)==∴(3)如圖,在四邊形ABCD中,AB⊥BC,DC⊥BC,AD比AB長(zhǎng)0.5米,BC=4米,CD=0.5米,求AB的長(zhǎng).解:過(guò)點(diǎn)D作DE⊥AB,垂足為E∵AB⊥BC,DC⊥BC∴∠B=∠C=∠DEB=90o∴四邊形BCDE是矩形∴ED=BC=4,BE=DC=0.5設(shè)AB=,則AD=+0.5,AE=-0.5

在RtΔAED中AD2=AE2+ED2(+0.5)2=(-0.5)2+4

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論