解析卷人教版8年級(jí)數(shù)學(xué)下冊(cè)《平行四邊形》綜合測(cè)試試卷(解析版)_第1頁(yè)
解析卷人教版8年級(jí)數(shù)學(xué)下冊(cè)《平行四邊形》綜合測(cè)試試卷(解析版)_第2頁(yè)
解析卷人教版8年級(jí)數(shù)學(xué)下冊(cè)《平行四邊形》綜合測(cè)試試卷(解析版)_第3頁(yè)
解析卷人教版8年級(jí)數(shù)學(xué)下冊(cè)《平行四邊形》綜合測(cè)試試卷(解析版)_第4頁(yè)
解析卷人教版8年級(jí)數(shù)學(xué)下冊(cè)《平行四邊形》綜合測(cè)試試卷(解析版)_第5頁(yè)
已閱讀5頁(yè),還剩22頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

人教版8年級(jí)數(shù)學(xué)下冊(cè)《平行四邊形》綜合測(cè)試考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無(wú)效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計(jì)20分)1、直角三角形中,兩直角邊長(zhǎng)分別是12和5,則斜邊上的中線長(zhǎng)是()A.2.5 B.6 C.6.5 D.132、若一個(gè)直角三角形的周長(zhǎng)為,斜邊上的中線長(zhǎng)為1,則此直角三角形的面積為()A. B. C. D.3、如圖,將矩形紙片按如圖所示的方式折疊,得到菱形,若,則的長(zhǎng)為()A.2 B. C.4 D.4、在中,AC與BD相交于點(diǎn)O,要使四邊形ABCD是菱形,還需添加一個(gè)條件,這個(gè)條件可以是()A.AO=CO B.AO=BO C.AO⊥BO D.AB⊥BC5、在數(shù)學(xué)活動(dòng)課上,老師和同學(xué)們判斷一個(gè)四邊形門框是否為矩形.下面是某個(gè)合作小組的4位同學(xué)擬定的方案,其中正確的是()A.測(cè)量對(duì)角線是否互相平分 B.測(cè)量?jī)山M對(duì)邊是否分別相等C.測(cè)量其內(nèi)角是否均為直角 D.測(cè)量對(duì)角線是否垂直第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計(jì)30分)1、如圖,在中,,,,為上的兩個(gè)動(dòng)點(diǎn),且,則的最小值是________.2、已知Rt△ABC的周長(zhǎng)是24,斜邊上的中線長(zhǎng)是5,則S△ABC=_____.3、在菱形ABCD中,∠B=60°,BC=2cm,M為AB的中點(diǎn),N為BC上一動(dòng)點(diǎn)(不與點(diǎn)B重合),將△BMN沿直線MN折疊,使點(diǎn)B落在點(diǎn)E處,連接DE,CE,當(dāng)△CDE為等腰三角形時(shí),線段BN的長(zhǎng)為_____.4、如圖,將矩形ABCD折疊,使點(diǎn)C與點(diǎn)A重合,折痕為EF.若AF=5,BF=3,則AC的長(zhǎng)為_____.5、七巧板被西方人稱為“東方魔術(shù)”.下面的兩幅圖是由同一副七巧板拼成的.已知七巧板拼成的正方形(如圖1)邊長(zhǎng)為.若圖2的“小狐貍”圖案中的陰影部分面積為,那么________.三、解答題(5小題,每小題10分,共計(jì)50分)1、已知:在中,點(diǎn)、點(diǎn)、點(diǎn)分別是、、的中點(diǎn),連接、.(1)如圖1,若,求證:四邊形為菱形;(2)如圖2,過作交延長(zhǎng)線于點(diǎn),連接,,在不添加任何輔助線的情況下,請(qǐng)直接寫出圖中所有與面積相等的平行四邊形.

2、在Rt△ABC中,∠ACB=90°,AC=BC,點(diǎn)D為AB邊上一點(diǎn),過點(diǎn)D作DE⊥AB,交BC于點(diǎn)E,連接AE,取AE的中點(diǎn)P,連接DP,CP.(1)觀察猜想:如圖(1),DP與CP之間的數(shù)量關(guān)系是,DP與CP之間的位置關(guān)系是.(2)類比探究:將圖(1)中的△BDE繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)45°,(1)中的結(jié)論是否仍然成立?若成立,請(qǐng)就圖(2)的情形給出證明;若不成立,請(qǐng)說明理由.(3)問題解決:若BC=3BD=3,將圖(1)中的△BDE繞點(diǎn)B在平面內(nèi)自由旋轉(zhuǎn),當(dāng)BE⊥AB時(shí),請(qǐng)直接寫出線段CP的長(zhǎng).3、已知,在中,,,點(diǎn)D為BC的中點(diǎn).(1)觀察猜想如圖①,若點(diǎn)E、F分別是AB、AC的中點(diǎn),則線段DE與DF的數(shù)量關(guān)系是______________;線段DE與DF的位置關(guān)系是______________.(2)類比探究如圖②,若點(diǎn)E、F分別是AB、AC上的點(diǎn),且,上述結(jié)論是否仍然成立,若成立,請(qǐng)證明:若不成立,請(qǐng)說明理由;(3)解決問題如圖③,若點(diǎn)E、F分別為AB、CA延長(zhǎng)線的點(diǎn),且,請(qǐng)直接寫出的面積.

4、如圖,在△ABC中,點(diǎn)D,E分別是AC,AB的中點(diǎn),點(diǎn)F是CB延長(zhǎng)線上的一點(diǎn),且CF=3BF,連接DB,EF.(1)求證:四邊形DEFB是平行四邊形;(2)若∠ACB=90°,AC=12cm,DE=4cm,求四邊形DEFB的周長(zhǎng).5、(探究發(fā)現(xiàn))(1)如圖1,△ABC中,AB=AC,∠BAC=90°,點(diǎn)D為BC的中點(diǎn),E、F分別為邊AC、AB上兩點(diǎn),若滿足∠EDF=90°,則AE、AF、AB之間滿足的數(shù)量關(guān)系是.(類比應(yīng)用)(2)如圖2,△ABC中,AB=AC,∠BAC=120°,點(diǎn)D為BC的中點(diǎn),E、F分別為邊AC、AB上兩點(diǎn),若滿足∠EDF=60°,試探究AE、AF、AB之間滿足的數(shù)量關(guān)系,并說明理由.(拓展延伸)(3)在△ABC中,AB=AC=5,∠BAC=120°,點(diǎn)D為BC的中點(diǎn),E、F分別為直線AC、AB上兩點(diǎn),若滿足CE=1,∠EDF=60°,請(qǐng)直接寫出AF的長(zhǎng).-參考答案-一、單選題1、C【解析】【分析】利用勾股定理列式求出斜邊,再根據(jù)直角三角形斜邊上的中線等于斜邊的一半解答.【詳解】解:由勾股定理得,斜邊,所以,斜邊上的中線長(zhǎng).故選:C.【點(diǎn)睛】本題考查了直角三角形斜邊上的中線等于斜邊的一半的性質(zhì),勾股定理,解題的關(guān)鍵是熟記性質(zhì).2、B【解析】【分析】根據(jù)直角三角形斜邊上中線的性質(zhì),可得斜邊為2,然后利用兩直角邊之間的關(guān)系以及勾股定理求出兩直角邊之積,從而確定面積.【詳解】解:根據(jù)直角三角形斜邊上中線的性質(zhì)可知,斜邊上的中線等于斜邊的一半,得AC=2BD=2.∵一個(gè)直角三角形的周長(zhǎng)為3+,∴AB+BC=3+-2=1+.等式兩邊平方得(AB+BC)2=(1+)2,即AB2+BC2+2AB?BC=4+2,∵AB2+BC2=AC2=4,∴2AB?BC=2,AB?BC=,即三角形的面積為×AB?BC=.故選:B.【點(diǎn)睛】本題考查直角三角形斜邊上的中線,勾股定理,三角形的面積等知識(shí)點(diǎn)的理解和掌握,巧妙求出AC?BC的值是解此題的關(guān)鍵,值得學(xué)習(xí)應(yīng)用.3、D【解析】【分析】根據(jù)菱形及矩形的性質(zhì)可得到∠BAC的度數(shù),從而根據(jù)直角三角形的性質(zhì)求得BC的長(zhǎng).【詳解】解:∵四邊形AECF為菱形,∴∠FCO=∠ECO,EC=AE,由折疊的性質(zhì)可知,∠ECO=∠BCE,又∠FCO+∠ECO+∠BCE=90°,∴∠FCO=∠ECO=∠BCE=30°,在Rt△EBC中,EC=2EB,又∵EC=AE,AB=AE+EB=6,∴EB=2,EC=4,∴Rt△BCE中,,故選:D.【點(diǎn)睛】本題主要考查了菱形的性質(zhì)以及矩形的性質(zhì),解決問題的關(guān)鍵是根據(jù)折疊以及菱形的性質(zhì)發(fā)現(xiàn)特殊角,根據(jù)30°的直角三角形中各邊之間的關(guān)系求得BC的長(zhǎng).4、C【解析】【分析】根據(jù)菱形的判定分析即可;【詳解】∵四邊形ABCD時(shí)平行四邊形,AO⊥BO,∴是菱形;故選C.【點(diǎn)睛】本題主要考查了菱形的判定,準(zhǔn)確分析判斷是解題的關(guān)鍵.5、C【解析】【分析】根據(jù)矩形的判定:(1)四個(gè)角均為直角;(2)對(duì)邊互相平行且相等;(3)對(duì)角線相等且平分,據(jù)此即可判斷結(jié)果.【詳解】解:A、根據(jù)矩形的對(duì)角線相等且平分,故錯(cuò)誤;B、對(duì)邊分別相等只能判定四邊形是平行四邊形,故錯(cuò)誤;C、矩形的四個(gè)角都是直角,故正確;D、矩形的對(duì)角線互相相等且平分,所以垂直與否與矩形的判定無(wú)關(guān),故錯(cuò)誤.故選:C.【點(diǎn)睛】本題主要考查的是矩形的判定方法,熟練掌握矩形的判定是解題的關(guān)鍵.二、填空題1、【解析】【分析】過點(diǎn)A作AD//BC,且AD=MN,連接MD,則四邊形ADMN是平行四邊形,作點(diǎn)A關(guān)于BC的對(duì)稱點(diǎn)A′,連接AA′交BC于點(diǎn)O,連接A′M,三點(diǎn)D、M、A′共線時(shí),最小為A′D的長(zhǎng),利用勾股定理求A′D的長(zhǎng)度即可解決問題.【詳解】解:過點(diǎn)A作AD//BC,且AD=MN,連接MD,則四邊形ADMN是平行四邊形,∴MD=AN,AD=MN,作點(diǎn)A關(guān)于BC的對(duì)稱點(diǎn)A′,連接AA′交BC于點(diǎn)O,連接A′M,則AM=A′M,∴AM+AN=A′M+DM,∴三點(diǎn)D、M、A′共線時(shí),A′M+DM最小為A′D的長(zhǎng),∵AD//BC,AO⊥BC,∴∠DA=90°,∵,,,∴BC=BO=CO=AO=,∴,在Rt△AD中,由勾股定理得:D=∴的最小是值為:,故答案為:【點(diǎn)睛】本題主要考查了等腰三角形的性質(zhì),平行四邊形的判定與性質(zhì),勾股定理等知識(shí),構(gòu)造平行四邊形將AN轉(zhuǎn)化為DM是解題的關(guān)鍵.2、24【解析】【分析】先根據(jù)直角三角形的性質(zhì)求解,再利用周長(zhǎng)求解,兩邊平方結(jié)合勾股定理可得,利用三角形面積公式求解即可.【詳解】解:如圖Rt△ABC,∠C=90°,點(diǎn)D為AB中點(diǎn),為RtABC斜邊上的中線,,,,,,,由,,∴S△ABC=.故答案為:24.【點(diǎn)睛】本題考查的是直角三角形斜邊上的中線的性質(zhì),勾股定理的應(yīng)用,完全平方公式,三角形面積公式,掌握以上知識(shí)是解題的關(guān)鍵.3、cm或2cm【解析】【分析】分兩種情況:①如圖1,當(dāng)DE=DC時(shí),連接DM,作DG⊥BC于G,由菱形的性質(zhì)得出AB=CD=BC=2,AD∥BC,AB∥CD,得出∠DCG=∠B=60°,∠A=120°,DE=AD=2,求出DG=,CG=1,BG=BC+CG=3,由折疊的性質(zhì)得:EN=BN,EM=BM=AM,∠MEN=∠B=60°,證明△ADM≌△EDM,得出∠A=∠DEM=120°,證出D、E、N三點(diǎn)共線,設(shè)BN=EN=x,則GN=3-x,DN=x+2,在Rt△DGN中,由勾股定理得出方程,解方程即可;②如圖2,當(dāng)CE=CD上,CE=CD=AD,此時(shí)點(diǎn)E與A重合,N與點(diǎn)C重合,CE=CD=DE=DA,△CDE是等邊三角形,BN=BC=2(含CE=DE這種情況).【詳解】解:分兩種情況,①如圖1,當(dāng)DE=DC時(shí),連接DM,作DG⊥BC于G,∵四邊形ABCD是菱形,∴AB=CD=BC=2,AD∥BC,AB∥CD,∴∠DCG=∠B=60°,∠A=120°,∴DE=AD=2,∵DG⊥BC,∴∠CDG=90°-60°=30°,∴CG=CD=1,∴DG=CG=,BG=BC+CG=3,∵M(jìn)為AB的中點(diǎn),∴AM=BM=1,由折疊的性質(zhì)得:EN=BN,EM=BM=AM,∠MEN=∠B=60°,在△ADM和△EDM中,AD=ED,AM=EM,DM=DM,∴△ADM≌△EDM(SSS),∴∠A=∠DEM=120°,∴∠MEN+∠DEM=180°,∴D、E、N三點(diǎn)共線,設(shè)BN=EN=x,則GN=3-x,DN=x+2,在Rt△DGN中,由勾股定理得:,解得:x=,即BN=cm;②當(dāng)CE=CD時(shí),CE=CD=AD,此時(shí)點(diǎn)E與A重合,N與點(diǎn)C重合,如圖2所示:CE=CD=DE=DA,△CDE是等邊三角形,BN=BC=2cm(符合題干要求);綜上所述,當(dāng)△CDE為等腰三角形時(shí),線段BN的長(zhǎng)為cm或2cm;故答案為cm或2cm.【點(diǎn)睛】本題考查了折疊變換的性質(zhì)、菱形的性質(zhì)、全等三角形的判定與性質(zhì)、三點(diǎn)共線、勾股定理、直角三角形的性質(zhì)、等腰三角形的性質(zhì)等知識(shí),熟練掌握并靈活運(yùn)用是解題的關(guān)鍵.4、【解析】【分析】根據(jù)矩形的性質(zhì)得到∠B=90°,根據(jù)勾股定理得到,根據(jù)折疊的性質(zhì)得到CF=AF=5,根據(jù)勾股定理即可得到結(jié)論.【詳解】解:∵四邊形ABCD是矩形,∴∠B=90°,∵AF=5,BF=3,∴,∵將矩形ABCD折疊,使點(diǎn)C與點(diǎn)A重合,折痕為EF.∴CF=AF=5,∴BC=BF+CF=8,∴,故答案為:.【點(diǎn)睛】本題主要考查了矩形與折疊問題,勾股定理,解題的關(guān)鍵在于能夠熟練掌握折疊的性質(zhì).5、4【解析】【分析】設(shè)陰影小正方形的邊長(zhǎng)為xcm,根據(jù)陰影部分的面積剛好是大正方形里梯形的面積,求出x的值,進(jìn)而得出大正方形的對(duì)角線的長(zhǎng)度是4xcm,最后求出邊長(zhǎng)a即可.【詳解】解:設(shè)陰影小正方形的邊長(zhǎng)為xcm,由題意得:(2x+4x)x=6,解得:x=或a=-(舍去),∴小正方形的邊長(zhǎng)為cm,則大正方形的對(duì)角線長(zhǎng)為4×=4(cm),∴a=4÷=4(cm),故答案為:4.【點(diǎn)睛】本題主要考查七巧板的知識(shí),熟練掌握七巧板各邊的關(guān)系是解題的關(guān)鍵.三、解答題1、(1)證明見詳解;(2)與面積相等的平行四邊形有、、、.【分析】(1)根據(jù)三角形中位線定理可得:,,,,依據(jù)平行四邊形的判定定理可得四邊形DECF為平行四邊形,再由,可得,依據(jù)菱形的判定定理即可證明;(2)根據(jù)三角形中位線定理及平行四邊形的判定定理可得四邊形DEFB、DECF、ADFE是平行四邊形,根據(jù)平行四邊形的性質(zhì)得出與各平行四邊形面積之間的關(guān)系,再根據(jù)平行四邊形的判定得出四邊形EGCF是平行四邊形,根據(jù)其性質(zhì)得到,根據(jù)等底同高可得,據(jù)此即可得出與面積相等的平行四邊形.【詳解】解:(1)∵D、E、F分別是AB、AC、BC的中點(diǎn),∴,,,,∴四邊形DECF為平行四邊形,∵,,∴四邊形DECF為菱形;(2)∵D、E、F分別是AB、AC、BC的中點(diǎn),∴,,,,,,且,,,∴四邊形DEFB、DECF、ADFE是平行四邊形,∴,∵,,∴四邊形EGCF是平行四邊形,∴,∴,∴∴與面積相等的平行四邊形有、、、.【點(diǎn)睛】題目主要考查菱形及平行四邊形的判定定理和性質(zhì),中位線的性質(zhì)等,熟練掌握平行四邊形及菱形的判定定理及性質(zhì)是解題關(guān)鍵.2、(1)PD=PC,PD⊥PC;(2)成立,見解析;(3)2或4【分析】(1)根據(jù)直角三角形斜邊中線的性質(zhì),可得,根據(jù)角之間的關(guān)系即可,即可求解;(2)過點(diǎn)P作PT⊥AB交BC的延長(zhǎng)線于T,交AC于點(diǎn)O,根據(jù)全等三角形的判定與性質(zhì)求解即可;(3)分兩種情況,當(dāng)點(diǎn)E在BC的上方時(shí)和當(dāng)點(diǎn)E在BC的下方時(shí),過點(diǎn)P作PQ⊥BC于Q,利用等腰直角三角形的性質(zhì)求得,即可求解.【詳解】解:(1)∵∠ACB=90°,AC=BC,∴,∵,∴,∵點(diǎn)P為AE的中點(diǎn),∴,∴,,∴,∴故答案為:,.(2)結(jié)論成立.理由如下:過點(diǎn)P作PT⊥AB交BC的延長(zhǎng)線于T,交AC于點(diǎn)O.則∴,∴,,由勾股定理可得:∴∴∴∵點(diǎn)P為AE的中點(diǎn),∴∴在中,,∴,∴∴∴,∴∴,∴.(3)如圖3﹣1中,當(dāng)點(diǎn)E在BC的上方時(shí),過點(diǎn)P作PQ⊥BC于Q.則,∴∵∴由(2)可得,,,∴為等腰直角三角形∴∴由勾股定理得,如圖3﹣2中,當(dāng)點(diǎn)E在BC的下方時(shí),同法可得PC=PD=2.綜上所述,PC的長(zhǎng)為4或2.【點(diǎn)睛】此題考查了等腰直角三角形的性質(zhì),全等三角形的判定與性質(zhì),勾股定理,解題的關(guān)鍵是熟練掌握相關(guān)基本性質(zhì),做輔助線,構(gòu)造出全等三角形.3、(1),;(2)成立,證明見解析;(3)【分析】(1)由點(diǎn)E、F、D分別是AB、AC、BC的中點(diǎn),可得,,,,再由,,得,,由此即可得到答案;(2)連接,只需要證明,得到,,即可得到結(jié)論;(3)連接AD,證明△BDE≌△ADF得到,則,由此求解即可.【詳解】解:(1)∵點(diǎn)E、F、D分別是AB、AC、BC的中點(diǎn),∴,,,,∵,,∴,,∴即,故答案為:,;(2)結(jié)論成立:,,證明:如圖所示,連接,∵,,D為BC的中點(diǎn),∴,且AD平分,,∴,在和中,,∴,∴,,∵,∴,即,即;(3)如圖所示,連接AD,∵,,D為BC的中點(diǎn),∴∴,且AD平分,,∴,∴∠FAD=180°-∠CAD=135°,∠EBD=180°-∠ABC=135°,∴∠FAD=∠EBD,在在和中,,∴△BDE≌△ADF(SAS),∴,∴,∵,∴,∴,∴【點(diǎn)睛】本題主要考查了三角形中位線定理,全等三角形的性質(zhì)與判定,等腰直角三角形的性質(zhì)等等,解題的關(guān)鍵在于能夠熟練掌握全等三角形的性質(zhì)與判定條件.4、(1)見解析;(2)平行四邊形DEFB的周長(zhǎng)=【分析】(1)證DE是△ABC的中位線,得DE∥BC,BC=2DE,再證DE=BF,即可得出四邊形DEFB是平行四邊形;(2)由(1)得:BC=2DE=8(cm),BF=DE=4cm,四邊形DEFB是平行四邊形,得BD=EF,再由勾股定理求出BD=10(cm),即可求解.【詳解】(1)證明:∵點(diǎn)D,E分別是AC,AB的中點(diǎn),∴DE是△ABC的中位線,∴DE//BC,BC=2DE,∵CF=3BF,∴BC=2BF,∴DE=BF,∴四邊形DEFB是平行四邊形;(2)解:由(1)得:BC=2DE=8(cm),BF=DE=4cm,四邊形DEFB是平行四邊形,∴BD=EF,∵D是AC的中點(diǎn),AC=12cm,∴CD=AC=6(cm),∵∠ACB=90°,∴BD==10(cm),∴平行四邊形DEFB的周長(zhǎng)=2(DE+BD)=2(4+10)=28(cm).【點(diǎn)睛】本題考查了平行四邊形的判定與性質(zhì)、三角形中位線定理、勾股定理等知識(shí);熟練掌握三角形中位線定理,證明四邊形DEFB為平行四邊形是解題的關(guān)鍵.5、(1)AB=AF+AE;(2)AE+AF=AB,理由見解析;(3)或【分析】(1)證明△BDF≌OADE,可得BF=AE,從而證明AB=AF+AE;(2)取AB中點(diǎn)G,

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論