基礎(chǔ)強(qiáng)化滬科版9年級(jí)下冊(cè)期末試卷及答案詳解(真題匯編)_第1頁
基礎(chǔ)強(qiáng)化滬科版9年級(jí)下冊(cè)期末試卷及答案詳解(真題匯編)_第2頁
基礎(chǔ)強(qiáng)化滬科版9年級(jí)下冊(cè)期末試卷及答案詳解(真題匯編)_第3頁
基礎(chǔ)強(qiáng)化滬科版9年級(jí)下冊(cè)期末試卷及答案詳解(真題匯編)_第4頁
基礎(chǔ)強(qiáng)化滬科版9年級(jí)下冊(cè)期末試卷及答案詳解(真題匯編)_第5頁
已閱讀5頁,還剩28頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

滬科版9年級(jí)下冊(cè)期末試卷考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計(jì)16分)1、下列事件中,是必然事件的是()A.實(shí)心鐵球投入水中會(huì)沉入水底B.車輛隨機(jī)到達(dá)一個(gè)路口,遇到紅燈C.打開電視,正在播放《大國工匠》D.拋擲一枚硬幣,正面向上2、如圖,是的直徑,弦,垂足為,若,則()A.5 B.8 C.9 D.103、如圖,AB,CD是⊙O的弦,且,若,則的度數(shù)為()A.30° B.40° C.45° D.60°4、平面直角坐標(biāo)系中點(diǎn)關(guān)于原點(diǎn)對(duì)稱的點(diǎn)的坐標(biāo)是()A. B. C. D.5、下列四個(gè)圖案中,是中心對(duì)稱圖形但不是軸對(duì)稱圖形的是()A. B. C. D.6、如圖,正五邊形ABCDE內(nèi)接于⊙O,則∠CBD的度數(shù)是()A.30° B.36° C.60° D.72°7、如圖,在△ABC中,∠BAC=130°,將△ABC繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)得到△DEC,點(diǎn)A,B的對(duì)應(yīng)點(diǎn)分別為D,E,連接AD.當(dāng)點(diǎn)A,D,E在同一條直線上時(shí),則∠BAD的大小是()A.80° B.70° C.60° D.50°8、下面的圖形中既是軸對(duì)稱圖形又是中心對(duì)稱圖形的是()A. B. C. D.第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計(jì)14分)1、如圖,AB為的弦,半徑于點(diǎn)C.若,,則的半徑長為______.2、如圖,過⊙O外一點(diǎn)P,作射線PA,PB分別切⊙O于點(diǎn)A,B,,點(diǎn)C在劣弧AB上,過點(diǎn)C作⊙O的切線分別與PA,PB交于點(diǎn)D,E.則______度.3、小明和小強(qiáng)玩“石頭、剪刀、布”游戲,按照“石頭勝剪刀,剪刀勝布,布勝石頭,相同算平局”的規(guī)則,兩人隨機(jī)出手一次,平局的概率為______.4、如圖,在⊙O中,∠BOC=80°,則∠A=___________°.5、到點(diǎn)的距離等于8厘米的點(diǎn)的軌跡是__.6、背面完全相同的四張卡片,正面分別寫著數(shù)字-4,-1,2,3,背面朝上并洗勻,從中隨機(jī)抽取一張,將卡片上的數(shù)字記為,再從余下的卡片中隨機(jī)抽取一張,將卡片上的數(shù)字記為,則點(diǎn)在第四象限的概率為__________.7、如圖,在⊙O中,弦AB⊥OC于E點(diǎn),C在圓上,AB=8,CE=2,則⊙O的半徑AO=___________.三、解答題(7小題,每小題0分,共計(jì)0分)1、如圖,在中,,以AC為直徑的半圓交斜邊AB于點(diǎn)D,E為BC的中點(diǎn),連結(jié)DE,CD.過點(diǎn)D作于點(diǎn)F.(1)求證:DE是的切線;(2)若,,求的半徑.2、如圖,在平面直角坐標(biāo)系中,經(jīng)過原點(diǎn),且與軸交于點(diǎn),與軸交于點(diǎn),點(diǎn)在第二象限上,且,則__.3、如圖,等腰直角三角形,,,延長至E,使得,以為直角邊作,,.(1)若以每秒1個(gè)單位的速度沿向右運(yùn)動(dòng),當(dāng)點(diǎn)E到達(dá)點(diǎn)C時(shí)停止運(yùn)動(dòng),直接寫出在運(yùn)動(dòng)過程中與重疊部分面積S與運(yùn)動(dòng)時(shí)間t(單位:秒)的函數(shù)關(guān)系式;(2)點(diǎn)M為線段的中點(diǎn),當(dāng)(1)中的頂點(diǎn)E運(yùn)動(dòng)到點(diǎn)C后,將繞著點(diǎn)C繼續(xù)順時(shí)針旋轉(zhuǎn)得到,點(diǎn)P是直線上一動(dòng)點(diǎn),連接,求的最小值.4、在平面直角坐標(biāo)系xOy中,對(duì)于點(diǎn)P,O,Q給出如下定義:若OQ<PO<PQ且PO≤2,我們稱點(diǎn)P是線段OQ的“潛力點(diǎn)”已知點(diǎn)O(0,0),Q(1,0)(1)在P1(0,-1),P2(,),P3(-1,1)中是線段OQ的“潛力點(diǎn)”是_____________;(2)若點(diǎn)P在直線y=x上,且為線段OQ的“潛力點(diǎn)”,求點(diǎn)P橫坐標(biāo)的取值范圍;(3)直線y=2x+b與x軸交于點(diǎn)M,與y軸交于點(diǎn)N,當(dāng)線段MN上存在線段OQ的“潛力點(diǎn)”時(shí),直接寫出b的取值范圍5、如圖,正方形ABCD是半徑為R的⊙O內(nèi)接四邊形,R=6,求正方形ABCD的邊長和邊心距.6、正方形綠化場地?cái)M種植兩種不同顏色(用陰影部分和非陰影部分表示)的花卉,要求種植的花卉能組成軸對(duì)稱或中心對(duì)稱圖案,下面是三種不同設(shè)計(jì)方案中的一部分.(1)請(qǐng)把圖①、圖②補(bǔ)成既是軸對(duì)稱圖形,又是中心對(duì)稱圖形,并畫出一條對(duì)稱軸;(2)把圖③補(bǔ)成只是中心對(duì)稱圖形,并把中心標(biāo)上字母P.7、如圖,在△ABC是⊙O的內(nèi)接三角形,∠B=45°,連接OC,過點(diǎn)A作AD∥OC,交BC的延長線于D.(1)求證:AD是⊙O的切線;(2)若⊙O的半徑為2,∠OCB=75°,求△ABC邊AB的長.-參考答案-一、單選題1、A【分析】根據(jù)必然事件、不可能事件、隨機(jī)事件的概念進(jìn)行判斷即可.【詳解】解:A、實(shí)心鐵球投入水中會(huì)沉入水底,是必然事件,該選項(xiàng)符合題意;B、車輛隨機(jī)到達(dá)一個(gè)路口,遇到紅燈,是隨機(jī)事件,該選項(xiàng)不合題意;C、打開電視,正在播放《大國工匠》,是隨機(jī)事件,該選項(xiàng)不合題意;D、拋擲一枚硬幣,正面向上,是隨機(jī)事件,該選項(xiàng)不合題意;故選:A.【點(diǎn)睛】本題考查的是必然事件、不可能事件、隨機(jī)事件的概念.必然事件指在一定條件下一定發(fā)生的事件.不可能事件是指在一定條件下,一定不發(fā)生的事件.不確定事件即隨機(jī)事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件.2、C【分析】連接,根據(jù)垂徑定理可得,設(shè)的半徑為,則,進(jìn)而勾股定理列出方程求得半徑,進(jìn)而求得【詳解】解:如圖,連接,∵是的直徑,弦,∴設(shè)的半徑為,則在中,,即解得即故選C【點(diǎn)睛】本題考查的是垂徑定理,根據(jù)題意作出輔助線,構(gòu)造出直角三角形是解答此題的關(guān)鍵.3、B【分析】由同弧所對(duì)的圓周角是圓心角的一半可得,利用平行線的性質(zhì):兩直線平行,內(nèi)錯(cuò)角相等即可得.【詳解】解:∵,∴,∵,∴,故選:B.【點(diǎn)睛】題目主要考查圓周角定理,平行線的性質(zhì)等,理解題意,找出相關(guān)的角度是解題關(guān)鍵.4、B【分析】根據(jù)關(guān)于原點(diǎn)對(duì)稱的兩個(gè)點(diǎn),橫坐標(biāo)、縱坐標(biāo)分別互為相反數(shù),即可求解.【詳解】解:平面直角坐標(biāo)系中點(diǎn)關(guān)于原點(diǎn)對(duì)稱的點(diǎn)的坐標(biāo)是故選B【點(diǎn)睛】本題考查了關(guān)于原點(diǎn)對(duì)稱的點(diǎn)的特征,掌握關(guān)于原點(diǎn)對(duì)稱的兩個(gè)點(diǎn),橫坐標(biāo)、縱坐標(biāo)分別互為相反數(shù)是解題的關(guān)鍵.5、D【分析】根據(jù)軸對(duì)稱圖形與中心對(duì)稱圖形的概念求解.【詳解】解:A、不是軸對(duì)稱圖形,不是中心對(duì)稱圖形,故此選項(xiàng)不符合題意;B、是軸對(duì)稱圖形,不是中心對(duì)稱圖形,故此選項(xiàng)不符合題意;C、是軸對(duì)稱圖形,是中心對(duì)稱圖形,故此選項(xiàng)不符合題意;D、不是軸對(duì)稱圖形,是中心對(duì)稱圖形,故此選項(xiàng)符合題意;故選:D.【點(diǎn)睛】此題主要考查了中心對(duì)稱圖形與軸對(duì)稱圖形的概念.軸對(duì)稱圖形的關(guān)鍵是尋找對(duì)稱軸,圖形兩部分折疊后可重合,中心對(duì)稱圖形是要尋找對(duì)稱中心,旋轉(zhuǎn)180度后兩部分重合.6、B【分析】求出正五邊形的一個(gè)內(nèi)角的度數(shù),再根據(jù)等腰三角形的性質(zhì)和三角形的內(nèi)角和定理計(jì)算即可.【詳解】解:∵正五邊形ABCDE中,∴∠BCD==108°,CB=CD,∴∠CBD=∠CDB=(180°-108°)=36°,故選:B.【點(diǎn)睛】本題考查了正多邊形和圓,求出正五邊形的一個(gè)內(nèi)角度數(shù)是解決問題的關(guān)鍵.7、A【分析】根據(jù)三角形旋轉(zhuǎn)得出,,根據(jù)點(diǎn)A,D,E在同一條直線上利用鄰補(bǔ)角關(guān)系求出,根據(jù)等腰三角形的性質(zhì)即可得到∠DAC=50°,由此即可求解.【詳解】證明:∵繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)得到,∴,,∴∠ADC=∠DAC,∵點(diǎn)A,D,E在同一條直線上,∴,∴∠DAC=50°,∴∠BAD=∠BAC-∠DAC=80°故選A.【點(diǎn)睛】本題考查三角形旋轉(zhuǎn)性質(zhì),鄰補(bǔ)角的性質(zhì),等腰三角形的性質(zhì)與判定,解題的關(guān)鍵在于熟練掌握旋轉(zhuǎn)的性質(zhì).8、A【詳解】解:A、既是軸對(duì)稱圖形又是中心對(duì)稱圖形,此項(xiàng)符合題意;B、是中心對(duì)稱圖形,不是軸對(duì)稱圖形,此項(xiàng)不符題意;C、是軸對(duì)稱圖形,不是中心對(duì)稱圖形,此項(xiàng)不符題意;D、是軸對(duì)稱圖形,不是中心對(duì)稱圖形,此項(xiàng)不符題意;故選:A.【點(diǎn)睛】本題考查了中心對(duì)稱圖形和軸對(duì)稱圖形,熟記中心對(duì)稱圖形的定義(在平面內(nèi),把一個(gè)圖形繞某點(diǎn)旋轉(zhuǎn),如果旋轉(zhuǎn)后的圖形與另一個(gè)圖形重合,那么這兩個(gè)圖形互為中心對(duì)稱圖形)和軸對(duì)稱圖形的定義(如果一個(gè)圖形沿一條直線折疊,直線兩旁的部分能夠完全重合,那么這個(gè)圖形叫做軸對(duì)稱圖形)是解題關(guān)鍵.二、填空題1、5【分析】先根據(jù)垂徑定理求出AC的長,設(shè)⊙O的半徑為r,再連接OA,在Rt△OAC中利用勾股定理求出r的值即可.【詳解】解:∵⊙O的弦AB=8,半徑OD⊥AB,∴AC=AB=×8=4,設(shè)⊙O的半徑為r,則OC=r-CD=r-2,連接OA,在Rt△OAC中,OA2=OC2+AC2,即r2=(r-2)2+42,解得r=5.故答案為:5【點(diǎn)睛】本題考查的是垂徑定理及勾股定理,根據(jù)題意作出輔助線,構(gòu)造出直角三角形,利用勾股定理求解是解答此題的關(guān)鍵.2、65【分析】連接OA,OC,OB,根據(jù)四邊形內(nèi)角和可得,依據(jù)切線的性質(zhì)及角平分線的判定定理可得DO平分,EO平分,再由各角之間的數(shù)量關(guān)系可得,,根據(jù)等量代換可得,代入求解即可.【詳解】解:如圖所示:連接OA,OC,OB,∵PA、PB、DE與圓相切于點(diǎn)A、B、E,∴,,,∵,∴,∵,∴DO平分,EO平分,∴,,∴,,∴,故答案為:65.【點(diǎn)睛】題目主要考查圓的切線的性質(zhì),角平分線的判定和性質(zhì),四邊形內(nèi)角和等,理解題意,作出相應(yīng)輔助線,綜合運(yùn)用這些知識(shí)點(diǎn)是解題關(guān)鍵.3、【分析】首先根據(jù)題意列出表格,然后由表格即可求得所有等可能的結(jié)果與兩人平局的情況,再利用概率公式即可求得答案.【詳解】解:小明和小強(qiáng)玩“石頭、剪刀、布”游戲,所有可能出現(xiàn)的結(jié)果列表如下:∵由表格可知,共有9種等可能情況.其中平局的有3種:(石頭,石頭)、(剪刀,剪刀)、(布,布).∴小明和小強(qiáng)平局的概率為:,故答案為:.【點(diǎn)睛】此題考查了列表法或樹狀圖法求概率.用到的知識(shí)點(diǎn)為:概率=所求情況數(shù)與總情況數(shù)之比.4、40°度【分析】直接根據(jù)圓周角定理即可得出結(jié)論.【詳解】解:與是同弧所對(duì)的圓心角與圓周角,,.故答案為:.【點(diǎn)睛】本題考查的是圓周角定理,解題的關(guān)鍵是熟知在同圓或等圓中,同弧或等弧所對(duì)的圓周角相等,都等于這條弧所對(duì)的圓心角的一半.5、以點(diǎn)為圓心,8厘米長為半徑的圓【分析】由題意直接根據(jù)圓的定義進(jìn)行分析即可解答.【詳解】到點(diǎn)的距離等于8厘米的點(diǎn)的軌跡是:以點(diǎn)為圓心,2厘米長為半徑的圓.故答案為:以點(diǎn)為圓心,8厘米長為半徑的圓.【點(diǎn)睛】本題主要考查了圓的定義,正確理解定義是關(guān)鍵,注意掌握?qǐng)A的定義是在同一平面內(nèi)到定點(diǎn)的距離等于定長的點(diǎn)的集合.6、【分析】第四象限點(diǎn)的特征是,所以當(dāng)橫坐標(biāo)只能為2或3,縱坐標(biāo)只能是或,畫出列表圖或樹狀圖,算出滿足條件的情況,進(jìn)一步求得概率即可.【詳解】如下圖:-4-123-4-123∵第四象限點(diǎn)的坐標(biāo)特征是,∴滿足條件的點(diǎn)分別是:,共4種情況,又∵從列表圖知,共有12種等可能性結(jié)果,∴點(diǎn)在第四象限的概率為.故答案為:【點(diǎn)睛】本題主要考察概率的求解,要熟悉樹狀圖或列表圖的要點(diǎn)是解題關(guān)鍵.7、5【分析】設(shè)⊙O的半徑為r,則OA=r,OD=r-2,先由垂徑定理得到AD=BD=AB=4,再由勾股定理得到42+(r-2)2=r2,然后解方程即可.【詳解】解:設(shè)⊙O的半徑為r,則OC=OA=r,OE=OC-CE=r-2,∵OC⊥AB,AB=8,∴AE=BE=AB=4,在Rt△OAE中,由勾股定理得:42+(r-2)2=r2,解得:r=5,即⊙O的半徑長為5,故答案為:5.【點(diǎn)睛】本題考查了垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對(duì)的兩條?。部疾榱斯垂啥ɡ恚?、解答題1、(1)見解析(2)【分析】(1)連接,先根據(jù)等腰三角形的性質(zhì)可得,再根據(jù)圓周角定理可得,然后根據(jù)直角三角形的性質(zhì)可得,根據(jù)等腰三角形的性質(zhì)可得,從而可得,最后根據(jù)圓的切線的判定即可得證;(2)連接,先利用勾股定理可得,設(shè)的半徑為,從而可得,再在中,利用勾股定理即可得.(1)證明:如圖,連接,,,是的直徑,,,點(diǎn)是的中點(diǎn),,,,即,又是的半徑,是的切線;(2)解:如圖,連接,,,設(shè)的半徑為,則,在中,,即,解得,故的半徑為.【點(diǎn)睛】本題考查了圓周角定理、等腰三角形的性質(zhì)、圓的切線的判定、勾股定理等知識(shí)點(diǎn),熟練掌握?qǐng)A周角定理和圓的切線的判定是解題關(guān)鍵.2、2+【分析】連接AC,CM,AB,過點(diǎn)C作CH⊥OA于H,設(shè)OC=a.利用勾股定理構(gòu)建方程解決問題即可.【詳解】解:連接AC,CM,AB,過點(diǎn)C作CH⊥OA于H,設(shè)OC=a.∵∠AOB=90°,∴AB是直徑,∵A(-4,0),B(0,2),∴,∵∠AMC=2∠AOC=120°,,在Rt△COH中,,,在Rt△ACH中,AC2=AH2+CH2,∴,∴a=2+或2-(因?yàn)镺C>OB,所以2-舍棄),∴OC=2+,故答案為:2+.【點(diǎn)睛】本題考查圓周角定理,勾股定理,解直角三角形等知識(shí),解題的關(guān)鍵是學(xué)會(huì)利用參數(shù)構(gòu)建方程解決問題.3、(1)(2)【分析】(1)根據(jù)運(yùn)動(dòng)重合部分不同情況分四種情況討論,①當(dāng)時(shí),②當(dāng)時(shí),③當(dāng)時(shí),④當(dāng)時(shí),根據(jù)三角形的面積公式求函數(shù)解析式即可.(2)作關(guān)于的對(duì)稱點(diǎn),連接,過點(diǎn)作于點(diǎn),過點(diǎn)作于點(diǎn),設(shè)交于點(diǎn),交于點(diǎn),則的最小值即為的長,進(jìn)而解直角三角形,即可求得的長,即的最小值(1)等腰直角三角形,,,,在,,①當(dāng)時(shí),如圖,重疊部分面積為,設(shè)交于點(diǎn),過點(diǎn)作于點(diǎn),以每秒1個(gè)單位的速度沿向右運(yùn)動(dòng),設(shè),則在,,即解得②當(dāng)時(shí),如圖,重疊部分面積為四邊形的面積,設(shè)交于點(diǎn),過點(diǎn)作于點(diǎn),設(shè)交于點(diǎn),,③當(dāng)時(shí),此時(shí)重疊面積為④當(dāng)時(shí),如圖,設(shè)交于點(diǎn),此時(shí)重疊面積為四邊形的面積,,綜上所述,(2)如圖,作關(guān)于的對(duì)稱點(diǎn),連接,過點(diǎn)作于點(diǎn),過點(diǎn)作于點(diǎn),設(shè)交于點(diǎn),交于點(diǎn),則在中,則的最小值即為的長在中,設(shè),,則中,為的中點(diǎn),則,即的最小值為【點(diǎn)睛】本題考查了動(dòng)點(diǎn)的函數(shù)問題,解直角三角形,(1)分類討論,(2)轉(zhuǎn)化線段是解題的關(guān)鍵.4、(1);(2);(3)或【分析】(1)分別計(jì)算出OQ、PO和PQ的長度,比較即可得出答案;(2)先判斷點(diǎn)P在以O(shè)為圓心,1為半徑的圓外且點(diǎn)P在線段OQ垂直平分線的左側(cè),結(jié)合PO≤2,點(diǎn)P在以O(shè)為圓心,2為半徑的圓上或圓內(nèi),可得點(diǎn)P在如圖所示的線段AB上(不包含點(diǎn)B),過作軸,過作軸,垂足分別為再根據(jù)圖形的性質(zhì)求解從而可得答案;(3)由(2)得:點(diǎn)P在以O(shè)為圓心,1為半徑的圓外且點(diǎn)P在以O(shè)為圓心,2為半徑的圓上或圓內(nèi),而PO<PQ,點(diǎn)P在線段OQ垂直平分線的左側(cè),再分兩種情況討論:當(dāng)時(shí),當(dāng)時(shí),分別畫出兩種情況下的臨界直線再根據(jù)臨界直線經(jīng)過的特殊點(diǎn)求解的值,再確定范圍即可.【詳解】解:(1)O(0,0),Q(1,0),P1(0,-1),P2(,),P3(-1,1)不滿足OQ<PO<PQ且PO≤2,所以不是線段OQ的“潛力點(diǎn)”,同理:所以不滿足OQ<PO<PQ且PO≤2,所以不是線段OQ的“潛力點(diǎn)”,同理:所以滿足:OQ<PO<PQ且PO≤2,所以是線段OQ的“潛力點(diǎn)”,故答案為:P3(2)∵點(diǎn)P為線段OQ的“潛力點(diǎn)”,∴OQ<PO<PQ且PO≤2,∵OQ<PO,∴點(diǎn)P在以O(shè)為圓心,1為半徑的圓外∵PO<PQ,∴點(diǎn)P在線段OQ垂直平分線的左側(cè),而的垂直平分線為:∵PO≤2,∴點(diǎn)P在以O(shè)為圓心,2為半徑的圓上或圓內(nèi)又∵點(diǎn)P在直線y=x上,∴點(diǎn)P在如圖所示的線段AB上(不包含點(diǎn)B)過作軸,過作軸,垂足分別為由題意可知△BOC和△AOD是等腰三角形,∴∴-≤xp<-(3)由(2)得:點(diǎn)P在以O(shè)為圓心,1為半徑的圓外且點(diǎn)P在以O(shè)為圓心,2為半徑的圓上或圓內(nèi),而PO<PQ,點(diǎn)P在線段OQ垂直平分線的左側(cè)當(dāng)時(shí),過時(shí),即函數(shù)解析式為:此時(shí)則當(dāng)與半徑為2的圓相切于時(shí),則由而當(dāng)時(shí),如圖,同理可得:點(diǎn)P在以O(shè)為圓心,1為半徑的圓外且點(diǎn)P在以O(shè)為圓心,2為半徑的圓上或圓內(nèi),而PO<PQ,點(diǎn)P在線段OQ垂直平分線的左側(cè),同理:當(dāng)過則直線為在直線上,此時(shí)當(dāng)過時(shí),則所以此時(shí):綜上:的范圍為:1<b≤或<b<-1【點(diǎn)睛】本題考查的是新定義情境下的知識(shí)運(yùn)用,圓的基本性質(zhì),圓的切線的性質(zhì),一次函數(shù)的綜合應(yīng)用,銳角三角函數(shù)的應(yīng)用,勾股定理的應(yīng)用,數(shù)形結(jié)合是解本題的關(guān)鍵.5、邊長為,邊心距為【分析】過點(diǎn)O作OE⊥BC,垂足為E,利用圓內(nèi)接四邊形的性質(zhì)求出∠BOC=90°,∠OBC=45°,然后在Rt△OBE中,根據(jù)勾股定理求出OE、BE即可.【詳解】解:過點(diǎn)O作OE⊥BC,垂足為E,∵正方形ABCD是半徑為R的⊙O內(nèi)接四邊形,R=6,∴∠BOC==90°,∠OBC=45°,OB=OC=6,∴BE=OE.在Rt△OBE中,∠BEO=90°,由勾股定理可得∵OE2+BE2=OB2,∴OE2+BE2=36,∴OE=BE=,∴BC=2BE=,即半徑為6的圓內(nèi)接正方形ABCD的邊長為,邊心距為.【點(diǎn)睛】本題考查了圓內(nèi)接四邊形的性質(zhì),以及勾股定理,正多邊形各邊所對(duì)的外接圓的圓心角都相等,正多邊形每一邊所對(duì)的外接圓的圓心角叫做正多邊形的中心角,正n邊形每個(gè)中心角

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論