考點(diǎn)解析-黑龍江七臺(tái)河勃利縣7年級(jí)數(shù)學(xué)下冊(cè)第四章三角形專題練習(xí)試題_第1頁
考點(diǎn)解析-黑龍江七臺(tái)河勃利縣7年級(jí)數(shù)學(xué)下冊(cè)第四章三角形專題練習(xí)試題_第2頁
考點(diǎn)解析-黑龍江七臺(tái)河勃利縣7年級(jí)數(shù)學(xué)下冊(cè)第四章三角形專題練習(xí)試題_第3頁
考點(diǎn)解析-黑龍江七臺(tái)河勃利縣7年級(jí)數(shù)學(xué)下冊(cè)第四章三角形專題練習(xí)試題_第4頁
考點(diǎn)解析-黑龍江七臺(tái)河勃利縣7年級(jí)數(shù)學(xué)下冊(cè)第四章三角形專題練習(xí)試題_第5頁
已閱讀5頁,還剩27頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

黑龍江七臺(tái)河勃利縣7年級(jí)數(shù)學(xué)下冊(cè)第四章三角形專題練習(xí)考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(10小題,每小題2分,共計(jì)20分)1、如圖,在△ABC和△DEF中,∠A=∠D,AF=DC,添加下列條件中的一個(gè)仍無法證明△ABC≌△DEF的是()A.BC=EF B.AB=DE C.∠B=∠E D.∠ACB=∠DFE2、下列長度的三條線段能組成三角形的是()A.348 B.4410 C.5610 D.56113、如圖,直線EF經(jīng)過AC的中點(diǎn)O,交AB于點(diǎn)E,交CD于點(diǎn)F,下列不能使△AOE≌△COF的條件為()A.∠A=∠C B.AB∥CD C.AE=CF D.OE=OF4、以下列各組線段為邊,能組成三角形的是()A.2cm、10cm、13cm B.3cm、7cm、4cmC.4cm、4cm、4cm D.5cm、14cm、6cm5、在下列長度的各組線段中,能組成三角形的是()A.2,4,7 B.1,4,9 C.3,4,5 D.5,6,126、如圖,,,,則下列結(jié)論:①;②;③;④.成立的是()A.①②③ B.①②④ C.②③④ D.①②③④7、如圖,在中,已知點(diǎn),,分別為,,的中點(diǎn),且,則的面積是()A. B.1 C.5 D.8、如圖,點(diǎn),,,在一條直線上,,,,,,則()A.4 B.5 C.6 D.79、三角形的外角和是()A.60° B.90° C.180° D.360°10、如圖是5×5的正方形網(wǎng)格中,以D,E為頂點(diǎn)作位置不同的格點(diǎn)的三角形與△ABC全等,這樣格點(diǎn)三角形最多可以畫出()A.2個(gè) B.3個(gè) C.4個(gè) D.5個(gè)第Ⅱ卷(非選擇題80分)二、填空題(10小題,每小題2分,共計(jì)20分)1、如圖,點(diǎn),在直線上,且,且,過,,分別作,,,若,,,則的面積是______.2、如圖,,,,則、兩點(diǎn)之間的距離為______.3、如圖,已知AC與BD相交于點(diǎn)P,ABCD,點(diǎn)P為BD中點(diǎn),若CD=7,AE=3,則BE=_________.4、在中,,則的取值范圍是_______.5、如圖所示,銳角△ABC中,D,E分別是AB,AC邊上的點(diǎn),連結(jié)BE、CD交于點(diǎn)F.將△ADC和△AEB分別繞著邊AB、AC翻折得到△ADC'和△AEB',且EB'∥DC'∥BC,若∠BAC=42°,則∠BFC的大小是___.6、如圖,∠1=∠2,加上條件_____,可以得到△ADB≌△ADC(SAS).7、如圖,Rt△ABC中,∠ACB=90°,AB=5,BC=3,將斜邊AB繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°至AB′,連接B'C,則△AB′C的面積為_____.8、如圖,在△ABC中,∠ACB=90°,AC=8,BC=10,點(diǎn)P從點(diǎn)A出發(fā)沿線段AC以每秒1個(gè)單位長度的速度向終點(diǎn)C運(yùn)動(dòng),點(diǎn)Q從點(diǎn)B出發(fā)沿折線BC﹣CA以每秒3個(gè)單位長度的速度向終點(diǎn)A運(yùn)動(dòng),P、Q兩點(diǎn)同時(shí)出發(fā).分別過P、Q兩點(diǎn)作PE⊥l于E,QF⊥l于F,當(dāng)△PEC與△QFC全等時(shí),CQ的長為______.9、如圖,AC=DB,AO=DO,CD=100,則A,B兩點(diǎn)間的距離為_______.10、如圖,,,、分別為線段和射線上的一點(diǎn),若點(diǎn)從點(diǎn)出發(fā)向點(diǎn)運(yùn)動(dòng),同時(shí)點(diǎn)從點(diǎn)出發(fā)向點(diǎn)運(yùn)動(dòng),二者速度之比為,運(yùn)動(dòng)到某時(shí)刻同時(shí)停止,在射線上取一點(diǎn),使與全等,則的長為________.三、解答題(6小題,每小題10分,共計(jì)60分)1、在復(fù)習(xí)課上,老師布置了一道思考題:如圖所示,點(diǎn)M,N分別在等邊的邊上,且,,交于點(diǎn)Q.求證:.同學(xué)們利用有關(guān)知識(shí)完成了解答后,老師又提出了下列問題:(1)若將題中“”與“”的位置交換,得到的是否仍是真命題?請(qǐng)你給出答案并說明理由.(2)若將題中的點(diǎn)M,N分別移動(dòng)到的延長線上,是否仍能得到?請(qǐng)你畫出圖形,給出答案并說明理由.2、如圖1,在長方形ABCD中,AB=CD=6cm,BC=10cm,點(diǎn)P從點(diǎn)B出發(fā),以2cm/s的速度沿BC向點(diǎn)C運(yùn)動(dòng),設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為ts,且t≤5(1)PC=cm(用含t的代數(shù)式表示)(2)如圖2,當(dāng)點(diǎn)P從點(diǎn)B開始運(yùn)動(dòng)時(shí),點(diǎn)Q從點(diǎn)C出發(fā),以cm/s的速度沿CD向點(diǎn)D運(yùn)動(dòng),是否存在這樣的v值,使得以A﹑B﹑P為頂點(diǎn)的三角形與以P﹑Q﹑C為頂點(diǎn)的三角形全等?若存在,請(qǐng)求出的值;若不存在,請(qǐng)說明理由.3、如圖,在長方形ABCD中,AD=3,DC=5,動(dòng)點(diǎn)M從A點(diǎn)出發(fā)沿線段AD—DC以每秒1個(gè)單位長度的速度向終點(diǎn)C運(yùn)動(dòng);動(dòng)點(diǎn)N同時(shí)從C點(diǎn)出發(fā)沿線段CD—DA以每秒3個(gè)單位長度的速度向終點(diǎn)A運(yùn)動(dòng).ME⊥PQ于點(diǎn)E,NF⊥PQ于點(diǎn)F,設(shè)運(yùn)動(dòng)的時(shí)間為秒.(1)在運(yùn)動(dòng)過程中當(dāng)M、N兩點(diǎn)相遇時(shí),求t的值.(2)在整個(gè)運(yùn)動(dòng)過程中,求DM的長.(用含t的代數(shù)式表示)(3)當(dāng)DEM與DFN全等時(shí),請(qǐng)直接寫出所有滿足條件的DN的長.4、如圖,點(diǎn)D在AB上,E在AC上,AB=AC,∠B=∠C,求證:AD=AE.5、如圖,AB是⊙O的直徑,CD是⊙O中任意一條弦,求證:AB≥CD.6、在△ABC中,∠ACB=90°,AC=BC,直線MN經(jīng)過點(diǎn)C,且AD⊥MN于D,BE⊥MN于E.(感知)(1)當(dāng)直線MN繞點(diǎn)C旋轉(zhuǎn)到圖①的位置時(shí),易證△ADC≌△CEB(不需要證明),進(jìn)而得到DE、AD、BE之間的數(shù)量關(guān)系為.(探究)(2)當(dāng)直線MN繞點(diǎn)C旋轉(zhuǎn)到圖②的位置時(shí),求證:DE=AD-BE.(3)當(dāng)直線MN繞點(diǎn)C旋轉(zhuǎn)到圖③的位置時(shí),直接寫出DE、AD、BE之間的數(shù)量關(guān)系.-參考答案-一、單選題1、A【分析】根據(jù)AF=DC求出AC=DF,再根據(jù)全等三角形的判定定理逐個(gè)判斷即可.【詳解】解:∵AF=DC,∴AF+FC=DC+FC,即AC=DF,A、BC=EF,AC=DF,∠A=∠D,不符合全等三角形的判定定理,不能推出△ABC≌△DEF,故本選項(xiàng)符合題意;B、AB=DE,∠A=∠D,AC=DF,符合全等三角形的判定定理SAS,能推出△ABC≌△DEF,故本選項(xiàng)不符合題意;C.∠B=∠E,∠A=∠D,AC=DF,符合全等三角形的判定定理AAS,能推出△ABC≌△DEF,故本選項(xiàng)不符合題意;D.∠ACB=∠DFE,AC=DF,∠A=∠D,符合全等三角形的判定定理ASA,能推出△ABC≌△DEF,故本選項(xiàng)不符合題意;故選:A.【點(diǎn)睛】本題考查了全等三角形的判定定理,能熟記全等三角形的判定定理是解此題的關(guān)鍵,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,兩直角三角形全等還有HL.2、C【分析】根據(jù)三角形的任意兩邊之和大于第三邊對(duì)各選項(xiàng)分析判斷求解即可.【詳解】解:A.∵3+4<8,∴不能組成三角形,故本選項(xiàng)不符合題意;B.∵4+4<10,∴不能組成三角形,故本選項(xiàng)不符合題意;C.∵5+6>10,∴能組成三角形,故本選項(xiàng)符合題意;D.∵5+6=11,∴不能組成三角形,故本選項(xiàng)不符合題意;故選:C.【點(diǎn)睛】本題考查了三角形的三邊關(guān)系,熟記三角形的任意兩邊之和大于第三邊是解決問題的關(guān)鍵.3、C【分析】根據(jù)全等三角形的判定逐項(xiàng)判斷即可.【詳解】解:∵直線EF經(jīng)過AC的中點(diǎn)O,∴OA=OC,A、∵OA=OC,∠A=∠C,∠AOE=∠COF,∴△AOE≌△COF(ASA),此選項(xiàng)不符合題意;B、∵AB∥CD,∴∠A=∠C,又∵OA=OC,∠AOE=∠COF,∴△AOE≌△COF(ASA),此選項(xiàng)不符合題意;C、由OA=OC,AE=CF,∠AOE=∠COF,不能證明△AOE≌△COF,符合題意;D、∵OA=OC,∠AOE=∠COF,OE=OF,∴△AOE≌△COF(SAS),此選項(xiàng)不符合題意,故選:C.【點(diǎn)睛】本題考查全等三角形的判定、對(duì)頂角相等,熟練掌握全等三角形的判定條件是解答的關(guān)鍵.4、C【分析】由題意根據(jù)“三角形任意兩邊之和大于第三邊,任意兩邊之差小于第三邊”對(duì)各選項(xiàng)進(jìn)行逐一分析即可.【詳解】解:根據(jù)三角形的三邊關(guān)系,A、2+10<13,不能組成三角形,不符合題意;B、3+4=7,不能夠組成三角形,不符合題意;C、4+4>4,能組成三角形,符合題意;D、5+6<14,不能組成三角形,不符合題意.故選:C.【點(diǎn)睛】本題主要考查三角形三邊關(guān)系,注意掌握判斷能否組成三角形的簡(jiǎn)便方法是看較小的兩個(gè)數(shù)的和是否大于第三個(gè)數(shù).5、C【分析】根據(jù)三角形三邊關(guān)系定理:三角形兩邊之和大于第三邊,進(jìn)行判定即可.【詳解】解:A、∵,∴不能構(gòu)成三角形;B、∵,∴不能構(gòu)成三角形;C、∵,∴能構(gòu)成三角形;D、∵,∴不能構(gòu)成三角形.故選:C.【點(diǎn)睛】本題主要考查運(yùn)用三角形三邊關(guān)系判定三條線段能否構(gòu)成三角形的情況,理解構(gòu)成三角形的三邊關(guān)系是解題關(guān)鍵.6、B【分析】根據(jù)全等三角形的性質(zhì)直接判定①②,則有,然后根據(jù)角的和差關(guān)系可判定③④.【詳解】解:∵,∴,故①②正確;∵,∴,故③錯(cuò)誤,④正確,綜上所述:正確的有①②④;故選B.【點(diǎn)睛】本題主要考查全等三角形的性質(zhì),熟練掌握全等三角形的性質(zhì)是解題的關(guān)鍵.7、B【分析】根據(jù)三角形面積公式由點(diǎn)為的中點(diǎn)得到,同理得到,則,然后再由點(diǎn)為的中點(diǎn)得到.【詳解】解:點(diǎn)為的中點(diǎn),,點(diǎn)為的中點(diǎn),,,點(diǎn)為的中點(diǎn),.故選:.【點(diǎn)睛】本題考查了三角形的中線與面積的關(guān)系,解題的關(guān)鍵是掌握是三角形的中線把三角形的面積平均分成兩半.8、A【分析】由題意易得,然后可證,則有,進(jìn)而問題可求解.【詳解】解:∵,∴,∵,,∴,∴,∵,∴;故選A.【點(diǎn)睛】本題主要考查全等三角形的性質(zhì)與判定,熟練掌握全等三角形的性質(zhì)與判定是解題的關(guān)鍵.9、D【分析】根據(jù)三角形的內(nèi)角和定理、鄰補(bǔ)角的性質(zhì)即可得.【詳解】解:如圖,,,又,,即三角形的外角和是,故選:D.【點(diǎn)睛】本題考查了三角形的內(nèi)角和定理、鄰補(bǔ)角的性質(zhì),熟練掌握三角形的內(nèi)角和定理是解題關(guān)鍵.10、C【分析】觀察圖形可知:DE與AC是對(duì)應(yīng)邊,B點(diǎn)的對(duì)應(yīng)點(diǎn)在DE上方兩個(gè),在DE下方兩個(gè)共有4個(gè)滿足要求的點(diǎn),也就有四個(gè)全等三角形.【詳解】根據(jù)題意,運(yùn)用“SSS”可得與△ABC全等的三角形有4個(gè),線段DE的上方有兩個(gè)點(diǎn),下方也有兩個(gè)點(diǎn),如圖.故選C.【點(diǎn)睛】本題考查三角形全等的判定方法,解答本題的關(guān)鍵是按照順序分析,要做到不重不漏.二、填空題1、15【分析】根據(jù)AAS證明△EFA≌△AGB,△BGC≌△CHD,再根據(jù)全等三角形的性質(zhì)以及三角形的面積公式求解即可.【詳解】解:(1)∵EF⊥FG,BG⊥FG,∴∠EFA=∠AGB=90°,∴∠AEF+∠EAF=90°,又∵AE⊥AB,即∠EAB=90°,∴∠BAG+∠EAF=90°,∴∠AEF=∠BAG,在△AEC和△CDB中,,∴△EFA≌△AGB(AAS);同理可證△BGC≌△CHD(AAS),∴AG=EF=6,CG=DH=4,∴S△ABC=ACBG=(AG+GC)BG=(6+4)3=15.故答案為:15.【點(diǎn)睛】本題考查了三角形全等的性質(zhì)和判定,解題的關(guān)鍵是靈活運(yùn)用所學(xué)知識(shí)解決問題.2、55【分析】根據(jù)題意首先證明△AOB和△DOC全等,再根據(jù)全等三角形對(duì)應(yīng)邊相等即可得出答案.【詳解】解:,,,即,在和中,,≌,.故答案為:.【點(diǎn)睛】本題主要考查全等三角形的應(yīng)用以及兩點(diǎn)之間的距離,解題的關(guān)鍵是掌握全等三角形對(duì)應(yīng)邊相等.3、4【分析】由題意利用全等三角形的判定得出,進(jìn)而依據(jù)全等三角形的性質(zhì)得出進(jìn)行分析計(jì)算即可.【詳解】解:∵ABCD,∴,∵點(diǎn)P為BD中點(diǎn),∴,∵,,∴,∴,∵CD=7,AE=3,∴.故答案為:4.【點(diǎn)睛】本題考查全等三角形的判定與性質(zhì),熟練掌握全等三角形的判定與性質(zhì)是解題的關(guān)鍵.4、【分析】由構(gòu)成三角形的條件計(jì)算即可.【詳解】∵中∴∴.故答案為:.【點(diǎn)睛】本題考查了由構(gòu)成三角形的條件判斷第三條邊的取值范圍,在一個(gè)三角形中,任意兩邊之和大于第三邊,任意兩邊之差小于第三邊.5、96°96度【分析】根據(jù)題意由翻折的性質(zhì)和全等三角形的對(duì)應(yīng)角相等、三角形外角定理以及三角形內(nèi)角和定理進(jìn)行分析解答.【詳解】解:設(shè)∠C′=α,∠B′=β,∵將△ADC和△AEB分別繞著邊AB、AC翻折得到△ADC'和△AEB',∴△ADC≌△ADC′,△AEB≌△AEB′,∴∠ACD=∠C′=α,∠ABE=∠B′=β,∠BAE=∠B′AE=42°,∴∠C′DB=∠BAC′+AC′D=42°+α,∠CEB′=42°+β.∵C′D∥EB′∥BC,∴∠ABC=∠C′DB=42°+α,∠ACB=∠CEB′=42°+β,∴∠BAC+∠ABC+∠ACB=180°,即126°+α+β=180°.則α+β=54°.∵∠BFC=∠BDC+∠DBE,∴∠BFC=42°+α+β=42°+54°=96°.故答案為:96°.【點(diǎn)睛】本題考查全等三角形的性質(zhì),解答本題的關(guān)鍵是利用“全等三角形的對(duì)應(yīng)角相等”和“兩直線平行,內(nèi)錯(cuò)角相等”進(jìn)行推理.6、AB=AC(答案不唯一)【分析】根據(jù)全等三角形的判定定理SAS證得△ADB≌△ADC.【詳解】解:加上條件,AB=AC,可以得到△ADB≌△ADC(SAS).在△ADB與△ADC中,,∴△ADB≌△ADC(SAS),故答案為:AB=AC(答案不唯一).【點(diǎn)睛】本題考查三角形全等的判定方法,判定兩個(gè)三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定兩個(gè)三角形全等,判定兩個(gè)三角形全等時(shí),必須有邊的參與,若有兩邊一角對(duì)應(yīng)相等時(shí),角必須是兩邊的夾角.7、【分析】根據(jù)題意過點(diǎn)B'作B'H⊥AC于H,由全等三角形的判定得出△ACB≌△B'HA(AAS),得AC=B'H=4,則有S△AB'C=AC?B′H即可求得答案.【詳解】解:過點(diǎn)B'作B'H⊥AC于H,∴∠AHB'=90°,∠BAB'=90°,∴∠HAB'+∠HB'A=90°,∠BAC+∠CAB'=90°,∴∠HB'A=∠CAB,在△ACB和△B'HA中,,∴△ACB≌△B'HA(AAS),∴AC=B'H,∵∠ACB=90°,AB=5,BC=3,∴AC===4,∴AC=B'H=4,∴S△AB'C=AC?B′H=×4×4=8.故答案為:8.【點(diǎn)睛】本題主要考查三角形全等的判定與性質(zhì)和旋轉(zhuǎn)的性質(zhì)以及勾股定理,根據(jù)題意利用全等三角形的判定證明△ACB≌△B'HA是解決問題的關(guān)鍵.8、7或3.5【分析】分兩種情況:(1)當(dāng)P在AC上,Q在BC上時(shí);(2)當(dāng)P在AC上,Q在AC上時(shí),即P、Q重合時(shí);【詳解】解:當(dāng)P在AC上,Q在BC上時(shí),∵∠ACB=90°,∴∠PCE+∠QCF=90°,∵PE⊥l于E,QF⊥l于F.∴∠PEC=∠CFQ=90°,∴∠EPC+∠PCE=90°,∴∠EPC=∠QCF,∵△PEC與△QFC全等,∴此時(shí)是△PCE≌△CQF,∴PC=CQ,∴8-t=10-3t,解得t=1,∴CQ=10-3t=7;當(dāng)P在AC上,Q在AC上時(shí),即P、Q重合時(shí),則CQ=PC,由題意得,8-t=3t-10,解得t=4.5,∴CQ=3t-10=3.5,綜上,當(dāng)△PEC與△QFC全等時(shí),滿足條件的CQ的長為7或3.5,故答案為:7或3.5.【點(diǎn)睛】本題主要考查了全等三角形的性質(zhì),根據(jù)題意得出關(guān)于的方程是解題的關(guān)鍵.9、100【分析】由,,可得,從而可得,得出,根據(jù),則,兩點(diǎn)間的距離即可求解.【詳解】解:∵,,∴,又∵,∴在與中,,∴,∴,∵,∴,兩點(diǎn)間的距離為100.故答案為:100.【點(diǎn)睛】本題考查了全等三角形的判定及性質(zhì),解決本題的關(guān)鍵是判定與全等.10、2或6或2【分析】設(shè)BE=t,則BF=2t,使△AEG與△BEF全等,由∠A=∠B=90°可知,分兩種情況:情況一:當(dāng)BE=AG,BF=AE時(shí),列方程解得t,可得AG;情況二:當(dāng)BE=AE,BF=AG時(shí),列方程解得t,可得AG.【詳解】解:設(shè)BE=t,則BF=2t,AE=6-t,因?yàn)椤螦=∠B=90°,使△AEG與△BEF全等,可分兩種情況:情況一:當(dāng)BE=AG,BF=AE時(shí),∵BF=AE,AB=6,∴2t=6-t,解得:t=2,∴AG=BE=t=2;情況二:當(dāng)BE=AE,BF=AG時(shí),∵BE=AE,AB=6,∴t=6-t,解得:t=3,∴AG=BF=2t=2×3=6,綜上所述,AG=2或AG=6.故答案為:2或6.【點(diǎn)睛】本題主要考查了全等三角形的性質(zhì),利用分類討論思想是解答此題的關(guān)鍵.三、解答題1、(1)仍是真命題,證明見解析(2)仍能得到,作圖和證明見解析【分析】(1)由角邊角得出和全等,對(duì)應(yīng)邊相等即可.(2)由(1)問可知BM=CN,故可由邊角邊得出和全等,對(duì)應(yīng)角相等,即可得出.(1)∵∴∵∴在和中有∴∴故結(jié)論仍為真命題.(2)∵BM=CN∴CM=AN∵AB=AC,,在和中有∴∴∴故仍能得到,如圖所示【點(diǎn)睛】本題考查了全等三角形的判定和性質(zhì),從判定兩個(gè)三角形全等的方法可知,要判定兩個(gè)三角形全等,需要知道這兩個(gè)三角形分別有三個(gè)元素(其中至少一個(gè)元素是邊)對(duì)應(yīng)相等,這樣就可以利用題目中的已知邊角迅速、準(zhǔn)確地確定要補(bǔ)充的邊角,有目的地完善三角形全等的條件,從而得到判定兩個(gè)三角形全等的思路.2、(1)(10﹣2t);(2)當(dāng)v=1或v=2.4時(shí),△ABP和△PCQ全等.【分析】(1)根據(jù)題意求出BP,然后根據(jù)PC=BC-BP計(jì)算即可;(2)分△ABP≌△QCP和△ABP≌△PCQ兩種情況,根據(jù)全等三角形的性質(zhì)解答即可.【詳解】解:(1)∵點(diǎn)P的速度是2cm/s,∴ts后BP=2tcm,∴PC=BC?BP=(10?2t)cm,故答案為:(10﹣2t);(2)由題意得:,∠B=∠C=90°,∴只存在△ABP≌△QCP和△ABP≌△PCQ兩種情況,當(dāng)△ABP≌△PCQ時(shí),∴AB=PC,BP=CQ,∴10?2t=6,2t=vt,解得,t=2,v=2,當(dāng)△ABP≌△QCP時(shí),∴AB=QC,BP=CP,∴2t=10-2t,vt=6,解得,t=2.5,v=2.4,∴綜上所述,當(dāng)v=1或v=2.4時(shí),△ABP和△PCQ全等.【點(diǎn)睛】本題考查了全等三角形的性質(zhì),解題的關(guān)鍵在于能夠利用分類討論的思想求解.3、(1)2;(2)當(dāng)0≤t≤3時(shí),DM=3-t,當(dāng)3<t≤8時(shí),DM=t-3;(3)2或1【分析】(1)根據(jù)題意得:,解得:,即可求解;(2)根據(jù)題意得:當(dāng)0≤t≤3時(shí),AM=t,則DM=3-t,當(dāng)3<t≤8時(shí),DM=t-3,即可求解;(3)根據(jù)ME⊥PQ,NF⊥PQ,可得∠DEM=∠DFN=90°,再由∠ADC=90°,可得∠DME=∠FDN,從而得到當(dāng)DEM與DFN全等時(shí),DM=DN,根據(jù)題意可得M到達(dá)點(diǎn)D時(shí),,M到達(dá)點(diǎn)C時(shí),,N到達(dá)點(diǎn)D時(shí),,N到達(dá)點(diǎn)A時(shí),,然后分兩種情況:當(dāng)時(shí)和當(dāng)時(shí),即可求解.【詳解】解:(1)根據(jù)題意得:,解得:,即在運(yùn)動(dòng)過程中當(dāng)M、N兩點(diǎn)相遇時(shí),t的值為2;(2)根據(jù)題意得:當(dāng)0≤t≤3時(shí),AM=t,則DM=3-t,當(dāng)3<t≤8時(shí),DM=t-3;(3)∵M(jìn)E⊥PQ,NF⊥PQ,∴∠DEM=∠DFN=90°,∴∠EDM+∠DME=90°,∵∠ADC=90°,∴∠EDM+∠FDN=90°,∴∠DME=∠FDN,∴當(dāng)DEM與DFN全等時(shí),DM=DN,∵M(jìn)到達(dá)點(diǎn)D時(shí),,M到達(dá)點(diǎn)C時(shí),,N到達(dá)點(diǎn)D時(shí),,N到達(dá)點(diǎn)A時(shí),,當(dāng)時(shí),DM=3-t,CN=3t,則DN=5-3t,∴3-t=5-3t,解得:t=1,∴此時(shí)DN=5-3t=2,當(dāng)時(shí),DM=3-t,DN=3t-5,∴3-t=3t-5,解得:,∴DN=3t-5=1,綜上所述,當(dāng)DEM與DFN全等時(shí),所有滿足條件的DN的長為2或1.【點(diǎn)睛】本題主要考查了全等三角形的判定和性質(zhì),動(dòng)點(diǎn)問題,利用分類討論思想解答是解題的關(guān)鍵.4、見解析【分析】根據(jù)全等三角形的判定定理ASA可以證得△ACD≌△ABE,然后由“全等三角形的對(duì)應(yīng)邊相等”即可證得結(jié)論.【詳解】證明:在△ABE與△ACD中,,∴△ACD≌△ABE(ASA),∴AD=AE(全等三角形的對(duì)應(yīng)邊相等).【點(diǎn)睛】本題考查了全等三角形的判定與性質(zhì).在應(yīng)用全等三角形的判定時(shí),要注意三角形間的公

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論