版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
北師大版9年級數(shù)學(xué)上冊期中試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(7小題,每小題2分,共計14分)1、如圖,把矩形OABC放入平面直角坐標系中,點B的坐標為(10,8),點D是OC上一點,將△BCD沿BD折疊,點C恰好落在OA上的點E處,則點D的坐標是()A.(0,4) B.(0,5)C.(0,3) D.(0,2)2、圖,在△ABC中,AB=AC,四邊形ADEF為菱形,O為AE,DF的交點,S△ABC=8,則S菱形ADEF=()A.4 B.4 C.4 D.43、關(guān)于x的一元二次方程根的情況,下列說法正確的是(
)A.有兩個不相等的實數(shù)根 B.有兩個相等的實數(shù)根C.無實數(shù)根 D.無法確定4、如圖,在菱形ABCD中,E是AC的中點,EF∥CB,交AB于點F,如果EF=3,那么菱形ABCD的周長為()A.24 B.18 C.12 D.95、如圖,在菱形ABCD中,,,過菱形ABCD的對稱中心O分別作邊AB,BC的垂線,交各邊于點E,F(xiàn),G,H,則四邊形EFGH的周長為(
)A. B. C. D.6、若關(guān)于x的一元二次方程x2﹣ax=0的一個解是﹣1,則a的值為()A.1 B.﹣2 C.﹣1 D.27、如圖,把長40,寬30的矩形紙板剪掉2個小正方形和2個小矩形(陰影部分即剪掉部分),將剩余的部分折成一個有蓋的長方體盒子,設(shè)剪掉的小正方形邊長為(紙板的厚度忽略不計),若折成長方體盒子的表面積是950,則的值是(
)A.3 B.4 C.4.8 D.5二、多選題(3小題,每小題2分,共計6分)1、下列命題中真命題有(
)A.四個角相等的四邊形是矩形 B.對角線垂直的四邊形是菱形C.對角線相等的平行四邊形是矩形 D.四邊相等的四邊形是正方形2、下列方程一定不是一元二次方程的是(
)A. B.C. D.3、下列方程中,有實數(shù)根的方程是()A.(x﹣1)2=2 B.(x+1)(2x﹣3)=0C.3x2﹣2x﹣1=0 D.x2+2x+4=0第Ⅱ卷(非選擇題80分)三、填空題(10小題,每小題2分,共計20分)1、邊長分別為a和2a的兩個正方形按如圖的樣式擺放,則圖中陰影部分的面積為_____.2、如圖,在矩形中,點分別在上,.只需添加一個條件即可證明四邊形是菱形,這個條件可以是______________(寫出一個即可).3、若m,n是關(guān)于x的方程x2-3x-3=0的兩根,則代數(shù)式m2+n2-2mn=_____.4、如圖,在長方形中,,在上存在一點、沿直線把折疊,使點恰好落在邊上的點處,若,那么的長為________.5、如圖,正方形ABCD的邊長為6,點E在邊CD上.以點A為中心,把△ADE順時針旋轉(zhuǎn)90°至△ABF的位置.若DE=2,則FE=___.6、如圖,在矩形ABCD中,AB=6,BC=8,點E、F分別是邊AB、BC上的動點,且EF=4,點G是EF的中點,AG、CG,則四邊形AGCD面積的最小值為_______.7、已知菱形的邊長為,兩條對角線的長度的比為3:4,則兩條對角線的長度分別是_____________.8、如圖,在平面直角坐標系中,長方形OABC的邊OA在x軸上,OC在y軸上,OA=1,OC=2,對角線AC的垂直平分線交AB于點E,交AC于點D.若y軸上有一點P(不與點C重合),能使△AEP是以為AE為腰的等腰三角形,則點P的坐標為____.9、如圖,在菱形ABCD中,AB的垂直平分線交對角線BD于點F,垂足為點E,連接AF、AC,若∠DCB=70°,則∠FAC=______.10、如圖,在Rt△ABC中,∠C=90°,AC=8cm,BC=2cm,點P在邊AC上,以2cm/s的速度從點A向點C移動,點Q在邊CB上,以1cm/s的速度從點C向點B移動.點P、Q同時出發(fā),且當一點移動到終點時,另一點也隨之停止,連接PQ,當△PQC的面積為3cm2時,P、Q運動的時間是_____秒.四、解答題(6小題,每小題10分,共計60分)1、如圖,在矩形ABCD中,AB=12cm,BC=6cm.點P沿AB邊從點A開始向點B以2cm/s的速度移動,點Q沿DA邊從點D開始向點A以1cm/s的速度移動.如果點P,Q同時出發(fā),用t(s)表示移動的時間(0<t<6),那么當t為何值時,△QAP的面積等于8cm2?2、如圖,平行四邊形的對角線、相較于點O,且,,.求證:四邊形是矩形.3、勾股定理有著悠久的歷史,它曾引起很多人的興趣.1955年希臘發(fā)行了二枚以勾股圖為背景的郵票.所謂勾股圖是指以直角三角形的三邊為邊向外作正方形構(gòu)成(圖1:△ABC中,∠BAC=90°).(1)如圖2,若以直角三角形的三邊為邊向外作等邊三角形,則它們的面積、、之間的數(shù)量關(guān)系是(
).(2)如圖3,若以直角三角形的三邊為直徑向外作半圓,則它們的面積、、之間的數(shù)量關(guān)系是(
),請說明理由.(3)如圖4,在四邊形ABCD中,AD∥BC,∠ABC+∠BCD=90°,BC=2AD,分別以AB、CD、AD、BC為邊向四邊形外作正方形,其面積分別為、、、,則、、、之間的數(shù)量關(guān)系式為(),請說明理由.4、閱讀例題,解答問題:例:解方程.解:原方程化為.令,原方程化成解得,(不合題意,舍去)...∴原方程的解是,請模仿上面的方法解方程:.5、如圖,在矩形ABCD中,點M在DC上,AM=AB,且BN⊥AM,垂足為N.(1)求證:△ABN≌△MAD;(2)若AD=2,AN=4,求四邊形BCMN的面積.6、安順市某商貿(mào)公司以每千克40元的價格購進一種干果,計劃以每千克60元的價格銷售,為了讓顧客得到更大的實惠,現(xiàn)決定降價銷售,已知這種干果銷售量(千克)與每千克降價(元)之間滿足一次函數(shù)關(guān)系,其圖象如圖所示:(1)求與之間的函數(shù)關(guān)系式;(2)商貿(mào)公司要想獲利2090元,則這種干果每千克應(yīng)降價多少元?-參考答案-一、單選題1、C【解析】【分析】由題意可得AO=BC=10,AB=OC=8,DE=CD,BE=BC=10,在中,由勾股定理可求得,OE=4,設(shè)OD=x,則DE=CD=8-x,然后在中,由勾股定理即可求得OD=3,繼而求得點D的坐標.【詳解】解:∵點B的坐標為(10,8),∴AO=BC=10,AB=OC=8,由折疊的性質(zhì),可得:DE=CD,BE=BC=10,在中,由勾股定理得:,∴OE=AO-AE=10-6=4,設(shè)OD=x,則DE=CD=8-x,在中,由勾股定理得:,即:,解得:,∴OD=3,∴點D的坐標是(0,3).故選:C.【考點】本題主要考查了矩形的性質(zhì)、折疊的性質(zhì)、勾股定理,熟練掌握折疊的性質(zhì)是解題的關(guān)鍵.2、C【解析】【分析】根據(jù)菱形的性質(zhì),結(jié)合AB=AC,得出DF為△ABC的中位線,DF∥BC,,從而得出AE為△ABC的高,得出,再根據(jù)菱形的面積公式,即可得出菱形的面積.【詳解】解:∵四邊形ADEF為菱形,∴EF∥AB,DE∥AC,AF=EF=DE=AD,AE⊥DF,∴,,,,,∴CF=EF,DE=DB,,,∴DF∥BC,,,,,,,即,,故C正確.故選:C.【考點】本題主要考查了菱形的性質(zhì),中位線的性質(zhì),等腰三角形的性質(zhì)和判斷,平行線的性質(zhì),菱形的面積,三角形面積的計算,根據(jù)菱形的性質(zhì)和等腰三角形的性質(zhì)得出DF為△ABC的中位線,是解題的關(guān)鍵.3、A【解析】【分析】先計算判別式,再進行配方得到△=(k-1)2+4,然后根據(jù)非負數(shù)的性質(zhì)得到△>0,再利用判別式的意義即可得到方程總有兩個不相等的實數(shù)根.【詳解】△=(k-3)2-4(1-k)=k2-6k+9-4+4k=k2-2k+5=(k-1)2+4,∴(k-1)2+4>0,即△>0,∴方程總有兩個不相等的實數(shù)根.故選:A.【考點】本題考查的是根的判別式,一元二次方程ax2+bx+c=0(a≠0)的根與△=b2-4ac有如下關(guān)系:①當△>0時,方程有兩個不相等的實數(shù)根;②當△=0時,方程有兩個相等的實數(shù)根;③當△<0時,方程無實數(shù)根.上面的結(jié)論反過來也成立.4、A【解析】【分析】易得BC長為EF長的2倍,那么菱形ABCD的周長=4BC問題得解.【詳解】∵E是AC中點,∵EF∥BC,交AB于點F,∴EF是△ABC的中位線,∴BC=2EF=2×3=6,∴菱形ABCD的周長是4×6=24,故選A.【考點】本題考查了三角形中位線的性質(zhì)及菱形的周長公式,熟練掌握相關(guān)知識是解題的關(guān)鍵.5、A【解析】【分析】依次求出OE=OF=OG=OH,利用勾股定理得出EF和OE的長,即可求出該四邊形的周長.【詳解】∵HF⊥BC,EG⊥AB,∴∠BEO=∠BFO=90°,∵∠A=120°,∴∠B=60°,∴∠EOF=120°,∠EOH=60°,由菱形的對邊平行,得HF⊥AD,EG⊥CD,因為O點是菱形ABCD的對稱中心,∴O點到各邊的距離相等,即OE=OF=OG=OH,∴∠OEF=∠OFE=30°,∠OEH=∠OHE=60°,∴∠HEF=∠EFG=∠FGH=∠EHG=90°,所以四邊形EFGH是矩形;設(shè)OE=OF=OG=OH=x,∴EG=HF=2x,,如圖,連接AC,則AC經(jīng)過點O,可得三角形ABC是等邊三角形,∴∠BAC=60°,AC=AB=2,∴OA=1,∠AOE=30°,∴AE=,∴x=OE=∴四邊形EFGH的周長為EF+FG+GH+HE=,故選A.【考點】本題考查了菱形的性質(zhì)、矩形的判定與性質(zhì)、等邊三角形的判定與性質(zhì)、勾股定理、直角三角形的性質(zhì)等內(nèi)容,要求學(xué)生在理解相關(guān)概念的基礎(chǔ)上學(xué)會應(yīng)用,能分析并綜合運用相關(guān)條件完成線段關(guān)系的轉(zhuǎn)換,考查了學(xué)生的綜合分析與應(yīng)用的能力.6、C【解析】【分析】把x=﹣1代入方程x2﹣ax=0得1+a=0,然后解關(guān)于a的方程即可.【詳解】解:把x=﹣1代入方程x2﹣ax=0得1+a=0,解得a=﹣1.故選C.【考點】本題考查了一元二次方程的解:能使一元二次方程左右兩邊相等的未知數(shù)的值是一元二次方程的解.7、D【解析】【分析】觀察圖形可知陰影部分小長方形的長為,再根據(jù)去除陰影部分的面積為950,列一元二次方程求解即可.【詳解】解:由圖可得出,整理,得,解得,(不合題意,舍去).故選:D.【考點】本題考查的知識點是一元二次方程的應(yīng)用,根據(jù)圖形找出陰影部分小長方形的長是解此題的關(guān)鍵.二、多選題1、AC【解析】【分析】真命題就是正確的命題,即如果命題的題設(shè)成立,那么結(jié)論一定成立.因此,分別根據(jù)矩形、菱形、正方形的判定作出判斷得即可.【詳解】解:A、根據(jù)四邊形的內(nèi)角和是360度得出,四個角相等的四邊形即四個內(nèi)角是直角,故此四邊形是矩形,故此命題是真命題,符合題意;B、只有對角線互相平分且垂直的四邊形是菱形,故此命題不是真命題,不符合題意;C、對角線互相平分且相等的四邊形是矩形,故此命題不是真命題,符合題意;D、四邊相等的四邊形是菱形,故此命題不是真命題,不符合題意.故選AC.【考點】本題考查的是命題的真假判斷,正確的命題叫真命題,錯誤的命題叫做假命題.判斷命題的真假關(guān)鍵是要熟悉課本中的性質(zhì)定理.2、AB【解析】【分析】根據(jù)只含有一個未知數(shù),并且未知數(shù)的最高次數(shù)是2的整式方程叫一元二次方程進行分析即可.【詳解】解:A、分母含有未知數(shù),一定不是一元二次方程,故本選項符合題意;B、含有兩個未知數(shù),一定不是一元二次方程,故本選項符合題意;C、當a=0時,不是一元二次方程,當a≠0時,是一元二次方程,故本選項不符合題意;D、是一元二次方程,故本選項不符合題意.故選:AB.【考點】本題考查的是一元二次方程的定義,熟知只含有一個未知數(shù),并且未知數(shù)的最高次數(shù)是2的整式方程叫一元二次方程是解答此題的關(guān)鍵.3、ABC【解析】【分析】根據(jù)直接開方法可確定A選項正確;根據(jù)因式分解法可確定B選項正確;根據(jù)方程的判別式,當時,方程有兩個不等的實數(shù)根,當時,方程有兩個相等的實數(shù)根,當時,方程無實數(shù)根,可判斷C選項正確,D選項錯誤.【詳解】A.,解得:,,方程有實數(shù)根,A選項正確;B.,解得:,,方程有實數(shù)根,B選項正確;C.,,,,方程有實數(shù)根,C選項正確;D.,,,,方程無實數(shù)根,D選項錯誤.故選:ABC.【考點】本題考查了一元二次方程根的判斷,熟練掌握根的判別式是解題的關(guān)鍵.三、填空題1、2a2【解析】【分析】結(jié)合圖形,發(fā)現(xiàn):陰影部分的面積=大正方形的面積的+小正方形的面積﹣直角三角形的面積.【詳解】解:陰影部分的面積=大正方形的面積+小正方形的面積﹣直角三角形的面積=(2a)2+a2﹣?2a?3a=4a2+a2﹣3a2=2a2.故答案為:2a2.【考點】本題考查正方形中不規(guī)則圖形面積的求法,解題的關(guān)鍵是利用正方形的性質(zhì),通過規(guī)則圖形進行求解.2、(答案不唯一)【解析】【分析】由題意易得四邊形是平行四邊形,然后根據(jù)菱形的判定定理可進行求解.【詳解】解:∵四邊形是矩形,∴,∵,∴四邊形是平行四邊形,若要添加一個條件使其為菱形,則可添加或AE=CE或CE=CF或AF=CF,理由:一組鄰邊相等的平行四邊形是菱形;故答案為(答案不唯一).【考點】本題主要考查菱形的判定定理、矩形的性質(zhì)及平行四邊形的判定,熟練掌握菱形的判定定理、矩形的性質(zhì)及平行四邊形的判定是解題的關(guān)鍵.3、21【解析】【分析】先根據(jù)根與系數(shù)的關(guān)系得到m+n=3,mn=﹣3,再根據(jù)完全平方公式變形得到m2+n2﹣2mn=(m+n)2﹣4mn,然后利用整體代入的方法計算.【詳解】解:∵m,n是關(guān)于x的方程x2-3x-3=0的兩根,∴m+n=3,mn=﹣3,∴m2+n2﹣2mn=(m+n)2﹣4mn=32﹣4×(﹣3)=21.故答案為:21.【考點】本題考查了根與系數(shù)的關(guān)系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的兩根時,x1+x2,x1x2.4、【解析】【分析】由折疊的性質(zhì),得DE=EF,AD=AF,然后求出AF=AD=10,則求出FC的長度,再根據(jù)勾股定理建立方程,即可求出答案.【詳解】解:∵四邊形是長方形,由折疊的性質(zhì),,∵,又,在中,;故答案為:.【考點】本題考查了:①折疊的性質(zhì):折疊是一種對稱變換,它屬于軸對稱,根據(jù)軸對稱的性質(zhì),折疊前后圖形的形狀和大小不變,位置變化,對應(yīng)邊和對應(yīng)角相等;②矩形的性質(zhì),勾股定理求解.5、【解析】【分析】由旋轉(zhuǎn)的性質(zhì)可得BF=DE=2,∠D=∠ABF=90°,在直角△EFC中,由勾股定理可求解.【詳解】解:∵把△ADE順時針旋轉(zhuǎn)90°得△ABF,∴BF=DE=2,∠D=∠ABF=90°,∴∠ABC+∠ABF=180°,∴點F,點B,點C共線,在直角△EFC中,EC=6-2=4,CF=BC+BF=8.根據(jù)勾股定理得:EF=,故答案為:.【考點】本題考查了旋轉(zhuǎn)的性質(zhì),正方形的性質(zhì),勾股定理,靈活運用這些性質(zhì)解決問題是本題的關(guān)鍵.6、38【解析】【分析】根據(jù)題目要求,要使四邊形AGCD的面積最小,因為的面積固定,只需使的面積最小即可,即的高最小即可,又在中,,則BG=2,高的最小值為點B到AC的距離減去BG的長度,則可求解.【詳解】依題意,在中,為EF的中點,,,點G在以B為圓心,2為半徑的圓與長方形重合的弧上運動,,要使四邊形AGCD的面積最小,則B所在直線垂直線段AC,又,點B到AC的距離為,此時點G到AC的距離為,故的最小面積為,,故答案為:38.【考點】本題考查了動點問題中四邊形的最小面積問題,利用勾股定理,直角三角形中線的性質(zhì),三角形等積法求高等性質(zhì)定理進行求解,對于相關(guān)性質(zhì)定理的熟練運用是解題的關(guān)鍵.7、,【解析】【分析】如圖BD:AC=3:4,AB=10cm,設(shè)BD=3x,則AC=4x,根據(jù)菱形的性質(zhì),DO=BO=,AO=CO=2x,在RtΔAOD中,AD2+DO2+AO2,,求出x,BD=3x,AC=4x即可.【詳解】如圖BD:AC=3:4,AB=10cm,設(shè)BD=3x,則AC=4x,根據(jù)菱形的性質(zhì),DO=BO=,AO=CO=2x,AC垂直BD在RtΔAOD中,AD2+DO2+AO2,,x=4,AC=4×4=16,BD=3×4=12,則兩條對角線的長度分別是12cm,16cm.故答案為:12cm,16cm.【考點】本題考查菱形的對角線問題,掌握菱形的性質(zhì),利用對角線之間的關(guān)系,和勾股定理構(gòu)造方程是解題關(guān)鍵.8、,或【解析】【分析】設(shè)AE=m,根據(jù)勾股定理求出m的值,得到點E(1,),設(shè)點P坐標為(0,y),根據(jù)勾股定理列出方程,即可得到答案.【詳解】∵對角線AC的垂直平分線交AB于點E,∴AE=CE,∵OA=1,OC=2,∴AB=OC=2,BC=OA=1,∴設(shè)AE=m,則BE=2-m,CE=m,∴在Rt?BCE中,BE2+BC2=CE2,即:(2-m)2+12=m2,解得:m=,∴E(1,),設(shè)點P坐標為(0,y),∵△AEP是以為AE為腰的等腰三角形,當AP=AE,則(1-0)2+(0-y)2=(1-1)2+(0-)2,解得:y=,當EP=AE,則(1-0)2+(-y)2=(1-1)2+(0-)2,解得:y=,∴點P的坐標為,,,故答案是:,,.【考點】本題主要考查等腰三角形的定義,勾股定理,矩形的性質(zhì),垂直平分線的性質(zhì),掌握勾股定理,列出方程,是解題的關(guān)鍵.9、20°【解析】【分析】由菱形的性質(zhì)和等腰三角形的性質(zhì)求出∠BAC和∠FAB的度數(shù),即可解決問題.【詳解】解:∵EF是線段AB的垂直平分線,∴AF=BF,∴∠FAB=∠FBA,∵四邊形ABCD是菱形,∠DCB=70°,∴BC=AB,∠BCA=∠DCB=35°,AC⊥BD,∴∠BAC=∠BCA=35°,∴∠FBA=90°﹣∠BAC=55°,∴∠FAB=55°,∴∠FAC=∠FAB﹣∠BAC=55°﹣35°=20°,故答案為:20°.【考點】本題考查菱形的性質(zhì)和等腰三角形的性質(zhì),熟練掌握菱形的性質(zhì)和等腰三角形的性質(zhì)是解題的關(guān)鍵.10、1【解析】【分析】設(shè)P、Q運動的時間是秒,根據(jù)已知條件得到cm,cm,則cm,根據(jù)三角形面積公式列出方程,解方程即可求解.【詳解】解:設(shè)P、Q運動的時間是秒,則cm,cm,cm∵△PQC的面積為3cm2,∴,即,解得或(不合題意,舍去),∴當△PQC的面積為3cm2時,P、Q運動的時間是1秒.故答案為:1【考點】本題考查了一元二次方程應(yīng)用——動點問題,三角形的面積,正確的理解題意是解題的關(guān)鍵.四、解答題1、當t為2或4時,△QAP的面積等于8cm2.【解析】【分析】當運動時間為ts時,AP=2tcm,AQ=(6?t)cm,利用三角形的面積計算公式,結(jié)合△QAP的面積等于8cm2,即可得出關(guān)于t的一元二次方程,解之即可得出t的值.【詳解】解:當運動時間為ts時,AP=2tcm,AQ=(6-t)cm,依題意得×2t(6-t)=8,整理得t2-6t+8=0,解得t1=2,t2=4,∴當t為2或4時,△QAP的面積等于8cm2.【考點】本題考查了一元二次方程的應(yīng)用,找準等量關(guān)系,正確列出一元二次方程是解題的關(guān)鍵.2、見解析【解析】【分析】先根據(jù)四邊形是平行四邊形且得到平行四邊形是菱形,即可得到,再根據(jù),,證明四邊形是平行四邊形,即可得到平行四邊形是矩形.【詳解】證明:∵四邊形是平行四邊形且∴平行四邊形是菱形∴,即又∵,.∴四邊形是平行四邊形,∴平行四邊形是矩形.【考點】本題主要考查了平行四邊形的判定,矩形的判定,菱形的性質(zhì)與判定,解題的關(guān)鍵在于能夠熟練掌握相關(guān)知識進行求解.3、(1);(2);理由見解析;(3),理由見解析.【解析】【分析】(1)利用直角的邊長就可以表示出等邊三角形、、的大小,滿足勾股定理;(2)利用直角的邊長就可以表示出半圓、、的大小,滿足勾股定理;(3)利用BC、AD的長分別表示正方形、、、的大小,根據(jù)BC=2AD,即可求解.【詳解】解:(1)由題意可得:,,,,,故答案為:;(2)由題意得:,,,,故答案為:;(3)過D作,交BC于點E,∵AD∥BC,∴四邊形ABED為平行四邊形,故,又∵BC=2AD,∴,,∴,∵,,,,∴,故
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- GB/Z 112-2026中醫(yī)藥中西醫(yī)結(jié)合臨床術(shù)語系統(tǒng)分類框架
- 鎖具裝配工安全培訓(xùn)效果評優(yōu)考核試卷含答案
- 履帶運輸車司機保密意識知識考核試卷含答案
- 橋梁樁基施工培訓(xùn)
- 酒店資產(chǎn)管理制度
- 酒店客房服務(wù)規(guī)范及服務(wù)質(zhì)量標準制度
- 車站客運服務(wù)質(zhì)量管理規(guī)定制度
- 采購價格談判與成本控制制度
- 卡壓式涂覆碳鋼管專項施工方案
- 活動組織技巧培訓(xùn)
- 2025大模型安全白皮書
- 2026國家國防科技工業(yè)局所屬事業(yè)單位第一批招聘62人備考題庫及1套參考答案詳解
- 工程款糾紛專用!建設(shè)工程施工合同糾紛要素式起訴狀模板
- 2026湖北武漢長江新區(qū)全域土地管理有限公司招聘3人筆試備考題庫及答案解析
- 110(66)kV~220kV智能變電站設(shè)計規(guī)范
- (正式版)DB44∕T 2784-2025 《居家老年人整合照護管理規(guī)范》
- 2025年美國心臟病協(xié)會心肺復(fù)蘇和心血管急救指南(中文完整版)
- (2025年)教育博士(EdD)教育領(lǐng)導(dǎo)與管理方向考試真題附答案
- ktv衛(wèi)生管理制度
- 黃沙、石子-水泥-磚采購合同
- 以學(xué)習(xí)項目構(gòu)建學(xué)習(xí)任務(wù)序列化嘗試(選必修第三單元) 論文
評論
0/150
提交評論